SlideShare a Scribd company logo
1 of 55
KAVOSHCOM
RF Communication Circuits
Lecture 1: Transmission Lines
A wave guiding structure is one that carries a signal
(or power) from one point to another.
There are three common types:
 Transmission lines
 Fiber-optic guides
 Waveguides
Waveguiding Structures
2
Transmission Line
 Has two conductors running parallel
 Can propagate a signal at any frequency (in theory)
 Becomes lossy at high frequency
 Can handle low or moderate amounts of power
 Does not have signal distortion, unless there is loss
 May or may not be immune to interference
 Does not have Ez or Hz components of the fields (TEMz)
Properties
Coaxial cable (coax)
Twin lead
(shown connected to a 4:1
impedance-transforming balun)
3
Transmission Line (cont.)
CAT 5 cable
(twisted pair)
The two wires of the transmission line are twisted to reduce interference and
radiation from discontinuities.
4
Transmission Line (cont.)
Microstrip
h
w
er
er
w
Stripline
h
Transmission lines commonly met on printed-circuit boards
Coplanar strips
h
er
w w
Coplanar waveguide (CPW)
h
er
w
5
Transmission Line (cont.)
Transmission lines are commonly met on printed-circuit boards.
A microwave integrated circuit
Microstrip line
6
Fiber-Optic Guide
Properties
 Uses a dielectric rod
 Can propagate a signal at any frequency (in theory)
 Can be made very low loss
 Has minimal signal distortion
 Very immune to interference
 Not suitable for high power
 Has both Ez and Hz components of the fields
7
Fiber-Optic Guide (cont.)
Two types of fiber-optic guides:
1) Single-mode fiber
2) Multi-mode fiber
Carries a single mode, as with the mode on a
transmission line or waveguide. Requires the fiber
diameter to be small relative to a wavelength.
Has a fiber diameter that is large relative to a
wavelength. It operates on the principle of total internal
reflection (critical angle effect).
8
Fiber-Optic Guide (cont.)
http://en.wikipedia.org/wiki/Optical_fiber
Higher index core region
9
Waveguides
 Has a single hollow metal pipe
 Can propagate a signal only at high frequency:  > c
 The width must be at least one-half of a wavelength
 Has signal distortion, even in the lossless case
 Immune to interference
 Can handle large amounts of power
 Has low loss (compared with a transmission line)
 Has either Ez or Hz component of the fields (TMz or TEz)
Properties
http://en.wikipedia.org/wiki/Waveguide_(electromagnetism) 10
 Lumped circuits: resistors, capacitors,
inductors
neglect time delays (phase)
account for propagation and
time delays (phase change)
Transmission-Line Theory
 Distributed circuit elements: transmission lines
We need transmission-line theory whenever the length of
a line is significant compared with a wavelength.
11
Transmission Line
2 conductors
4 per-unit-length parameters:
C = capacitance/length [F/m]
L = inductance/length [H/m]
R = resistance/length [/m]
G = conductance/length [ /m or S/m]

Dz
12
Transmission Line (cont.)
z
D
 
,
i z t
+ + + + + + +
- - - - - - - - - -
 
,
v z t
x x x
B
13
RDz LDz
GDz CDz
z
v(z+Dz,t)
+
-
v(z,t)
+
-
i(z,t) i(z+Dz,t)
( , )
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
i z t
v z t v z z t i z t R z L z
t
v z z t
i z t i z z t v z z t G z C z
t

  D  D  D

  D
  D   D D  D

Transmission Line (cont.)
14
RDz LDz
GDz CDz
z
v(z+Dz,t)
+
-
v(z,t)
+
-
i(z,t) i(z+Dz,t)
Hence
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
( , )
v z z t v z t i z t
Ri z t L
z t
i z z t i z t v z z t
Gv z z t C
z t
 D  
  
D 
 D    D
   D 
D 
Now let Dz  0:
v i
Ri L
z t
i v
Gv C
z t
 
  
 
 
  
 
“Telegrapher’s
Equations”
TEM Transmission Line (cont.)
15
To combine these, take the derivative of the first one with
respect to z:
2
2
2
2
v i i
R L
z z z t
i i
R L
z t z
v
R Gv C
t
v v
L G C
t t
   
 
    
   
 
  
 
    
  
 

 
   
 

 
 
 
  
 
 
 
Switch the
order of the
derivatives.
TEM Transmission Line (cont.)
16
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
The same equation also holds for i.
Hence, we have:
2 2
2 2
v v v v
R Gv C L G C
z t t t
   
   
      
   
   
   
TEM Transmission Line (cont.)
17
 
2
2
2
( ) ( ) 0
d V
RG V RC LG j V LC V
dz
 
     
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
TEM Transmission Line (cont.)
Time-Harmonic Waves:
18
Note that
= series impedance/length
   
2
2
2
( )
d V
RG V j RC LG V LC V
dz
 
   
2
( ) ( )( )
RG j RC LG LC R j L G j C
   
     
Z R j L
Y G j C


 
  = parallel admittance/length
Then we can write:
2
2
( )
d V
ZY V
dz

TEM Transmission Line (cont.)
19
Let
Convention:
Solution:
2
  ZY
( ) z z
V z Ae Be
 
 
 
 
1/2
( )( )
R j L G j C
  
  
 principal square root
2
2
2
( )
d V
V
dz


Then
TEM Transmission Line (cont.)
 is called the "propagation constant."
/2
j
z z e 

  
  
j
  
 
0, 0
 
 




attenuationcontant
phaseconstant
20
TEM Transmission Line (cont.)
0 0
( ) z z j z
V z V e V e e
  
     
 
Forward travelling wave (a wave traveling in the positive z direction):
 
 
 
 
 
0
0
0
( , ) Re
Re
cos
z j z j t
j z j z j t
z
v z t V e e e
V e e e e
V e t z
  
   

  
   
  
 


  
g

0
t 
z
0
z
V e 
 
2
g




2
g
 

The wave “repeats” when:
Hence:
21
Phase Velocity
Track the velocity of a fixed point on the wave (a point of constant phase), e.g., the
crest.
0
( , ) cos( )
z
v z t V e t z

  
  
  
z
vp (phase velocity)
22
Phase Velocity (cont.)
0
constant
 
 


 
 

t z
dz
dt
dz
dt
Set
Hence p
v



 
 
1/2
Im ( )( )
p
v
R j L G j C

 

 
In expanded form:
23
Characteristic Impedance Z0
0
( )
( )
V z
Z
I z



0
0
( )
( )
z
z
V z V e
I z I e


  
  


so 0
0
0
V
Z
I



+
V+(z)
-
I+ (z)
z
A wave is traveling in the positive z direction.
(Z0 is a number, not a function of z.)
24
Use Telegrapher’s Equation:
v i
Ri L
z t
 
  
 
so
dV
RI j LI
dz
ZI

  
 
Hence
0 0
z z
V e ZI e
 
    
  
Characteristic Impedance Z0 (cont.)
25
From this we have:
Using
We have
1/2
0
0
0
V Z Z
Z
I Y



 
    
 
Y G j C

 
1/2
0
R j L
Z
G j C


 

  

 
Characteristic Impedance Z0 (cont.)
Z R j L

 
Note: The principal branch of the square root is chosen, so that Re (Z0) > 0.
26
 
0
0
0 0
j z j j z
z z
z j z
V e e
V z V e V
V e e e
e
e
 
 

  


  

   


 
 
   
 
 
 
0
0 cos
c
, R
os
e j t
z
z
V e t
v z t V z
z
V z
e
e t



 
  

 
 









Note:
wave in +z
direction
wave in -z
direction
General Case (Waves in Both Directions)
27
Backward-Traveling Wave
0
( )
( )
V z
Z
I z



 0
( )
( )
V z
Z
I z


 
so
+
V -(z)
-
I - (z)
z
A wave is traveling in the negative z direction.
Note: The reference directions for voltage and current are the same as
for the forward wave.
28
General Case
0 0
0 0
0
( )
1
( )
z z
z z
V z V e V e
I z V e V e
Z
 
 
   
   
 
 
 
 
A general superposition of forward and
backward traveling waves:
Most general case:
Note: The reference
directions for voltage
and current are the
same for forward and
backward waves.
29
+
V(z)
-
I(z)
z
 
 
  
1
2
1
2
0
0 0
0 0
0 0
z z
z z
V z V e V e
V V
I z e e
Z
j R j L G j C
R j L
Z
G j
Z
C
 
 
    


   
 
 

 
   
 
 
 

 






I(z)
V(z)
+
-
z
 
2
m
g




[m/s]
p
v



guided wavelength  g
phase velocity  vp
Summary of Basic TL formulas
30
Lossless Case
0, 0
R G
 
 
1/ 2
( )( )
j R j L G j C
j LC
    

    

so 0
LC

 


1/2
0
R j L
Z
G j C


 

  

 
0
L
Z
C

1
p
v
LC

p
v



(indep. of freq.)
(real and indep. of freq.)
31
Lossless Case (cont.)
1
p
v
LC

In the medium between the two conductors is homogeneous (uniform)
and is characterized by (e, ), then we have that
LC e

The speed of light in a dielectric medium is
1
d
c
e

Hence, we have that p d
v c

The phase velocity does not depend on the frequency, and it is always the
speed of light (in the material).
(proof given later)
32
  0 0
z z
V z V e V e
 
   
 
Where do we assign z = 0?
The usual choice is at the load.
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
Ampl. of voltage wave
propagating in negative z
direction at z = 0.
Ampl. of voltage wave
propagating in positive z
direction at z = 0.
Terminated Transmission Line
Note: The length l measures distance from the load: z
 
33
What if we know
@
V V z
 
 
and
   
0 0
V V V e 
   
  
     
   
z z
V z V e V e
 
  
 
   
   
0
V V e 
  
 
   
0 0
V V V e
  
   
Terminated Transmission Line (cont.)
  0 0
z z
V z V e V e
 
   
 
Hence
Can we use z = - l as
a reference plane?
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
34
     
   
( ) ( )
z z
V z V e V e
 
    
 
   
Terminated Transmission Line (cont.)
     
0 0
z z
V z V e V e
 
   
 
Compare:
Note: This is simply a change of reference plane, from z = 0 to z = -l.
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
35
  0 0
z z
V z V e V e
 
   
 
What is V(-l )?
  0 0
V V e V e
 
  
  
  0 0
0 0
V V
I e e
Z Z
 
 

  
propagating
forwards
propagating
backwards
Terminated Transmission Line (cont.)
l  distance away from load
The current at z = - l is then
I(z)
V(z)
+
-
z
ZL
z = 0
Terminating impedance (load)
36
   
2
0
0
1 L
V
I e e
Z
 


  
  2
0
0
0
0 0 1
V
V e
V V e e
e
V
V  
 


 
 

 
 
 

 
 
Total volt. at distance l
from the load
Ampl. of volt. wave prop.
towards load, at the load
position (z = 0).
Similarly,
Ampl. of volt. wave prop.
away from load, at the
load position (z = 0).
 
0
2
1 L
V e e
 
 
 
L  Load reflection coefficient
Terminated Transmission Line (cont.)
I(-l )
V(-l )
+
l
ZL
-
0,
Z 
l  Reflection coefficient at z = - l
37
   
   
 
 
 
2
0
2
2
0
0
2
0
1
1
1
1
L
L
L
L
V V e e
V
I e e
Z
V e
Z Z
I e
 
 


 




   
  
 
    
 
  

 
Input impedance seen “looking” towards load
at z = -l .
Terminated Transmission Line (cont.)
I(-l )
V(-l )
+
l
ZL
-
0,
Z 
 
Z 
38
At the load (l = 0):
  0
1
0
1
L
L
L
Z Z Z
 

  


 
Thus,
 
2
0
0
0
2
0
0
1
1
L
L
L
L
Z Z
e
Z Z
Z Z
Z Z
e
Z Z




 
 


 
 

 
 
 
 
 


 
 
 

 
 
Terminated Transmission Line (cont.)
0
0
L
L
L
Z Z
Z Z

  

 
2
0 2
1
1
L
L
e
Z Z
e




 
 
   

 
Recall
39
Simplifying, we have
 
 
 
0
0
0
tanh
tanh
L
L
Z Z
Z Z
Z Z


 

   
 

 
Terminated Transmission Line (cont.)
 
   
   
   
   
   
   
2
0
2
0 0 0
0 0 2
2 0 0
0
0
0 0
0
0 0
0
0
0
1
1
cosh sinh
cosh sinh
L
L L L
L L
L
L
L L
L L
L
L
Z Z
e
Z Z Z Z Z Z e
Z Z Z
Z Z Z Z e
Z Z
e
Z Z
Z Z e Z Z e
Z
Z Z e Z Z e
Z Z
Z
Z Z




 
 
 
 




 
 
 
 


 
   
   
 
 
    
 
    
 
  

 
 
 

 
 
 
  
  
 
  
 
 

 
 




Hence, we have
40
   
   
 
2
0
2
0
0
2
0 2
1
1
1
1
j j
L
j j
L
j
L
j
L
V V e e
V
I e e
Z
e
Z Z
e
 
 


 




   
  
 
 
   

 
Impedance is periodic
with period g/2
2
/ 2
g
g
 






 
Terminated Lossless Transmission Line
j j
   
  
Note:      
tanh tanh tan
j j
  
 
tan repeats when
 
 
 
0
0
0
tan
tan
L
L
Z jZ
Z Z
Z jZ


 

   
 

 
41
For the remainder of our transmission line discussion we will assume that the
transmission line is lossless.
   
   
 
 
 
 
 
2
0
2
0
0
2
0 2
0
0
0
1
1
1
1
tan
tan
j j
L
j j
L
j
L
j
L
L
L
V V e e
V
I e e
Z
V e
Z Z
I e
Z jZ
Z
Z jZ
 
 




 




   
  
  
 
    
 
 
 

  
 

 
0
0
2
L
L
L
g
p
Z Z
Z Z
v






 



Terminated Lossless Transmission Line
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
 
Z 
42
Matched load: (ZL=Z0)
0
0
0
L
L
L
Z Z
Z Z

  

For any l
No reflection from the load
A
Matched Load
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
 
Z 
  0
Z Z
  
 
 
0
0
0
j
j
V V e
V
I e
Z


 


  
 
43
Short circuit load: (ZL = 0)
   
0
0
0
0
1
0
tan
L
Z
Z
Z jZ 

   

  
Always imaginary!
Note:
B
2
g
 


  sc
Z jX
  
S.C. can become an O.C.
with a g/4 trans. line
0 1/4 1/2 3/4
g
/ 
XSC
inductive
capacitive
Short-Circuit Load
l
0 ,
Z 
 
0 tan
sc
X Z 

44
Using Transmission Lines to Synthesize Loads
A microwave filter constructed from microstrip.
This is very useful is microwave engineering.
45
 
 
 
0
0
0
tan
tan
L
in
L
Z jZ d
Z Z d Z
Z jZ d


 

    
 

 
  in
TH
in TH
Z
V d V
Z Z
 
    

 
I(-l)
V(-l)
+
l
ZL
-
0
Z 

ZTH
VTH
d
Zin
+
-
ZTH
VTH
+
Zin
V(-d)
+
-
Example
Find the voltage at any point on the line.
46
Note:    
0
2
1 j
L
j
V V e e
 
 



0
0
L
L
L
Z Z
Z Z

 

   
2
0 1
j d j d in
TH
in TH
L
V d
Z
Z
e V
Z
V e  
 
  
 
  

 
   
2
2
1
1
j
j d
in L
TH j d
m TH L
Z e
V V e
Z Z e




 

   
 
     
  
 
 
At l = d:
Hence
Example (cont.)
0 2
1
1
j d
in
TH j d
in TH L
Z
V V e
Z Z e


 

   
     
 
 
 
47
Some algebra:  
2
0 2
1
1
j d
L
in j d
L
e
Z Z d Z
e




 

    

 
 
   
 
   
 
2
2
0 2
0
2 2
2
0
0 2
2
0
2
0 0
2
0
2
0 0
0
1
1
1
1 1
1
1
1
1
1
j d
L
j d
j d
L
L
j d j d
j d
L TH L
L
TH
j d
L
j d
L
j d
TH L TH
j d
L
j d
TH TH
L
TH
in
in TH
e
Z
Z e
e
Z e Z e
e
Z Z
e
Z e
Z Z e Z Z
e
Z
Z
Z
Z Z
Z Z Z
e
Z Z
Z



 









 






 
 
   
 
 
  
      
 

 
 
 
 

  


 
 
  
  

     

 

 
2
0
2
0 0
0
1
1
j d
L
j d
TH TH
L
TH
e
Z Z Z Z
e
Z Z




 
 
 
  

     

 
Example (cont.)
48
   
2
0
2
0
1
1
j
j d L
TH j d
TH S L
Z e
V V e
Z Z e




 

   

     
  
   
2
0
2
0
1
1
j d
in L
j d
in TH TH S L
Z Z e
Z Z Z Z e




  
 
   
   
  
where 0
0
TH
S
TH
Z Z
Z Z

 

Example (cont.)
Therefore, we have the following alternative form for the result:
Hence, we have
49
   
2
0
2
0
1
1
j
j d L
TH j d
TH S L
Z e
V V e
Z Z e




 

   

     
  
   
Example (cont.)
I(-l)
V(-l)
+
l
ZL
-
0
Z 

ZTH
VTH
d
Zin
+
-
Voltage wave that would exist if there were no reflections from
the load (a semi-infinite transmission line or a matched load).
50
 
 
       
2 2
2 2 2 2
0
0
1 j d j d
L L S
j d j d j d j d
TH L S L L S L S
TH
e e
Z
V d V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
Example (cont.)
ZL
0
Z 

ZTH
VTH
d
+
-
Wave-bounce method (illustrated for l = d):
51
Example (cont.)
 
   
   
2
2 2
2
2 2 2
0
0
1
1
j d j d
L S L S
j d j d j d
TH L L S L S
TH
e e
Z
V d V e e e
Z Z
 
  
 
  
 
      
 
  
 
          
  
 
 

  

 
 
Geometric series:
2
0
1
1 , 1
1
n
n
z z z z
z


     


 
 
       
2 2
2 2 2 2
0
0
1 j d j d
L L S
j d j d j d j d
TH L S L L S L S
TH
e e
Z
V d V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
2
j d
L S
z e 

  
52
Example (cont.)
or
 
2
0
2
0
2
1
1
1
1
j d
L s
TH
j d
TH
L j d
L s
e
Z
V d V
Z Z
e
e






 
 
 
  
    
 

   
 
 
 
 
 
 
 
2
0
2
0
1
1
j d
L
TH j d
TH L s
Z e
V d V
Z Z e




  

    
  
  
This agrees with the previous result (setting l = d).
Note: This is a very tedious method – not recommended.
Hence
53
0
0
0
tan
tan
L T
in T
T L
Z jZ
Z Z
Z jZ


 

  

 
2
4 4 2
g g
g
 
 
 

  
0
0
T
in T
L
jZ
Z Z
jZ
 
   
 
0
2
0
0
0
in in
T
L
Z Z
Z
Z
Z
   
 
Quarter-Wave Transformer
2
0T
in
L
Z
Z
Z

so
 
1/2
0 0
T L
Z Z Z

Hence
This requires ZL to be real.
ZL
Z0 Z0T
Zin
54
  2
0 1 L
j j
L
V V e e
 
 
   
   
 
2
0
2
0
1
1 L
j j
L
j
j j
L
V V e e
V e e e
 

 
 
 
   
  
 
 
max 0
min 0
1
1
L
L
V V
V V


  
  
  max
min
V
V

VoltageStanding WaveRatio VSWR
Voltage Standing Wave Ratio
I(-l )
V(-l )
+
l
ZL
-
0 ,
Z 
1
1
L
L
 

 
VSWR
z
1+ L

1
1- L

0
( )
V z
V 
/ 2
z 
D 
0
z 
55

More Related Content

What's hot

Voltage sag and it’s mitigation
Voltage sag and it’s mitigationVoltage sag and it’s mitigation
Voltage sag and it’s mitigationMayur Dhande
 
Electronics and communication
 Electronics and communication  Electronics and communication
Electronics and communication shashank jaiswal
 
Electromagnetic Interference & Electromagnetic Compatibility
Electromagnetic Interference  & Electromagnetic CompatibilityElectromagnetic Interference  & Electromagnetic Compatibility
Electromagnetic Interference & Electromagnetic CompatibilitySabeel Irshad
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutionskhemraj298
 
advanced communication-system
advanced communication-systemadvanced communication-system
advanced communication-systemsharma ellappan
 
Design and Simulation Microstrip patch Antenna using CST Microwave Studio
Design and Simulation Microstrip patch Antenna  using CST Microwave StudioDesign and Simulation Microstrip patch Antenna  using CST Microwave Studio
Design and Simulation Microstrip patch Antenna using CST Microwave StudioAymen Al-obaidi
 
Smart grid(v1)
Smart grid(v1)Smart grid(v1)
Smart grid(v1)sahar148
 
rf ic design previous question papers
rf ic design previous question papersrf ic design previous question papers
rf ic design previous question papersbalajirao mahendrakar
 
Phase shift keying(PSK)
Phase shift keying(PSK)Phase shift keying(PSK)
Phase shift keying(PSK)MOHAN MOHAN
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Deviceskhemraj298
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog ConverterHossam Zein
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor LogicDiwaker Pant
 

What's hot (20)

Voltage sag and it’s mitigation
Voltage sag and it’s mitigationVoltage sag and it’s mitigation
Voltage sag and it’s mitigation
 
Asic
AsicAsic
Asic
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
CMOS LOGIC STRUCTURES
CMOS LOGIC STRUCTURESCMOS LOGIC STRUCTURES
CMOS LOGIC STRUCTURES
 
Electronics and communication
 Electronics and communication  Electronics and communication
Electronics and communication
 
Electromagnetic Interference & Electromagnetic Compatibility
Electromagnetic Interference  & Electromagnetic CompatibilityElectromagnetic Interference  & Electromagnetic Compatibility
Electromagnetic Interference & Electromagnetic Compatibility
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
 
advanced communication-system
advanced communication-systemadvanced communication-system
advanced communication-system
 
Cmos design rule
Cmos design ruleCmos design rule
Cmos design rule
 
Energy & Power Signals |Solved Problems|
Energy & Power Signals |Solved Problems|Energy & Power Signals |Solved Problems|
Energy & Power Signals |Solved Problems|
 
Design and Simulation Microstrip patch Antenna using CST Microwave Studio
Design and Simulation Microstrip patch Antenna  using CST Microwave StudioDesign and Simulation Microstrip patch Antenna  using CST Microwave Studio
Design and Simulation Microstrip patch Antenna using CST Microwave Studio
 
Smart grid(v1)
Smart grid(v1)Smart grid(v1)
Smart grid(v1)
 
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
Mini Project Communication Link Simulation  Digital Modulation Techniques Lec...Mini Project Communication Link Simulation  Digital Modulation Techniques Lec...
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
FUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAFUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNA
 
rf ic design previous question papers
rf ic design previous question papersrf ic design previous question papers
rf ic design previous question papers
 
Phase shift keying(PSK)
Phase shift keying(PSK)Phase shift keying(PSK)
Phase shift keying(PSK)
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog Converter
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 

Similar to emtl

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By LipunNanigopal Jena
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture NotesFellowBuddy.com
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1HIMANSHU DIWAKAR
 
Transmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptxTransmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptxPawanKumar391848
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
Topic 2b ac_circuits_analysis
Topic 2b ac_circuits_analysisTopic 2b ac_circuits_analysis
Topic 2b ac_circuits_analysisGabriel O'Brien
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methodsGetachew Solomon
 

Similar to emtl (20)

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
Transmissionline
TransmissionlineTransmissionline
Transmissionline
 
Tem
TemTem
Tem
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By Lipun
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture Notes
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Chap2 s11b
Chap2 s11bChap2 s11b
Chap2 s11b
 
Transmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptxTransmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptx
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
TL_Theory.pdf
TL_Theory.pdfTL_Theory.pdf
TL_Theory.pdf
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
Anodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.pptAnodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.ppt
 
Topic 2b ac_circuits_analysis
Topic 2b ac_circuits_analysisTopic 2b ac_circuits_analysis
Topic 2b ac_circuits_analysis
 
module5.pdf
module5.pdfmodule5.pdf
module5.pdf
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methods
 

Recently uploaded

Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.P
Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.PCall Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.P
Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.Pjabtakhaidam7
 
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...gragchanchal546
 
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证tufbav
 
Jual Obat Aborsi Samarinda ( No.1 ) 088980685493 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Samarinda (  No.1 ) 088980685493 Obat Penggugur Kandungan Cy...Jual Obat Aborsi Samarinda (  No.1 ) 088980685493 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Samarinda ( No.1 ) 088980685493 Obat Penggugur Kandungan Cy...Obat Aborsi 088980685493 Jual Obat Aborsi
 
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimoga
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime ShimogaShimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimoga
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimogameghakumariji156
 
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制ougvy
 
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理uodye
 
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信oopacde
 
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Services
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty ServicesDubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Services
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Serviceskajalvid75
 
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptx
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptxNON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptx
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptxSimmySharma12
 
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime GuwahatiGuwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahatimeghakumariji156
 
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...gragfaguni
 
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证ehyxf
 
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一ougvy
 
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...vershagrag
 
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...Call Girls Mumbai
 
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Available
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service AvailableLucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Available
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Availablejabtakhaidam7
 

Recently uploaded (20)

Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.P
Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.PCall Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.P
Call Girls Service Lucknow {0000000000 } ❤️VVIP BHAWNA Call Girl in Lucknow U.P
 
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...
Kadi - HiFi Call Girl Service Ahmedabad Phone No 8005736733 Elite Escort Serv...
 
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pillsIn Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
 
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
 
Buy Abortion pills in Riyadh |+966572737505 | Get Cytotec
Buy Abortion pills in Riyadh |+966572737505 | Get CytotecBuy Abortion pills in Riyadh |+966572737505 | Get Cytotec
Buy Abortion pills in Riyadh |+966572737505 | Get Cytotec
 
Jual Obat Aborsi Samarinda ( No.1 ) 088980685493 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Samarinda (  No.1 ) 088980685493 Obat Penggugur Kandungan Cy...Jual Obat Aborsi Samarinda (  No.1 ) 088980685493 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Samarinda ( No.1 ) 088980685493 Obat Penggugur Kandungan Cy...
 
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimoga
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime ShimogaShimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimoga
Shimoga Escorts Service Girl ^ 9332606886, WhatsApp Anytime Shimoga
 
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制
一比一原版(RMIT毕业证书)墨尔本皇家理工大学毕业证成绩单学位证靠谱定制
 
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
 
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信
在线办理(scu毕业证)南十字星大学毕业证电子版学位证书注册证明信
 
Contact +971581248768 to buy 100% original and safe abortion pills in Dubai a...
Contact +971581248768 to buy 100% original and safe abortion pills in Dubai a...Contact +971581248768 to buy 100% original and safe abortion pills in Dubai a...
Contact +971581248768 to buy 100% original and safe abortion pills in Dubai a...
 
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Services
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty ServicesDubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Services
Dubai Call Girls O525547819 Call Girls In Dubai<.> Full Dirty Services
 
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptx
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptxNON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptx
NON INVASIVE GLUCOSE BLODD MONITORING SYSTEM (1) (2) (1).pptx
 
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime GuwahatiGuwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
 
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...
Nava Vadaj * Call Girl in Ahmedabad - Phone 8005736733 Escorts Service at 6k ...
 
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
 
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一
在线制作(ANU毕业证书)澳大利亚国立大学毕业证成绩单原版一比一
 
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...
Low Cost Patna Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Gi...
 
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...
🌹Patia⬅️ Vip Call Girls Bhubaneswar 📱9777949614 Book Well Trand Call Girls In...
 
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Available
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service AvailableLucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Available
Lucknow Call Girls U.P 👉👉 0000000000 Top Class Call Girl Service Available
 

emtl

  • 2. A wave guiding structure is one that carries a signal (or power) from one point to another. There are three common types:  Transmission lines  Fiber-optic guides  Waveguides Waveguiding Structures 2
  • 3. Transmission Line  Has two conductors running parallel  Can propagate a signal at any frequency (in theory)  Becomes lossy at high frequency  Can handle low or moderate amounts of power  Does not have signal distortion, unless there is loss  May or may not be immune to interference  Does not have Ez or Hz components of the fields (TEMz) Properties Coaxial cable (coax) Twin lead (shown connected to a 4:1 impedance-transforming balun) 3
  • 4. Transmission Line (cont.) CAT 5 cable (twisted pair) The two wires of the transmission line are twisted to reduce interference and radiation from discontinuities. 4
  • 5. Transmission Line (cont.) Microstrip h w er er w Stripline h Transmission lines commonly met on printed-circuit boards Coplanar strips h er w w Coplanar waveguide (CPW) h er w 5
  • 6. Transmission Line (cont.) Transmission lines are commonly met on printed-circuit boards. A microwave integrated circuit Microstrip line 6
  • 7. Fiber-Optic Guide Properties  Uses a dielectric rod  Can propagate a signal at any frequency (in theory)  Can be made very low loss  Has minimal signal distortion  Very immune to interference  Not suitable for high power  Has both Ez and Hz components of the fields 7
  • 8. Fiber-Optic Guide (cont.) Two types of fiber-optic guides: 1) Single-mode fiber 2) Multi-mode fiber Carries a single mode, as with the mode on a transmission line or waveguide. Requires the fiber diameter to be small relative to a wavelength. Has a fiber diameter that is large relative to a wavelength. It operates on the principle of total internal reflection (critical angle effect). 8
  • 10. Waveguides  Has a single hollow metal pipe  Can propagate a signal only at high frequency:  > c  The width must be at least one-half of a wavelength  Has signal distortion, even in the lossless case  Immune to interference  Can handle large amounts of power  Has low loss (compared with a transmission line)  Has either Ez or Hz component of the fields (TMz or TEz) Properties http://en.wikipedia.org/wiki/Waveguide_(electromagnetism) 10
  • 11.  Lumped circuits: resistors, capacitors, inductors neglect time delays (phase) account for propagation and time delays (phase change) Transmission-Line Theory  Distributed circuit elements: transmission lines We need transmission-line theory whenever the length of a line is significant compared with a wavelength. 11
  • 12. Transmission Line 2 conductors 4 per-unit-length parameters: C = capacitance/length [F/m] L = inductance/length [H/m] R = resistance/length [/m] G = conductance/length [ /m or S/m]  Dz 12
  • 13. Transmission Line (cont.) z D   , i z t + + + + + + + - - - - - - - - - -   , v z t x x x B 13 RDz LDz GDz CDz z v(z+Dz,t) + - v(z,t) + - i(z,t) i(z+Dz,t)
  • 14. ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) i z t v z t v z z t i z t R z L z t v z z t i z t i z z t v z z t G z C z t    D  D  D    D   D   D D  D  Transmission Line (cont.) 14 RDz LDz GDz CDz z v(z+Dz,t) + - v(z,t) + - i(z,t) i(z+Dz,t)
  • 15. Hence ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) v z z t v z t i z t Ri z t L z t i z z t i z t v z z t Gv z z t C z t  D      D   D    D    D  D  Now let Dz  0: v i Ri L z t i v Gv C z t               “Telegrapher’s Equations” TEM Transmission Line (cont.) 15
  • 16. To combine these, take the derivative of the first one with respect to z: 2 2 2 2 v i i R L z z z t i i R L z t z v R Gv C t v v L G C t t                                                          Switch the order of the derivatives. TEM Transmission Line (cont.) 16
  • 17.   2 2 2 2 ( ) 0 v v v RG v RC LG LC z t t                  The same equation also holds for i. Hence, we have: 2 2 2 2 v v v v R Gv C L G C z t t t                            TEM Transmission Line (cont.) 17
  • 18.   2 2 2 ( ) ( ) 0 d V RG V RC LG j V LC V dz           2 2 2 2 ( ) 0 v v v RG v RC LG LC z t t                  TEM Transmission Line (cont.) Time-Harmonic Waves: 18
  • 19. Note that = series impedance/length     2 2 2 ( ) d V RG V j RC LG V LC V dz       2 ( ) ( )( ) RG j RC LG LC R j L G j C           Z R j L Y G j C       = parallel admittance/length Then we can write: 2 2 ( ) d V ZY V dz  TEM Transmission Line (cont.) 19
  • 20. Let Convention: Solution: 2   ZY ( ) z z V z Ae Be         1/2 ( )( ) R j L G j C        principal square root 2 2 2 ( ) d V V dz   Then TEM Transmission Line (cont.)  is called the "propagation constant." /2 j z z e         j      0, 0         attenuationcontant phaseconstant 20
  • 21. TEM Transmission Line (cont.) 0 0 ( ) z z j z V z V e V e e            Forward travelling wave (a wave traveling in the positive z direction):           0 0 0 ( , ) Re Re cos z j z j t j z j z j t z v z t V e e e V e e e e V e t z                          g  0 t  z 0 z V e    2 g     2 g    The wave “repeats” when: Hence: 21
  • 22. Phase Velocity Track the velocity of a fixed point on the wave (a point of constant phase), e.g., the crest. 0 ( , ) cos( ) z v z t V e t z           z vp (phase velocity) 22
  • 23. Phase Velocity (cont.) 0 constant            t z dz dt dz dt Set Hence p v        1/2 Im ( )( ) p v R j L G j C       In expanded form: 23
  • 24. Characteristic Impedance Z0 0 ( ) ( ) V z Z I z    0 0 ( ) ( ) z z V z V e I z I e           so 0 0 0 V Z I    + V+(z) - I+ (z) z A wave is traveling in the positive z direction. (Z0 is a number, not a function of z.) 24
  • 25. Use Telegrapher’s Equation: v i Ri L z t        so dV RI j LI dz ZI       Hence 0 0 z z V e ZI e           Characteristic Impedance Z0 (cont.) 25
  • 26. From this we have: Using We have 1/2 0 0 0 V Z Z Z I Y             Y G j C    1/2 0 R j L Z G j C            Characteristic Impedance Z0 (cont.) Z R j L    Note: The principal branch of the square root is chosen, so that Re (Z0) > 0. 26
  • 27.   0 0 0 0 j z j j z z z z j z V e e V z V e V V e e e e e                                   0 0 cos c , R os e j t z z V e t v z t V z z V z e e t                       Note: wave in +z direction wave in -z direction General Case (Waves in Both Directions) 27
  • 28. Backward-Traveling Wave 0 ( ) ( ) V z Z I z     0 ( ) ( ) V z Z I z     so + V -(z) - I - (z) z A wave is traveling in the negative z direction. Note: The reference directions for voltage and current are the same as for the forward wave. 28
  • 29. General Case 0 0 0 0 0 ( ) 1 ( ) z z z z V z V e V e I z V e V e Z                     A general superposition of forward and backward traveling waves: Most general case: Note: The reference directions for voltage and current are the same for forward and backward waves. 29 + V(z) - I(z) z
  • 30.        1 2 1 2 0 0 0 0 0 0 0 z z z z V z V e V e V V I z e e Z j R j L G j C R j L Z G j Z C                                          I(z) V(z) + - z   2 m g     [m/s] p v    guided wavelength  g phase velocity  vp Summary of Basic TL formulas 30
  • 31. Lossless Case 0, 0 R G     1/ 2 ( )( ) j R j L G j C j LC             so 0 LC      1/2 0 R j L Z G j C            0 L Z C  1 p v LC  p v    (indep. of freq.) (real and indep. of freq.) 31
  • 32. Lossless Case (cont.) 1 p v LC  In the medium between the two conductors is homogeneous (uniform) and is characterized by (e, ), then we have that LC e  The speed of light in a dielectric medium is 1 d c e  Hence, we have that p d v c  The phase velocity does not depend on the frequency, and it is always the speed of light (in the material). (proof given later) 32
  • 33.   0 0 z z V z V e V e         Where do we assign z = 0? The usual choice is at the load. I(z) V(z) + - z ZL z = 0 Terminating impedance (load) Ampl. of voltage wave propagating in negative z direction at z = 0. Ampl. of voltage wave propagating in positive z direction at z = 0. Terminated Transmission Line Note: The length l measures distance from the load: z   33
  • 34. What if we know @ V V z     and     0 0 V V V e                   z z V z V e V e                0 V V e           0 0 V V V e        Terminated Transmission Line (cont.)   0 0 z z V z V e V e         Hence Can we use z = - l as a reference plane? I(z) V(z) + - z ZL z = 0 Terminating impedance (load) 34
  • 35.           ( ) ( ) z z V z V e V e              Terminated Transmission Line (cont.)       0 0 z z V z V e V e         Compare: Note: This is simply a change of reference plane, from z = 0 to z = -l. I(z) V(z) + - z ZL z = 0 Terminating impedance (load) 35
  • 36.   0 0 z z V z V e V e         What is V(-l )?   0 0 V V e V e           0 0 0 0 V V I e e Z Z         propagating forwards propagating backwards Terminated Transmission Line (cont.) l  distance away from load The current at z = - l is then I(z) V(z) + - z ZL z = 0 Terminating impedance (load) 36
  • 37.     2 0 0 1 L V I e e Z          2 0 0 0 0 0 1 V V e V V e e e V V                       Total volt. at distance l from the load Ampl. of volt. wave prop. towards load, at the load position (z = 0). Similarly, Ampl. of volt. wave prop. away from load, at the load position (z = 0).   0 2 1 L V e e       L  Load reflection coefficient Terminated Transmission Line (cont.) I(-l ) V(-l ) + l ZL - 0, Z  l  Reflection coefficient at z = - l 37
  • 38.               2 0 2 2 0 0 2 0 1 1 1 1 L L L L V V e e V I e e Z V e Z Z I e                                   Input impedance seen “looking” towards load at z = -l . Terminated Transmission Line (cont.) I(-l ) V(-l ) + l ZL - 0, Z    Z  38
  • 39. At the load (l = 0):   0 1 0 1 L L L Z Z Z           Thus,   2 0 0 0 2 0 0 1 1 L L L L Z Z e Z Z Z Z Z Z e Z Z                                       Terminated Transmission Line (cont.) 0 0 L L L Z Z Z Z        2 0 2 1 1 L L e Z Z e                Recall 39
  • 40. Simplifying, we have       0 0 0 tanh tanh L L Z Z Z Z Z Z               Terminated Transmission Line (cont.)                           2 0 2 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 cosh sinh cosh sinh L L L L L L L L L L L L L L Z Z e Z Z Z Z Z Z e Z Z Z Z Z Z Z e Z Z e Z Z Z Z e Z Z e Z Z Z e Z Z e Z Z Z Z Z                                                                                                Hence, we have 40
  • 41.           2 0 2 0 0 2 0 2 1 1 1 1 j j L j j L j L j L V V e e V I e e Z e Z Z e                               Impedance is periodic with period g/2 2 / 2 g g           Terminated Lossless Transmission Line j j        Note:       tanh tanh tan j j      tan repeats when       0 0 0 tan tan L L Z jZ Z Z Z jZ               41
  • 42. For the remainder of our transmission line discussion we will assume that the transmission line is lossless.                   2 0 2 0 0 2 0 2 0 0 0 1 1 1 1 tan tan j j L j j L j L j L L L V V e e V I e e Z V e Z Z I e Z jZ Z Z jZ                                               0 0 2 L L L g p Z Z Z Z v            Terminated Lossless Transmission Line I(-l ) V(-l ) + l ZL - 0 , Z    Z  42
  • 43. Matched load: (ZL=Z0) 0 0 0 L L L Z Z Z Z      For any l No reflection from the load A Matched Load I(-l ) V(-l ) + l ZL - 0 , Z    Z    0 Z Z        0 0 0 j j V V e V I e Z            43
  • 44. Short circuit load: (ZL = 0)     0 0 0 0 1 0 tan L Z Z Z jZ           Always imaginary! Note: B 2 g       sc Z jX    S.C. can become an O.C. with a g/4 trans. line 0 1/4 1/2 3/4 g /  XSC inductive capacitive Short-Circuit Load l 0 , Z    0 tan sc X Z   44
  • 45. Using Transmission Lines to Synthesize Loads A microwave filter constructed from microstrip. This is very useful is microwave engineering. 45
  • 46.       0 0 0 tan tan L in L Z jZ d Z Z d Z Z jZ d                  in TH in TH Z V d V Z Z           I(-l) V(-l) + l ZL - 0 Z   ZTH VTH d Zin + - ZTH VTH + Zin V(-d) + - Example Find the voltage at any point on the line. 46
  • 47. Note:     0 2 1 j L j V V e e        0 0 L L L Z Z Z Z         2 0 1 j d j d in TH in TH L V d Z Z e V Z V e                    2 2 1 1 j j d in L TH j d m TH L Z e V V e Z Z e                           At l = d: Hence Example (cont.) 0 2 1 1 j d in TH j d in TH L Z V V e Z Z e                      47
  • 48. Some algebra:   2 0 2 1 1 j d L in j d L e Z Z d Z e                              2 2 0 2 0 2 2 2 0 0 2 2 0 2 0 0 2 0 2 0 0 0 1 1 1 1 1 1 1 1 1 1 j d L j d j d L L j d j d j d L TH L L TH j d L j d L j d TH L TH j d L j d TH TH L TH in in TH e Z Z e e Z e Z e e Z Z e Z e Z Z e Z Z e Z Z Z Z Z Z Z Z e Z Z Z                                                                                     2 0 2 0 0 0 1 1 j d L j d TH TH L TH e Z Z Z Z e Z Z                        Example (cont.) 48
  • 49.     2 0 2 0 1 1 j j d L TH j d TH S L Z e V V e Z Z e                          2 0 2 0 1 1 j d in L j d in TH TH S L Z Z e Z Z Z Z e                     where 0 0 TH S TH Z Z Z Z     Example (cont.) Therefore, we have the following alternative form for the result: Hence, we have 49
  • 50.     2 0 2 0 1 1 j j d L TH j d TH S L Z e V V e Z Z e                          Example (cont.) I(-l) V(-l) + l ZL - 0 Z   ZTH VTH d Zin + - Voltage wave that would exist if there were no reflections from the load (a semi-infinite transmission line or a matched load). 50
  • 51.             2 2 2 2 2 2 0 0 1 j d j d L L S j d j d j d j d TH L S L L S L S TH e e Z V d V e e e e Z Z                                                        Example (cont.) ZL 0 Z   ZTH VTH d + - Wave-bounce method (illustrated for l = d): 51
  • 52. Example (cont.)           2 2 2 2 2 2 2 0 0 1 1 j d j d L S L S j d j d j d TH L L S L S TH e e Z V d V e e e Z Z                                                      Geometric series: 2 0 1 1 , 1 1 n n z z z z z                       2 2 2 2 2 2 0 0 1 j d j d L L S j d j d j d j d TH L S L L S L S TH e e Z V d V e e e e Z Z                                                        2 j d L S z e      52
  • 53. Example (cont.) or   2 0 2 0 2 1 1 1 1 j d L s TH j d TH L j d L s e Z V d V Z Z e e                                          2 0 2 0 1 1 j d L TH j d TH L s Z e V d V Z Z e                    This agrees with the previous result (setting l = d). Note: This is a very tedious method – not recommended. Hence 53
  • 54. 0 0 0 tan tan L T in T T L Z jZ Z Z Z jZ            2 4 4 2 g g g           0 0 T in T L jZ Z Z jZ         0 2 0 0 0 in in T L Z Z Z Z Z       Quarter-Wave Transformer 2 0T in L Z Z Z  so   1/2 0 0 T L Z Z Z  Hence This requires ZL to be real. ZL Z0 Z0T Zin 54
  • 55.   2 0 1 L j j L V V e e               2 0 2 0 1 1 L j j L j j j L V V e e V e e e                     max 0 min 0 1 1 L L V V V V           max min V V  VoltageStanding WaveRatio VSWR Voltage Standing Wave Ratio I(-l ) V(-l ) + l ZL - 0 , Z  1 1 L L      VSWR z 1+ L  1 1- L  0 ( ) V z V  / 2 z  D  0 z  55