Cayley–Hamilton theorem - Eigenvalues,
Eigenvectors and Eigenspaces
Isaac Amornortey Yowetu
NIMS-GHANA
March 17, 2021
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Content
1 Cayley–Hamilton theorem
2 Finding Eigenvalues
3 EigenVectors and EigenSpaces
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Cayley–Hamilton theorem
Every square matrix satisfies its own characteristic equation.
Thus:
p(λ) = det(λI − A)
Substituting the matrix A for λ in the polynomial,
p(λ) = det(λI − A) results in a zero matrix.
Thus:
p(A) = 0
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Example : Using Non-singular Matrix
Consider the given matrix:
A =


2 1 −1
1 2 −1
− −1 2


Find the characteristic equation of the square matrix and
hence find the eigenvalues, eigenvectors and eigenspaces.
Cayley–Hamilton theorem Finding Eigenvalues EigenVectors and EigenSpaces
Solution
p(λ) = det(λI − A) (1)
=
λ


1 0 0
0 1 0
0 0 1

 −


2 1 −1
1 2 −1
−1 −1 2


(2)
=

Cayley-Hamilton Theorem, Eigenvalues, Eigenvectors and Eigenspace.

  • 1.
    Cayley–Hamilton theorem -Eigenvalues, Eigenvectors and Eigenspaces Isaac Amornortey Yowetu NIMS-GHANA March 17, 2021
  • 2.
    Cayley–Hamilton theorem FindingEigenvalues EigenVectors and EigenSpaces Content 1 Cayley–Hamilton theorem 2 Finding Eigenvalues 3 EigenVectors and EigenSpaces
  • 3.
    Cayley–Hamilton theorem FindingEigenvalues EigenVectors and EigenSpaces Cayley–Hamilton theorem Every square matrix satisfies its own characteristic equation. Thus: p(λ) = det(λI − A) Substituting the matrix A for λ in the polynomial, p(λ) = det(λI − A) results in a zero matrix. Thus: p(A) = 0
  • 4.
    Cayley–Hamilton theorem FindingEigenvalues EigenVectors and EigenSpaces Example : Using Non-singular Matrix Consider the given matrix: A =   2 1 −1 1 2 −1 − −1 2   Find the characteristic equation of the square matrix and hence find the eigenvalues, eigenvectors and eigenspaces.
  • 5.
    Cayley–Hamilton theorem FindingEigenvalues EigenVectors and EigenSpaces Solution p(λ) = det(λI − A) (1) =
  • 10.
    λ   1 0 0 01 0 0 0 1   −   2 1 −1 1 2 −1 −1 −1 2  
  • 15.