This document discusses various matrix decomposition techniques including least squares, eigendecomposition, and singular value decomposition. It begins with an introduction to the importance of linear algebra and decompositions for applications. Then it provides examples of using least squares to fit curves to data and find regression lines. It defines eigenvalues and eigenvectors and provides examples of eigendecomposition. It also discusses diagonalization of matrices and using the eigendecomposition to raise matrices to powers. Finally, it discusses singular value decomposition and its applications.