Slide - 1Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
2
Rational
Expressions and
Applications
14
Slide - 2Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
1. Add rational expressions having the same
denominator.
2. Add rational expressions having different
denominators.
3. Subtract rational expressions.
Objectives
14.4 Adding and Subtracting Rational
Expressions
Slide - 3Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Add Rational Expressions Having the Same Denominator
Adding Rational Expressions (Same Denominator)
The rational expressions and (where Q ≠ 0) are
added as follows.
In words: To add rational expressions with the same
denominator, add the numerators and keep the same
denominator.
P
Q
R
Q
P R P R
Q Q Q

 
Slide - 4Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Add. Write each answer in lowest terms.
7 8
(a)
18 18

Add Rational Expressions Having the Same Denominator
7 8
18


15
18

5
6

2 2
2 2
6 4
(b)
1 1
 

 
x x x x
x x
2 2
2
6 4
1
  


x x x x
x
2
2
5 5
1
x x
x



5
( 1
( 1)
( 1) )
x
x
x
x



5
1
x
x


6
3
3
5


Slide - 5Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Add Rational Expressions Having Different Denominators
Adding Rational Expressions (Different Denominators)
Step 1 Find the least common denominator (LCD).
Step 2 Write each rational expression as an
equivalent rational expression with the LCD as
the denominator.
Step 3 Add the numerators to get the numerator of the
sum. The LCD is the denominator of the sum.
Step 4 Write in lowest terms using the fundamental
property.
Slide - 6Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Add. Write the answer in lowest terms.
5 4
6 15

Add Rational Expressions Having Different Denominators
25 8
30 30
 
33
30

11 1
, or 1
10 10

Slide - 7Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Add. Write the answer in lowest terms.
2
2
3 2
16 4
a a
a a


 
Add Rational Expressions Having Different Denominators
  
2
3 2
4 4 4
a a
a a a

 
  
  
 
  
2
2 43
4 4 4 4
a aa
a a a a
 
 
   
     
2 2
3 2 8
4 4 4 4
a a a
a a a a
 
 
   
  
2
8
4 4
a a
a a


 
Slide - 8Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Add. Write the answer in lowest terms.
2 2
4 3
8 15 3 10
z z
z z z z


   
Add Rational Expressions Having Different Denominators
4 3
( 3)( 5) ( 2)( 5)
z z
z z z z

 
   
4 ( 3)
( 3)( 5) ( 2)(
( 2) ( 3)
( 2) 35)( )
z zz z
z zz z z z

 
   
 

2 2
4 8 9
( 3)( 5)( 2)
z z z
z z z
  

  
2
5 8 9
( 3)( 5)( 2)
z z
z z z
 

  
Slide - 9Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Add. Write the answer in lowest terms.
Add Rational Expressions Having Different Denominators
2
5 7
1 1
y
y y


 
2
5 7
1 ( 1)1
y
y y


 
 
2
5 7
1 1
y
y y

 

 
2
5 7
1
y
y
 


2
12
1
y
y



Slide - 10Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Subtract Rational Expressions
Subtracting Rational Expressions (Same Denominator)
The rational expressions and (where Q ≠ 0) are
subtracted as follows.
In words: To subtract rational expressions with the same
denominator, subtract the numerators and keep the same
denominator.
P
Q
R
Q
.
P R P R
Q Q Q

 
Slide - 11Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Subtract. Write the answer in lowest terms.
3 1 2 5
2 2
x x
x x
 

 
Subtract Rational Expressions
3 1 (2 5)
2
x x
x
  


3 1 2 5
2
x x
x
  


4
2
x
x



Slide - 12Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Subtract Rational Expressions
CAUTION
Sign errors often occur in problems like the previous
one. The numerator of the fraction being subtracted
must be treated as a single quantity.
Be sure to use parentheses after the subtraction
sign.
Slide - 13Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Subtract. Write the answer in lowest terms.
2 3 2
3 5 1x x
x x x



Subtract Rational Expressions
2 2
3 5 1
( 1)
x x
x x x

 

2 2
3 (5 1)
( 1
( 1
)
)
( 1)
x
x
x x
x x x

 




2
2
3 3 5 1
( 1)
x x x
x x
  


2
2
3 8 1
( 1)
x x
x x
 


Slide - 14Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Subtract. Write the answer in lowest terms.
2 2
3 9
2 7 4 7 12x x x x

   
Subtract Rational Expressions
3 9
(2 1)( 4) ( 3)( 4)x x x x
 
   

3(x  3)
(2x 1)(x  4)(x  3)

9(2x 1)
(x  3)(x  4)(2x 1)

3x  9
(2x 1)(x  4)(x  3)

18x  9
(x  3)(x  4)(2x 1)

3x  9 18x  9
(2x 1)(x  4)(x  3)

15x 18
(2x 1)(x  4)(x  3)

Section 14.4 adding and subtracting rational expressions

  • 1.
    Slide - 1Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G 2 Rational Expressions and Applications 14
  • 2.
    Slide - 2Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G 1. Add rational expressions having the same denominator. 2. Add rational expressions having different denominators. 3. Subtract rational expressions. Objectives 14.4 Adding and Subtracting Rational Expressions
  • 3.
    Slide - 3Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Add Rational Expressions Having the Same Denominator Adding Rational Expressions (Same Denominator) The rational expressions and (where Q ≠ 0) are added as follows. In words: To add rational expressions with the same denominator, add the numerators and keep the same denominator. P Q R Q P R P R Q Q Q   
  • 4.
    Slide - 4Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Add. Write each answer in lowest terms. 7 8 (a) 18 18  Add Rational Expressions Having the Same Denominator 7 8 18   15 18  5 6  2 2 2 2 6 4 (b) 1 1      x x x x x x 2 2 2 6 4 1      x x x x x 2 2 5 5 1 x x x    5 ( 1 ( 1) ( 1) ) x x x x    5 1 x x   6 3 3 5  
  • 5.
    Slide - 5Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Add Rational Expressions Having Different Denominators Adding Rational Expressions (Different Denominators) Step 1 Find the least common denominator (LCD). Step 2 Write each rational expression as an equivalent rational expression with the LCD as the denominator. Step 3 Add the numerators to get the numerator of the sum. The LCD is the denominator of the sum. Step 4 Write in lowest terms using the fundamental property.
  • 6.
    Slide - 6Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Add. Write the answer in lowest terms. 5 4 6 15  Add Rational Expressions Having Different Denominators 25 8 30 30   33 30  11 1 , or 1 10 10 
  • 7.
    Slide - 7Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Add. Write the answer in lowest terms. 2 2 3 2 16 4 a a a a     Add Rational Expressions Having Different Denominators    2 3 2 4 4 4 a a a a a               2 2 43 4 4 4 4 a aa a a a a               2 2 3 2 8 4 4 4 4 a a a a a a a            2 8 4 4 a a a a    
  • 8.
    Slide - 8Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Add. Write the answer in lowest terms. 2 2 4 3 8 15 3 10 z z z z z z       Add Rational Expressions Having Different Denominators 4 3 ( 3)( 5) ( 2)( 5) z z z z z z        4 ( 3) ( 3)( 5) ( 2)( ( 2) ( 3) ( 2) 35)( ) z zz z z zz z z z           2 2 4 8 9 ( 3)( 5)( 2) z z z z z z        2 5 8 9 ( 3)( 5)( 2) z z z z z      
  • 9.
    Slide - 9Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Add. Write the answer in lowest terms. Add Rational Expressions Having Different Denominators 2 5 7 1 1 y y y     2 5 7 1 ( 1)1 y y y       2 5 7 1 1 y y y       2 5 7 1 y y     2 12 1 y y   
  • 10.
    Slide - 10Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Subtract Rational Expressions Subtracting Rational Expressions (Same Denominator) The rational expressions and (where Q ≠ 0) are subtracted as follows. In words: To subtract rational expressions with the same denominator, subtract the numerators and keep the same denominator. P Q R Q . P R P R Q Q Q   
  • 11.
    Slide - 11Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Subtract. Write the answer in lowest terms. 3 1 2 5 2 2 x x x x      Subtract Rational Expressions 3 1 (2 5) 2 x x x      3 1 2 5 2 x x x      4 2 x x   
  • 12.
    Slide - 12Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Subtract Rational Expressions CAUTION Sign errors often occur in problems like the previous one. The numerator of the fraction being subtracted must be treated as a single quantity. Be sure to use parentheses after the subtraction sign.
  • 13.
    Slide - 13Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Subtract. Write the answer in lowest terms. 2 3 2 3 5 1x x x x x    Subtract Rational Expressions 2 2 3 5 1 ( 1) x x x x x     2 2 3 (5 1) ( 1 ( 1 ) ) ( 1) x x x x x x x        2 2 3 3 5 1 ( 1) x x x x x      2 2 3 8 1 ( 1) x x x x    
  • 14.
    Slide - 14Copyright© 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Subtract. Write the answer in lowest terms. 2 2 3 9 2 7 4 7 12x x x x      Subtract Rational Expressions 3 9 (2 1)( 4) ( 3)( 4)x x x x        3(x  3) (2x 1)(x  4)(x  3)  9(2x 1) (x  3)(x  4)(2x 1)  3x  9 (2x 1)(x  4)(x  3)  18x  9 (x  3)(x  4)(2x 1)  3x  9 18x  9 (2x 1)(x  4)(x  3)  15x 18 (2x 1)(x  4)(x  3)