SlideShare a Scribd company logo
RECTANGULAR FEED MICROSTRIPANTENNA
PARAMETER STUDY WITH HFSS SOFTWARE
School of Electrical Engineering
(Branch - ENTC)
Course: Antenna theory and design
Group-2 Batch-2 Block-1
Omkar Rane (TETB118) Exam Seat No: T187014
Chaitanya Deshpande (TETB119) Exam Seat No: T187001
Kaustubh Wankhade (TETB131) Exam Seat No: T187003
Rectangular Microstrip Feedline Antenna(MSA)
Microstrip antennas are low profile antennas and requires where size, weight, cost, performance and ease of installation and
aerodynamic profile are constraint such as in high-performance aircraft, spacecraft, satellite and missile applications.
Presently in some government and commercial applications such as in mobile radio and wireless communications that have
similar specifications, to meet these requirements, microstrip antennas can be used. These antennas are low profile,
conformable to planar and non-planar surfaces, simple and inexpensive to manufacture using modern printed circuit
technology . They are very versatile in terms of resonant frequency, polarization, pattern and impedance when a particular
patch shape and mode are selected. In addition by adding loads between the patch and the ground plane, such as pins and
varactor diodes, adaptive elements with variable resonant frequency, impedance polarization and pattern can be designed.
Major operational disadvantages of microstrip antennas are their low efficiency, low power, high Q, poor polarization purity,
poor scanning performance, spurious feed radiation and very narrow frequency bandwidth, which is typically only a fraction
of a percent or at most a few percent. In some government security systems narrow bandwidth are desirable; however, there
are methods such as increasing the height of the substrate that can be used to extend the efficiency (to as large as 90 % if
surface waves are not included) and bandwidth (up to 35%); however, as the height increases, surface waves are introduced
which usually are not desirable because they extract power from the total available for direct radiation (space waves). The
surface waves travel within the substrate and they are scattered at bends and surface discontinuities, such as the truncation of
the dielectric ground plane and degrade the antenna pattern and polarization characteristics. Surface waves can be eliminated,
while maintaining large bandwidths, by using cavities stacking as well as other methods of microstrip elements can also be
used to increase the bandwidth. In addition, microstrip antennas also exhibit large electromagnetic signatures at certain
frequencies outside the operating band are rather large physically at VHF and possibly UHF frequencies, and in large arrays
there is a tradeoff between bandwidth and scan volume. The next section describes the basic characteristics of antenna.
Ref: http://www.antenna-theory.com/antennas/patches/patch3.php
Design of MSA patch length and width
Step 1: Calculation of the
Width (W) -
Step 2: Calculation of the Effective Dielectric Constant. This
is based on the height, dielectric constant of the dielectric and
the calculated width of the patch antenna.
Step 3: Calculation of the Effective length
Step 4: Calculation of the length extension ΔL
Step 5: Calculation of actual length of the patch
Where the following parameters are used
f0 is the Resonance Frequency
W is the Width of the Patch
L is the Length of the Patch
h is the thickness
εr is the relative Permittivity of the dielectric substrate
c is the Speed of light: 3 x 108
Rectangular Microstrip Feedline formulae
Antenna dimensions and operating frequency
Ref: EM-TALK Patch and Line Calculator
Feedline Dimensions :
L=7.47245 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 16.597 mm
Length of patch :12.438 mm
Operating Frequency of
MSA : f0 =5.5 GHz
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
47.7
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
01.0
)*0*2/(
2.7
)2/1()]^06.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
06.3
))14.4/(2(*))9^10*5.5*2/()8^10*3((
)1/(2*)2/(
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
HFSS design
Results (main antenna- f =5.5 GHz )
VSWR S11 Rectangular plot
2D polar plot 3D polar plot
Parametric study for Rectangular Microstrip Antenna
a) Varying L and W more than original value and observe results
b) Varying L and W less than original value and observe results
c) Changing height of substrate (h>1.6 mm)
d) Changing height of substrate (h<1.6 mm)
e) Changing Material of substrate (ℰr )
a) Varying L and W more than original value and observe
Calculations
Feedline Dimensions :
L=9.8794 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 14 mm
Length of patch :17 mm
Operating Frequency of
MSA : f0 =4.16 GHz
rfocw
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
mmL
LLeffL
L
)1/(2*)2/(
87.9
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
007.0
)*0*2/(
2.7
)2/1()]^05.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
05.3
))14.4/(2(*))9^10*16.4*2/()8^10*3((
)1/(2*)2/(
47.7
2
57.0
+=
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
=
−=
=
HFSS design
Results (f=4.16GHz)
VSWR S11 Rectangular plot
2D polar plot
3D polar plot
Calculations
Feedline Dimensions :
L=6.737 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 11.130 mm
Length of patch :14.965 mm
Operating Frequency of
MSA : f0 =6.1 GHz
b) Varying L and W less than original value and observe
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
mmL
LLeffL
73.6
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
01.0
)*0*2/(
2.7
)2/1()]^06.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
05.3
))14.4/(2(*))9^10*1.6*2/()8^10*3((
)1/(2*)2/(
87.9
2
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
=
−=
HFSS design
Results (f=6.1 GHz)
VSWR S11 Rectangular plot
2D polar plot 3D polar plot
HFSS design
c) Changing height of substrate (h>1.6mm)
Results (h>1.6mm)
VSWR Rectangular plot
2D polar plot 3D polar plot
HFSS design
d) Changing height of substrate (h<1.6mm)
Results (h<1.6mm)
VSWR Rectangular plot
2D polar plot
3D polar plot
e) Changing material of substrate
Previously the dielectric material was FR_4 Epoxy which is now Changed to RT_Duroid
ℰ r =4.4 for FR_4 Epoxy substrate material and ℰ r=2.2 for RT_Duroid
Radiation pattern
2D polar plot
3D polar plot
VSWR Rectangular plot
Applications of MSA
1) Mobile and satellite communication application:
Mobile communication requires small, low-cost, low profile
antennas. Microstrip patch antenna meets all requirements and
various types of microstrip antennas have been designed for use
in mobile communication systems. In case of satellite
communication circularly polarized radiation patterns are
required and can be realized using either square or circular
patch with one or two feed points.
2) Global Positioning System applications:
Nowadays microstrip patch antennas with substrate having high permittivity
sintered material are used for global positioning system. These antennas are
circularly polarized, very compact and quite expensive due to its positioning. It
is expected that millions of GPS receivers will be used by the general
population for land vehicles, aircraft and maritime vessels to find there position
accurately Єr2 Єr1 Patch Antenna Transmission Line Ground plane with
aperture Patch Microstrip feed line Antenna dielectric Feed substrate .
3) Radio Frequency Identification (RFID):
RFID uses in different areas like mobile communication,
logistics, manufacturing, transportation and health care [2].
RFID system generally uses frequencies between 30 Hz and 5.8
GHz depending on its applications. Basically RFID system is a
tag or transponder and a transceiver or reader. Worldwide
Interoperability for Microwave Access (WiMax): The IEEE
802.16 standard is known as WiMax. It can reach upto 30 mile
radius theoretically and data rate 70 Mbps. MPA generates three
resonant modes at 2.7, 3.3 and 5.3 GHz and can, therefore, be
used in WiMax compliant communication equipment.
4) Radar Application:
Radar can be used for detecting moving targets such as people
and vehicles. It demands a low profile, light weight antenna
subsystem, the microstrip antennas are an ideal choice. The
fabrication technology based on photolithography enables the
bulk production of microstrip antenna with repeatable
performance at a lower cost in a lesser time frame as compared
to the conventional antennas. Rectenna Application: Rectenna is
a rectifying antenna, a special type of antenna that is used to
directly convert microwave energy into DC power. Rectenna is
a combination of four subsystems i.e. Antenna, ore rectification
filter, rectifier, post rectification filter. in rectenna application, it
is necessary to design antennas with very high directive
characteristics to meet the demands of long-distance links. Since
the aim is to use the rectenna to transfer DC power through
wireless links for a long distance, this can only be accomplished
by increasing the electrical size of the antenna.
Ref:
https://www.drdo.gov.in/drdo/pub/techf
ocus/aug05/antena.htm
5) Telemedicine Application:
In telemedicine application antenna is operating at 2.45 GHz. Wearable
microstrip antenna is suitable for Wireless Body Area Network (WBAN).
The proposed antenna achieved a higher gain and front to back ratio
compared to the other antennas, in addition to the semi directional radiation
pattern which is preferred over the omni-directional pattern to overcome
unnecessary radiation to the user's body and satisfies the requirement for on-
body and off-body applications. A antenna having gain of 6.7 dB and a F/B
ratio of 11.7 dB and resonates at 2.45GHz is suitable for telemedicine
applications. Medicinal applications of patch: It is found that in the treatment
of malignant tumours the microwave energy is said to be the most effective
way of inducing hyperthermia. The design of the particular radiator which is
to be used for this purpose should posses light weight, easy in handling and
to be rugged. Only the patch radiator fulfils these requirements. The initial
designs for the Microstrip radiator for inducing hyperthermia was based on
the printed dipoles and annular rings which were designed on S-band. And
later on the design was based on the circular microstrip disk at L-band. There
is a simple operation that goes on with the instrument; two coupled
Microstrip lines are separated with a flexible separation which is used to
measure the temperature inside the human body. A flexible patch applicator
can be seen in the figure below which operates at 430 MHz
Conclusion
1) With increase in width, aperture area, (dielectric constant)εr and fringing fields increase, hence frequency
decreases and input impedance plot shifts towards lower impedance values. BW αWand Gain αW.
2) As height of substrate increases, fringing fields and probe inductance increase, frequency decreases and input
impedance plot shifts upward.
3) With decrease in εr, both Length and Width of patch Increase, which increases fringing fields and aperture area,
hence both Bandwidth and Gain increase.
4) With increase in εr , size of the antenna decreases for same resonance frequency. Hence, gain decreases and
HPBW increases.
5) Width of microstrip feedline plays important role in impedance matching.
References
[1] http://www.antenna-theory.com/antennas/patches/patch3.php
[2] EM-TALK Patch and Line Calculator
[3] https://www.pasternack.com/t-calculator-microstrip.aspx
[4] https://chemandy.com/calculators/microstrip-transmission-line-calculator.html

More Related Content

What's hot

RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAA
aditiagrawal97
 
Broadbanding techniqes
Broadbanding techniqesBroadbanding techniqes
Broadbanding techniqes
Anurag Anupam
 
Design of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsDesign of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applications
Engr Syed Absar Kazmi
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
Pei-Che Chang
 
Millimeter wave circular microstrip Patch antenna for 5 g applications
Millimeter wave circular microstrip Patch antenna for 5 g applicationsMillimeter wave circular microstrip Patch antenna for 5 g applications
Millimeter wave circular microstrip Patch antenna for 5 g applications
Gana U Kumar
 
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
Amit Kirti saran
 
broadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antennabroadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antenna
Ashit Tomar
 
Inroduction to HFSS
Inroduction to HFSSInroduction to HFSS
Inroduction to HFSS
Riaz Ahmed Liyakath
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
Md Mustafizur Rahman
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
Pei-Che Chang
 
Antenna
AntennaAntenna
Ph.D Research proposal
Ph.D Research proposalPh.D Research proposal
Ph.D Research proposal
Naveen Kumar
 
2.2 frequency division multiple access
2.2   frequency division multiple access2.2   frequency division multiple access
2.2 frequency division multiple access
JAIGANESH SEKAR
 
Basics of Patch antenna
Basics of Patch antennaBasics of Patch antenna
Basics of Patch antenna
sreelakshmi lakshmi
 
Mimo
MimoMimo
Mimo
Virak Sou
 
Microstrip patch antenna using Ku and K band
Microstrip patch antenna using Ku and K bandMicrostrip patch antenna using Ku and K band
Microstrip patch antenna using Ku and K band
Nahida Ali
 

What's hot (20)

RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAA
 
Spiral Antenna
Spiral Antenna  Spiral Antenna
Spiral Antenna
 
Broadbanding techniqes
Broadbanding techniqesBroadbanding techniqes
Broadbanding techniqes
 
Design of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsDesign of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applications
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
Millimeter wave circular microstrip Patch antenna for 5 g applications
Millimeter wave circular microstrip Patch antenna for 5 g applicationsMillimeter wave circular microstrip Patch antenna for 5 g applications
Millimeter wave circular microstrip Patch antenna for 5 g applications
 
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
A seminar presentation on "Design and Simulation of E and U shape Microstrip ...
 
broadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antennabroadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antenna
 
Inroduction to HFSS
Inroduction to HFSSInroduction to HFSS
Inroduction to HFSS
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Antenna
AntennaAntenna
Antenna
 
Smart antenna
Smart antennaSmart antenna
Smart antenna
 
Beamforming antennas (1)
Beamforming antennas (1)Beamforming antennas (1)
Beamforming antennas (1)
 
Microwave Antenna
Microwave AntennaMicrowave Antenna
Microwave Antenna
 
Ph.D Research proposal
Ph.D Research proposalPh.D Research proposal
Ph.D Research proposal
 
2.2 frequency division multiple access
2.2   frequency division multiple access2.2   frequency division multiple access
2.2 frequency division multiple access
 
Basics of Patch antenna
Basics of Patch antennaBasics of Patch antenna
Basics of Patch antenna
 
Mimo
MimoMimo
Mimo
 
Microstrip patch antenna using Ku and K band
Microstrip patch antenna using Ku and K bandMicrostrip patch antenna using Ku and K band
Microstrip patch antenna using Ku and K band
 

Similar to Rectangular Microstrip Antenna Parameter Study with HFSS

Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
IJSRD
 
ANSYSS Microstrip patch Anteena using HFSS.pptx
ANSYSS Microstrip patch  Anteena using HFSS.pptxANSYSS Microstrip patch  Anteena using HFSS.pptx
ANSYSS Microstrip patch Anteena using HFSS.pptx
RobinKumar260480
 
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final yearMicrostrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
RohitKumar639388
 
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Mohamed Hassouna
 
Ac4101168171
Ac4101168171Ac4101168171
Ac4101168171
IJERA Editor
 
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
IRJET Journal
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
IJMER
 
C04010 02 1519
C04010 02 1519C04010 02 1519
C04010 02 1519IJMER
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
jantjournal
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET Journal
 
IRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip AntennaIRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET Journal
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan application
Iaetsd Iaetsd
 
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced BandwidthDual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
International Journal of Science and Research (IJSR)
 
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
IAEME Publication
 
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna DesignA Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
IJERA Editor
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
jantjournal
 

Similar to Rectangular Microstrip Antenna Parameter Study with HFSS (20)

Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
 
ANSYSS Microstrip patch Anteena using HFSS.pptx
ANSYSS Microstrip patch  Anteena using HFSS.pptxANSYSS Microstrip patch  Anteena using HFSS.pptx
ANSYSS Microstrip patch Anteena using HFSS.pptx
 
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final yearMicrostrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
 
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
 
Ac4101168171
Ac4101168171Ac4101168171
Ac4101168171
 
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
 
C04010 02 1519
C04010 02 1519C04010 02 1519
C04010 02 1519
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
 
IRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip AntennaIRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip Antenna
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan application
 
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced BandwidthDual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
 
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
 
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna DesignA Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 

More from Omkar Rane

Enabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on serverEnabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on server
Omkar Rane
 
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-SimulinkAnti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
Omkar Rane
 
Autosar fundamental
Autosar fundamentalAutosar fundamental
Autosar fundamental
Omkar Rane
 
Stress Management
Stress ManagementStress Management
Stress Management
Omkar Rane
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot)
Omkar Rane
 
Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)
Omkar Rane
 
Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship
Omkar Rane
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissions
Omkar Rane
 
Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768
Omkar Rane
 
ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768
Omkar Rane
 
PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768
Omkar Rane
 
UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)
Omkar Rane
 
LED Blinking logic on LPC1768
LED Blinking logic on LPC1768LED Blinking logic on LPC1768
LED Blinking logic on LPC1768
Omkar Rane
 
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
Omkar Rane
 
Vlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad ScannerVlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad Scanner
Omkar Rane
 
VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner
Omkar Rane
 
LPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock featuresLPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock features
Omkar Rane
 
Nexys4ddr rm FPGA board Datasheet
Nexys4ddr rm  FPGA board DatasheetNexys4ddr rm  FPGA board Datasheet
Nexys4ddr rm FPGA board Datasheet
Omkar Rane
 
Linear Regression (Machine Learning)
Linear Regression (Machine Learning)Linear Regression (Machine Learning)
Linear Regression (Machine Learning)
Omkar Rane
 
transmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-windtransmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-wind
Omkar Rane
 

More from Omkar Rane (20)

Enabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on serverEnabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on server
 
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-SimulinkAnti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
 
Autosar fundamental
Autosar fundamentalAutosar fundamental
Autosar fundamental
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot)
 
Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)
 
Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissions
 
Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768
 
ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768
 
PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768
 
UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)
 
LED Blinking logic on LPC1768
LED Blinking logic on LPC1768LED Blinking logic on LPC1768
LED Blinking logic on LPC1768
 
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
 
Vlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad ScannerVlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad Scanner
 
VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner
 
LPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock featuresLPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock features
 
Nexys4ddr rm FPGA board Datasheet
Nexys4ddr rm  FPGA board DatasheetNexys4ddr rm  FPGA board Datasheet
Nexys4ddr rm FPGA board Datasheet
 
Linear Regression (Machine Learning)
Linear Regression (Machine Learning)Linear Regression (Machine Learning)
Linear Regression (Machine Learning)
 
transmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-windtransmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-wind
 

Recently uploaded

AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 

Recently uploaded (20)

AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 

Rectangular Microstrip Antenna Parameter Study with HFSS

  • 1. RECTANGULAR FEED MICROSTRIPANTENNA PARAMETER STUDY WITH HFSS SOFTWARE School of Electrical Engineering (Branch - ENTC) Course: Antenna theory and design Group-2 Batch-2 Block-1 Omkar Rane (TETB118) Exam Seat No: T187014 Chaitanya Deshpande (TETB119) Exam Seat No: T187001 Kaustubh Wankhade (TETB131) Exam Seat No: T187003
  • 2. Rectangular Microstrip Feedline Antenna(MSA) Microstrip antennas are low profile antennas and requires where size, weight, cost, performance and ease of installation and aerodynamic profile are constraint such as in high-performance aircraft, spacecraft, satellite and missile applications. Presently in some government and commercial applications such as in mobile radio and wireless communications that have similar specifications, to meet these requirements, microstrip antennas can be used. These antennas are low profile, conformable to planar and non-planar surfaces, simple and inexpensive to manufacture using modern printed circuit technology . They are very versatile in terms of resonant frequency, polarization, pattern and impedance when a particular patch shape and mode are selected. In addition by adding loads between the patch and the ground plane, such as pins and varactor diodes, adaptive elements with variable resonant frequency, impedance polarization and pattern can be designed. Major operational disadvantages of microstrip antennas are their low efficiency, low power, high Q, poor polarization purity, poor scanning performance, spurious feed radiation and very narrow frequency bandwidth, which is typically only a fraction of a percent or at most a few percent. In some government security systems narrow bandwidth are desirable; however, there are methods such as increasing the height of the substrate that can be used to extend the efficiency (to as large as 90 % if surface waves are not included) and bandwidth (up to 35%); however, as the height increases, surface waves are introduced which usually are not desirable because they extract power from the total available for direct radiation (space waves). The surface waves travel within the substrate and they are scattered at bends and surface discontinuities, such as the truncation of the dielectric ground plane and degrade the antenna pattern and polarization characteristics. Surface waves can be eliminated, while maintaining large bandwidths, by using cavities stacking as well as other methods of microstrip elements can also be used to increase the bandwidth. In addition, microstrip antennas also exhibit large electromagnetic signatures at certain frequencies outside the operating band are rather large physically at VHF and possibly UHF frequencies, and in large arrays there is a tradeoff between bandwidth and scan volume. The next section describes the basic characteristics of antenna.
  • 4. Design of MSA patch length and width Step 1: Calculation of the Width (W) - Step 2: Calculation of the Effective Dielectric Constant. This is based on the height, dielectric constant of the dielectric and the calculated width of the patch antenna. Step 3: Calculation of the Effective length Step 4: Calculation of the length extension ΔL Step 5: Calculation of actual length of the patch Where the following parameters are used f0 is the Resonance Frequency W is the Width of the Patch L is the Length of the Patch h is the thickness εr is the relative Permittivity of the dielectric substrate c is the Speed of light: 3 x 108
  • 6. Antenna dimensions and operating frequency Ref: EM-TALK Patch and Line Calculator Feedline Dimensions : L=7.47245 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 16.597 mm Length of patch :12.438 mm Operating Frequency of MSA : f0 =5.5 GHz
  • 9. Results (main antenna- f =5.5 GHz ) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 10. Parametric study for Rectangular Microstrip Antenna a) Varying L and W more than original value and observe results b) Varying L and W less than original value and observe results c) Changing height of substrate (h>1.6 mm) d) Changing height of substrate (h<1.6 mm) e) Changing Material of substrate (ℰr )
  • 11. a) Varying L and W more than original value and observe Calculations Feedline Dimensions : L=9.8794 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 14 mm Length of patch :17 mm Operating Frequency of MSA : f0 =4.16 GHz
  • 14. Results (f=4.16GHz) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 15. Calculations Feedline Dimensions : L=6.737 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 11.130 mm Length of patch :14.965 mm Operating Frequency of MSA : f0 =6.1 GHz b) Varying L and W less than original value and observe
  • 18. Results (f=6.1 GHz) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 19. HFSS design c) Changing height of substrate (h>1.6mm)
  • 20. Results (h>1.6mm) VSWR Rectangular plot 2D polar plot 3D polar plot
  • 21. HFSS design d) Changing height of substrate (h<1.6mm)
  • 22. Results (h<1.6mm) VSWR Rectangular plot 2D polar plot 3D polar plot
  • 23. e) Changing material of substrate Previously the dielectric material was FR_4 Epoxy which is now Changed to RT_Duroid ℰ r =4.4 for FR_4 Epoxy substrate material and ℰ r=2.2 for RT_Duroid Radiation pattern
  • 24. 2D polar plot 3D polar plot VSWR Rectangular plot
  • 25. Applications of MSA 1) Mobile and satellite communication application: Mobile communication requires small, low-cost, low profile antennas. Microstrip patch antenna meets all requirements and various types of microstrip antennas have been designed for use in mobile communication systems. In case of satellite communication circularly polarized radiation patterns are required and can be realized using either square or circular patch with one or two feed points.
  • 26. 2) Global Positioning System applications: Nowadays microstrip patch antennas with substrate having high permittivity sintered material are used for global positioning system. These antennas are circularly polarized, very compact and quite expensive due to its positioning. It is expected that millions of GPS receivers will be used by the general population for land vehicles, aircraft and maritime vessels to find there position accurately Єr2 Єr1 Patch Antenna Transmission Line Ground plane with aperture Patch Microstrip feed line Antenna dielectric Feed substrate .
  • 27. 3) Radio Frequency Identification (RFID): RFID uses in different areas like mobile communication, logistics, manufacturing, transportation and health care [2]. RFID system generally uses frequencies between 30 Hz and 5.8 GHz depending on its applications. Basically RFID system is a tag or transponder and a transceiver or reader. Worldwide Interoperability for Microwave Access (WiMax): The IEEE 802.16 standard is known as WiMax. It can reach upto 30 mile radius theoretically and data rate 70 Mbps. MPA generates three resonant modes at 2.7, 3.3 and 5.3 GHz and can, therefore, be used in WiMax compliant communication equipment.
  • 28. 4) Radar Application: Radar can be used for detecting moving targets such as people and vehicles. It demands a low profile, light weight antenna subsystem, the microstrip antennas are an ideal choice. The fabrication technology based on photolithography enables the bulk production of microstrip antenna with repeatable performance at a lower cost in a lesser time frame as compared to the conventional antennas. Rectenna Application: Rectenna is a rectifying antenna, a special type of antenna that is used to directly convert microwave energy into DC power. Rectenna is a combination of four subsystems i.e. Antenna, ore rectification filter, rectifier, post rectification filter. in rectenna application, it is necessary to design antennas with very high directive characteristics to meet the demands of long-distance links. Since the aim is to use the rectenna to transfer DC power through wireless links for a long distance, this can only be accomplished by increasing the electrical size of the antenna. Ref: https://www.drdo.gov.in/drdo/pub/techf ocus/aug05/antena.htm
  • 29. 5) Telemedicine Application: In telemedicine application antenna is operating at 2.45 GHz. Wearable microstrip antenna is suitable for Wireless Body Area Network (WBAN). The proposed antenna achieved a higher gain and front to back ratio compared to the other antennas, in addition to the semi directional radiation pattern which is preferred over the omni-directional pattern to overcome unnecessary radiation to the user's body and satisfies the requirement for on- body and off-body applications. A antenna having gain of 6.7 dB and a F/B ratio of 11.7 dB and resonates at 2.45GHz is suitable for telemedicine applications. Medicinal applications of patch: It is found that in the treatment of malignant tumours the microwave energy is said to be the most effective way of inducing hyperthermia. The design of the particular radiator which is to be used for this purpose should posses light weight, easy in handling and to be rugged. Only the patch radiator fulfils these requirements. The initial designs for the Microstrip radiator for inducing hyperthermia was based on the printed dipoles and annular rings which were designed on S-band. And later on the design was based on the circular microstrip disk at L-band. There is a simple operation that goes on with the instrument; two coupled Microstrip lines are separated with a flexible separation which is used to measure the temperature inside the human body. A flexible patch applicator can be seen in the figure below which operates at 430 MHz
  • 30. Conclusion 1) With increase in width, aperture area, (dielectric constant)εr and fringing fields increase, hence frequency decreases and input impedance plot shifts towards lower impedance values. BW αWand Gain αW. 2) As height of substrate increases, fringing fields and probe inductance increase, frequency decreases and input impedance plot shifts upward. 3) With decrease in εr, both Length and Width of patch Increase, which increases fringing fields and aperture area, hence both Bandwidth and Gain increase. 4) With increase in εr , size of the antenna decreases for same resonance frequency. Hence, gain decreases and HPBW increases. 5) Width of microstrip feedline plays important role in impedance matching.
  • 31. References [1] http://www.antenna-theory.com/antennas/patches/patch3.php [2] EM-TALK Patch and Line Calculator [3] https://www.pasternack.com/t-calculator-microstrip.aspx [4] https://chemandy.com/calculators/microstrip-transmission-line-calculator.html