SlideShare a Scribd company logo
Addition and Subtraction of Rational Expressions
Addition and Subtraction of Rational Expressions
Only fractions with the same denominator may be added or
subtracted directly.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
± =
A±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
= 2
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
=
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
5
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
35
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
Example B.
a. Convert to a fraction with denominator 12.
A
B
A
B * D.
5
4
5
4
* 12
3 15
12
In practice, we write that
A
B
=> A
B
* D D.
5
4
= 12 =
new numerator N
the new numerator
with the new denominator 12.
N
D
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
Addition and Subtraction of Rational Expressions
3x
4y
3x
4y
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
the new numerator
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
new numerator
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
c. Convert into an expression denominator 4x2 – 9.
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
=
2x2 – x – 3
4x2 – 9
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72.
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
55
=
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
72
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2)
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
2x + 26
(x – 2)(x + 4)
= 2(x + 13)
(x – 2)(x + 4)
or
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
=
3
(x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
This is simplified because the numerator is not factorable.
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 =
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
Example H. Combine
Example D. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Hence
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD
–
2x – 2
LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
=
x2 – x + 2
2(2x – 1)(x + 1)
Self–Check:
Do it by the multiplier method to see which way you prefer.
x
2(2x – 1)
–
x – 1
( x + 1)(2x – 1)
[ ]* 2(2x – 1)(x + 1) / LCD
Ex. A. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
x – 2
– 2
x – 2
1.
2x
x – 2
+
4
x – 2
2.
3x
x + 3
+ 6
x + 3
3. – 2x
x – 4
+ 8
x – 4
4.
x + 2
2x – 1
–
2x – 1
5.
2x + 5
x – 2
–
4 – 3x
2 – x
6.
x2 – 2
x – 2
– x
x – 27.
9x2
3x – 2 –
4
3x – 28.
Ex. B. Combine and simplify the answers.
3
12
+ 5
6
– 2
3
9. 11
12
+
5
8
– 7
6
10. –5
6
+ 3
8
– 311.
12.
6
5xy2
– x
6y13.
3
4xy2
– 5x
6y
15. 7
12xy
– 5x
8y316.
5
4xy
– 7x
6y214.
3
4xy2
– 5y
12x217.
–5
6 –
7
12+ 2
+ 1 – 7x
9y2
4 – 3x
Ex. C. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
2x – 4
– 2
3x – 6
18.
2x
3x + 9
–
4
2x + 6
19.
–3
2x + 1
+ 2x
4x + 2
20. 2x – 3
x – 2
– 3x + 4
5 – 10x
21.
3x + 1
6x – 4
– 2x + 3
2 – 3x22.
–5x + 7
3x – 12+
4x – 3
–2x + 823.
x
x – 2
– 2
x – 3
24. 2x
3x + 1
+ 4
x – 6
25.
–3
2x + 1
+ 2x
3x + 2
26.
2x – 3
x – 2
+
3x + 4
x – 5
27.
3x + 1
+
x + 3
x2 – 428.
x2 – 4x + 4
x – 4
–
x + 5
x2 – x – 2
29.
x2 – 5x + 6
3x + 1
+
2x + 3
9 – x230.
x2 – x – 6
3x – 4
–
2x + 5
x2 + x – 6
31.
x2 + 5x + 6
3x + 4
+
2x – 3
–x2 – 2x + 3
32.
x2 – x
5x – 4
–
3x – 5
1 – x233.
x2 + 2x – 3

More Related Content

What's hot

Ch06 se
Ch06 seCh06 se
Ch06 se
parulian
 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equationsJessica Garcia
 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
Lawrence De Vera
 
Rational expressions
Rational expressionsRational expressions
Rational expressions
Leslie Amoguis
 
2 7 variations
2 7 variations2 7 variations
2 7 variationsmath123b
 
Applications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionsApplications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionskanyuma jitjumnong
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressionsHazel Joy Chong
 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPoint
galli1kj
 
Radicals
RadicalsRadicals
Radicals
Mark Ryder
 
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicalsMIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
Lawrence De Vera
 
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : PolynomialsMIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
Lawrence De Vera
 
Quant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsQuant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, Logarithms
CPT Success
 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalities
rey castro
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
Ver Louie Gautani
 
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangKahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangRyan Lok-Wing Pang
 

What's hot (20)

Ch06 se
Ch06 seCh06 se
Ch06 se
 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equations
 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
 
Rational expressions
Rational expressionsRational expressions
Rational expressions
 
2 7 variations
2 7 variations2 7 variations
2 7 variations
 
Applications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionsApplications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansions
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressions
 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPoint
 
Radicals
RadicalsRadicals
Radicals
 
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicalsMIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
 
boolean algebra(continued)
boolean algebra(continued)boolean algebra(continued)
boolean algebra(continued)
 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
 
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : PolynomialsMIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
 
Quant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsQuant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, Logarithms
 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalities
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangKahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
 
Lar calc10 ch04_sec1
Lar calc10 ch04_sec1Lar calc10 ch04_sec1
Lar calc10 ch04_sec1
 

Similar to 5 addition and subtraction i x

variables_expressions
variables_expressionsvariables_expressions
variables_expressions
Orlando Calderon
 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1bweldon
 
Operations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptxOperations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptx
DynaAlonsagayLabinda
 
Bmb12e ppt 1_1
Bmb12e ppt 1_1Bmb12e ppt 1_1
Bmb12e ppt 1_1
John Hani
 
Online Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic ExpressionsOnline Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic Expressions
apayne12
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
MELIKIPROTICHAMOS
 
Chapter3.2
Chapter3.2Chapter3.2
Chapter3.2nglaze10
 
4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx
PrinCess534001
 
Rational expressions and rational equations
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equations
arvin efriani
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplicationitutor
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
smiller5
 
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptxAALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
MilesUbaldo
 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbershamlet1988
 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptx
KarenGardose
 
Algebra 2 Section 1-1
Algebra 2 Section 1-1Algebra 2 Section 1-1
Algebra 2 Section 1-1
Jimbo Lamb
 
1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents
smiller5
 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
Malini Sharma
 
Math for 800 08 algebra
Math for 800   08 algebraMath for 800   08 algebra
Math for 800 08 algebra
Edwin Lapuerta
 

Similar to 5 addition and subtraction i x (20)

variables_expressions
variables_expressionsvariables_expressions
variables_expressions
 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1
 
303B Section 09.1
303B Section 09.1303B Section 09.1
303B Section 09.1
 
Operations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptxOperations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptx
 
Bmb12e ppt 1_1
Bmb12e ppt 1_1Bmb12e ppt 1_1
Bmb12e ppt 1_1
 
Online Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic ExpressionsOnline Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic Expressions
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
 
Chapter3.2
Chapter3.2Chapter3.2
Chapter3.2
 
4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx
 
Rational expressions and rational equations
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equations
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplication
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptxAALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbers
 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptx
 
Hprec2 5
Hprec2 5Hprec2 5
Hprec2 5
 
Algebra 2 Section 1-1
Algebra 2 Section 1-1Algebra 2 Section 1-1
Algebra 2 Section 1-1
 
1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents
 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
 
Math for 800 08 algebra
Math for 800   08 algebraMath for 800   08 algebra
Math for 800 08 algebra
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
Tzenma
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
Tzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
Tzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
Tzenma
 
1 functions
1 functions1 functions
1 functions
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
Tzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
Tzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
Tzenma
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
Tzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
Tzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
Tzenma
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
Tzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
Tzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
Tzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
Tzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
Tzenma
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
Tzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 

Recently uploaded

Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 

Recently uploaded (20)

Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 

5 addition and subtraction i x

  • 1. Addition and Subtraction of Rational Expressions
  • 2. Addition and Subtraction of Rational Expressions Only fractions with the same denominator may be added or subtracted directly. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 3. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 4. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 5. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 6. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 7. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 8. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3
  • 9. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3
  • 10. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3
  • 11. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3
  • 12. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D ± = A±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3 = 2
  • 13. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. Addition and Subtraction of Rational Expressions
  • 14. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions
  • 15. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. N D
  • 16. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 17. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 18. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 = Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 19. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 5 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 20. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 35 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 21. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = Example B. a. Convert to a fraction with denominator 12. A B A B * D. 5 4 5 4 * 12 3 15 12 In practice, we write that A B => A B * D D. 5 4 = 12 = new numerator N the new numerator with the new denominator 12. N D
  • 22. b. Convert into an expression with denominator 12xy2. Addition and Subtraction of Rational Expressions 3x 4y
  • 23. Addition and Subtraction of Rational Expressions 3x 4y 3x 4y b. Convert into an expression with denominator 12xy2.
  • 24. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 the new numerator b. Convert into an expression with denominator 12xy2.
  • 25. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 26. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 27. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 28. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) new numerator b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 29. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 30. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 31. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 32. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 c. Convert into an expression denominator 4x2 – 9. x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) = 2x2 – x – 3 4x2 – 9 b. Convert into an expression with denominator 12xy2.
  • 33. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below.
  • 34. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 35. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 36. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 37. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 38. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( ) The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 39. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 40. Addition and Subtraction of Rational Expressions Example C. Calculate 6 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 41. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 42. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 43. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 55 = The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later. 72
  • 44. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y Example E. Combine 5 x– 2 – 3 x + 4
  • 45. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Example E. Combine 5 x– 2 – 3 x + 4
  • 46. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Example E. Combine 5 x– 2 – 3 x + 4
  • 47. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 Example E. Combine 5 x– 2 – 3 x + 4
  • 48. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy Example E. Combine 5 x– 2 – 3 x + 4
  • 49. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4
  • 50. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
  • 51. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4)
  • 52. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 53. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 54. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2) 2x + 26 (x – 2)(x + 4) = 2(x + 13) (x – 2)(x + 4) or
  • 55. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4
  • 56. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD.
  • 57. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2)
  • 58. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2)
  • 59. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2).
  • 60. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2)x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 61. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 62. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD
  • 63. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2)
  • 64. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2) = 3 (x – 2)(x + 2)
  • 65. Addition and Subtraction of Rational Expressions Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 66. Example G. Combine Addition and Subtraction of Rational Expressions Traditional Method (Optional) 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 67. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 68. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 69. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 70. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 71. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 72. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 This is simplified because the numerator is not factorable. 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 73. Example H. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1
  • 74. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2x2 + x – 2 = Example H. Combine
  • 75. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = Example H. Combine
  • 76. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Example H. Combine
  • 77. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Example H. Combine
  • 78. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD Example H. Combine
  • 79. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) Example H. Combine
  • 80. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 81. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 82. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) LCD Example H. Combine
  • 83. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD Example H. Combine
  • 84. Example D. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) Example H. Combine
  • 85. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 86. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 87. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) LCD Example H. Combine
  • 88. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Example H. Combine
  • 89. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Hence x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD Example H. Combine
  • 90. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 91. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 92. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD
  • 93. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD = x2 – x + 2 2(2x – 1)(x + 1) Self–Check: Do it by the multiplier method to see which way you prefer. x 2(2x – 1) – x – 1 ( x + 1)(2x – 1) [ ]* 2(2x – 1)(x + 1) / LCD
  • 94. Ex. A. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x x – 2 – 2 x – 2 1. 2x x – 2 + 4 x – 2 2. 3x x + 3 + 6 x + 3 3. – 2x x – 4 + 8 x – 4 4. x + 2 2x – 1 – 2x – 1 5. 2x + 5 x – 2 – 4 – 3x 2 – x 6. x2 – 2 x – 2 – x x – 27. 9x2 3x – 2 – 4 3x – 28. Ex. B. Combine and simplify the answers. 3 12 + 5 6 – 2 3 9. 11 12 + 5 8 – 7 6 10. –5 6 + 3 8 – 311. 12. 6 5xy2 – x 6y13. 3 4xy2 – 5x 6y 15. 7 12xy – 5x 8y316. 5 4xy – 7x 6y214. 3 4xy2 – 5y 12x217. –5 6 – 7 12+ 2 + 1 – 7x 9y2 4 – 3x
  • 95. Ex. C. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x 2x – 4 – 2 3x – 6 18. 2x 3x + 9 – 4 2x + 6 19. –3 2x + 1 + 2x 4x + 2 20. 2x – 3 x – 2 – 3x + 4 5 – 10x 21. 3x + 1 6x – 4 – 2x + 3 2 – 3x22. –5x + 7 3x – 12+ 4x – 3 –2x + 823. x x – 2 – 2 x – 3 24. 2x 3x + 1 + 4 x – 6 25. –3 2x + 1 + 2x 3x + 2 26. 2x – 3 x – 2 + 3x + 4 x – 5 27. 3x + 1 + x + 3 x2 – 428. x2 – 4x + 4 x – 4 – x + 5 x2 – x – 2 29. x2 – 5x + 6 3x + 1 + 2x + 3 9 – x230. x2 – x – 6 3x – 4 – 2x + 5 x2 + x – 6 31. x2 + 5x + 6 3x + 4 + 2x – 3 –x2 – 2x + 3 32. x2 – x 5x – 4 – 3x – 5 1 – x233. x2 + 2x – 3