SlideShare a Scribd company logo
PROTEIN ENGINEERING SEMINAR ON
     PROTEIN ENGINEERING Protein engineering can be defined as the modification of protein structure with recombinant DNA technology or chemical treatment to get a desirable function for better use in medicine, industry and agriculture.
 OBJECTIVES OF PROTEIN ENGINEERING The objectives of protein engineering is as follows –  	(a) to create a superior enzyme to catalyze the production of high value specific chemicals. 	(b) to produce enzyme in large quantities. 	(c) to produce biological compounds(include synthetic peptide, storage protein, and synthetic drugs) superior to natural one.
RETIONALE OF PROTEIN ENGINEERING For industrial application an enzyme, should possess some characteristics in addition to those of enzymes in cells. These characteristics are :- 		(1) enzyme should be robust with long life. 		(2) enzyme should be able to use the substrate supplied in the industry even it differs from that in the cell.
	(3) enzyme should be able to work under conditions, e.g. extreme of pH, temperature and concentration of the industry even if they differ from those in the cell.
In view of above, the enzyme should be engineered to meet the altered needs. Therefore efforts have been made to alter the properties of enzymes.  These are some character that one might have to change in a predictable manner in protein engineering or enzyme engineering to get the desired function :-
Kinetic properties of enzyme-turnover and Michaelis constant, Km. Thermo stability and the optimum temperature for the enzyme. Stability and activity of enzyme in nonaqueous solvents. Substrate and reaction specificity. Cofactor requirements Optimum PH. Molecular weight and subunit structure.
Therefore for a particular class of enzymes, variation in nature may occur for each of the above properties, so that one may like to combine all the optimum properties to the most efficient form of the enzyme. For an e.g. glucose isomerases, which convert glucose into other isomers like fructose and are used to make high fructose corn syrup vital for soft drink industries.
Basic assumption for protein engineering While doing protein engineering should recognize the following properties of enzymes,  many amino acid substitution, deletions or additions lead to no changes in enzyme activity so that they are silent mutator. Protein have limited number of basic structures and only minor changes are superimposed on them leading to variation Similar patterns of chain folding and domain structure can arise from different amino acid sequences with little or no homology.
Steps involved in protein engineering A study of three dimensional structure of protein :- 		A study of three dimensional structure is the preliminary steps of protein engineering. And a 3d structure of protein is produced from the data generated from X-ray crystallography and NMR process by protein modeling.
The three-dimensional structure of penicillin, for which Dorothy Crowfoot Hodgkin was awarded the Nobel Prize in Chemistry in 1964. The green, white, red, yellow and blue spheres represent atoms of carbon, hydrogen, oxygen, sulfur and nitrogen, respectively.
Ribbon diagram of the structure of myoglobin determined with the x-ray crystallography
Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample.
Methods for protein engineering A variety of methods are used inprotein engineering such as mutagenesis, selection and recombinant DNA technology.
Mutagenesis Mutagenesis and selection can be effectively utilized fro improving a specific property of an enzyme.  E.g. for E.coli anthranilate synthetase enzyme is normally sensitive to tryptophan inhibitor due to feedback inhibition but an altered MTR2 mutation of E.coli was found to possess an altered form of enzyme anthranilate synthetase that is insensitive to tryptophan inhibition. And thus helping in the continuous synthesis of tryptophan without inhibition.
Gene Modification The two process of gene modification are- In vitro mutagenesis using synthetic oligonucleotides. Synthesis of complete modified gene de novo.
(a) In vitro mutagenesis using synthetic  oligonucleotides. Synthetic oligonucleotides is used for invitro mutagenesis. In this method a small oligonucleotides primer containing the desired modification is first synthesized. It is then hybridized to the appropriate site and cloned gene and then the rest is replicated using DNA polymerase enzyme, so that the rest remains unaltered. This approach is actually used to modify the active site of the tyrosyl-tRNA synthetase
Synthesis of complete modified gene de novo. Complete gene in some cases have been chemically synthesized in the form of several oligomers (e.g. genes for insulin, somatostain and interferon), that are ligated in correct order to produce a complete gene. The sequence of the synthetic gene can be designed in a modular fashion to get the desired function.
Chemical modification of enzymes The protein synthesized under the control of gene sequence in a cell undergo post-transitional modification. This leads to stability, structural integrity, altered solubility and viscosity of individual proteins. for e.g. Enzyme-PEG conjugates. An enzyme L-asparaginase has antitumour properties but is toxic with a life time of less then 18hrs thus reducing its utility. L-asparginase can be modified by polyethene glycol derivatives to produce
 PEG-asparginase conjugates, which differ from the native enzyme in the following way (i) it retains only 52% of the catalytic activity of the native. (ii) it become resistant to proteolytic degradation. (iii) it doesn’t cause allergy.
Achievements of protein engineering A number of proteins are known now where efforts have been made to know the effects of site specific mutagenesis involving substitution of one or more amino acids. Insulin- it consist of A and B chains are linked by C-peptide of 35 amino acids. It was shown that a sequence of 6 amino acids for c-peptide was adequate for the linking function.
cytochrome c – A phenylalanine residue has been identified to be non-essential for electron transfer but is involved in determining the reduction potential of the protein. Trypsin- It could be redesigned to have altered substrate specificity.
THANK YOU

More Related Content

What's hot

UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
Shyam Bass
 
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
Pulipati Sowjanya
 
Enzyme immobilization and applications
Enzyme immobilization and applicationsEnzyme immobilization and applications
Enzyme immobilization and applications
Dr. Mahesh Kumar Kataria .
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
bansalaman80
 
Production of vitamin B12 using fermentation
Production of vitamin B12 using fermentationProduction of vitamin B12 using fermentation
Production of vitamin B12 using fermentation
vijaysrampur
 
Biosensors
BiosensorsBiosensors
Biosensors
Hasnat Tariq
 
Therapeutic proteins
Therapeutic proteinsTherapeutic proteins
Therapeutic proteins
Rafa Zubair
 
Study of cloning vectors, restriction endonucleases and DNA ligase.
Study of cloning vectors, restriction endonucleases and DNA ligase.Study of cloning vectors, restriction endonucleases and DNA ligase.
Study of cloning vectors, restriction endonucleases and DNA ligase.
Tushar Morankar
 
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
Theabhi.in
 
Immobilization Of Enzymes
Immobilization Of EnzymesImmobilization Of Enzymes
Immobilization Of EnzymesSuraj Choudhary
 
Interferons
InterferonsInterferons
Interferons
Adarsh Patil
 
Use of microbes in industry. Production of enzymes-General consideration-Amyl...
Use of microbes in industry. Production of enzymes-General consideration-Amyl...Use of microbes in industry. Production of enzymes-General consideration-Amyl...
Use of microbes in industry. Production of enzymes-General consideration-Amyl...
Steffi Thomas
 
Biosensors and Their Applications
Biosensors and Their Applications Biosensors and Their Applications
Biosensors and Their Applications
Dr. Mahesh Kumar Kataria .
 
Enzymes & their Production
Enzymes & their ProductionEnzymes & their Production
Enzymes & their Production
Mayur D. Chauhan
 
Basic principles of genetic engineering
Basic principles of genetic engineeringBasic principles of genetic engineering
Basic principles of genetic engineering
Steffi Thomas
 
amylases enzymes production
amylases enzymes productionamylases enzymes production
amylases enzymes production
NOMI KhanS
 
Genetic organization of eukaryotes and prokaryotes
Genetic organization of eukaryotes and prokaryotes Genetic organization of eukaryotes and prokaryotes
Genetic organization of eukaryotes and prokaryotes
Theabhi.in
 
Biosensors working and application in pharmaceutical industry
Biosensors working and application in pharmaceutical industryBiosensors working and application in pharmaceutical industry
Biosensors working and application in pharmaceutical industry
Shivraj Jadhav
 

What's hot (20)

UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
UNIT-5 Protein Engineering: Brief introduction to protein engineering,Use of ...
 
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
Application of rDNA technology to produce Interferon, Hepatitis-B Vaccine & I...
 
Enzyme immobilization and applications
Enzyme immobilization and applicationsEnzyme immobilization and applications
Enzyme immobilization and applications
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
 
Production of vitamin B12 using fermentation
Production of vitamin B12 using fermentationProduction of vitamin B12 using fermentation
Production of vitamin B12 using fermentation
 
Biosensors
BiosensorsBiosensors
Biosensors
 
Therapeutic proteins
Therapeutic proteinsTherapeutic proteins
Therapeutic proteins
 
Study of cloning vectors, restriction endonucleases and DNA ligase.
Study of cloning vectors, restriction endonucleases and DNA ligase.Study of cloning vectors, restriction endonucleases and DNA ligase.
Study of cloning vectors, restriction endonucleases and DNA ligase.
 
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
Microbial Genetics: Transformation, Transduction, Conjugation, Plasmids, Tran...
 
enzyme immobilization
enzyme immobilizationenzyme immobilization
enzyme immobilization
 
Immobilization Of Enzymes
Immobilization Of EnzymesImmobilization Of Enzymes
Immobilization Of Enzymes
 
Interferons
InterferonsInterferons
Interferons
 
Use of microbes in industry. Production of enzymes-General consideration-Amyl...
Use of microbes in industry. Production of enzymes-General consideration-Amyl...Use of microbes in industry. Production of enzymes-General consideration-Amyl...
Use of microbes in industry. Production of enzymes-General consideration-Amyl...
 
Biosensors and Their Applications
Biosensors and Their Applications Biosensors and Their Applications
Biosensors and Their Applications
 
Dna ligase
Dna ligaseDna ligase
Dna ligase
 
Enzymes & their Production
Enzymes & their ProductionEnzymes & their Production
Enzymes & their Production
 
Basic principles of genetic engineering
Basic principles of genetic engineeringBasic principles of genetic engineering
Basic principles of genetic engineering
 
amylases enzymes production
amylases enzymes productionamylases enzymes production
amylases enzymes production
 
Genetic organization of eukaryotes and prokaryotes
Genetic organization of eukaryotes and prokaryotes Genetic organization of eukaryotes and prokaryotes
Genetic organization of eukaryotes and prokaryotes
 
Biosensors working and application in pharmaceutical industry
Biosensors working and application in pharmaceutical industryBiosensors working and application in pharmaceutical industry
Biosensors working and application in pharmaceutical industry
 

Viewers also liked

Site directed mutagenesis
Site directed mutagenesisSite directed mutagenesis
Site directed mutagenesis
Arunima Sur
 
Site directed mutagenesis by pcr
Site directed mutagenesis by pcrSite directed mutagenesis by pcr
Site directed mutagenesis by pcr
pooranachithra flowry
 
SITE DIRECTED MUTAGENESIS.HARIS
SITE DIRECTED MUTAGENESIS.HARISSITE DIRECTED MUTAGENESIS.HARIS
SITE DIRECTED MUTAGENESIS.HARISHARIS.P
 
Protein engineering presentation
Protein engineering presentationProtein engineering presentation
Protein engineering presentationHuzaifa Ummar
 
Protein engineering
Protein engineeringProtein engineering
Protein engineeringSiti Julaiha
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
Ben Mair
 
Protein engineering
Protein engineeringProtein engineering
Protein engineeringSiti Julaiha
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactions
SHRIKANT YANKANCHI
 
Measurement of ENZYME ACTIVITY
Measurement of ENZYME ACTIVITYMeasurement of ENZYME ACTIVITY
Measurement of ENZYME ACTIVITY
IIM Ahmedabad
 
Titration method of analysis
Titration  method of analysisTitration  method of analysis
Titration method of analysisSiham Abdallaha
 
Molecular tagging
Molecular tagging Molecular tagging
Molecular tagging
Dr. Kirti Mehta
 
Enzyme assays
Enzyme assaysEnzyme assays
Enzyme assays
Vijay Hemmadi
 
Proteomics ppt
Proteomics pptProteomics ppt
Proteomics ppt
Shashikala Chinnaswamy
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactionsPrianca12
 
Types of titrations
Types of titrationsTypes of titrations
Types of titrations
Suresh Selvaraj
 
Enzymes and its applications
Enzymes and its applicationsEnzymes and its applications
Enzymes and its applications
eswar1810
 

Viewers also liked (19)

Site directed mutagenesis
Site directed mutagenesisSite directed mutagenesis
Site directed mutagenesis
 
Site directed mutagenesis by pcr
Site directed mutagenesis by pcrSite directed mutagenesis by pcr
Site directed mutagenesis by pcr
 
SITE DIRECTED MUTAGENESIS.HARIS
SITE DIRECTED MUTAGENESIS.HARISSITE DIRECTED MUTAGENESIS.HARIS
SITE DIRECTED MUTAGENESIS.HARIS
 
Protein engineering presentation
Protein engineering presentationProtein engineering presentation
Protein engineering presentation
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
 
Protein engineering
Protein engineeringProtein engineering
Protein engineering
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactions
 
Measurement of ENZYME ACTIVITY
Measurement of ENZYME ACTIVITYMeasurement of ENZYME ACTIVITY
Measurement of ENZYME ACTIVITY
 
Enzymetic Analysis
Enzymetic AnalysisEnzymetic Analysis
Enzymetic Analysis
 
Transcriptomics
TranscriptomicsTranscriptomics
Transcriptomics
 
Titration method of analysis
Titration  method of analysisTitration  method of analysis
Titration method of analysis
 
Molecular tagging
Molecular tagging Molecular tagging
Molecular tagging
 
Enzyme assays
Enzyme assaysEnzyme assays
Enzyme assays
 
Proteomics ppt
Proteomics pptProteomics ppt
Proteomics ppt
 
Protein protein interactions
Protein protein interactionsProtein protein interactions
Protein protein interactions
 
Types of titrations
Types of titrationsTypes of titrations
Types of titrations
 
Elisa
ElisaElisa
Elisa
 
Enzymes and its applications
Enzymes and its applicationsEnzymes and its applications
Enzymes and its applications
 

Similar to Protein engineering saurav

proteinengineering-saurav-110510012515-phpapp02 (1).pdf
proteinengineering-saurav-110510012515-phpapp02 (1).pdfproteinengineering-saurav-110510012515-phpapp02 (1).pdf
proteinengineering-saurav-110510012515-phpapp02 (1).pdf
KaamDhenu
 
Protein Engineering.pptx Biotechnology class
Protein Engineering.pptx Biotechnology classProtein Engineering.pptx Biotechnology class
Protein Engineering.pptx Biotechnology class
rakeshbarik8
 
Protein Engineering.pptx
Protein Engineering.pptxProtein Engineering.pptx
Protein Engineering.pptx
SajidHussain495712
 
4 . Brief introduction to protein engineering.pptx
4 . Brief introduction to protein engineering.pptx4 . Brief introduction to protein engineering.pptx
4 . Brief introduction to protein engineering.pptx
Harshadaa bafna
 
Enzymology
Enzymology Enzymology
Enzymology
Yohannes Gemechu
 
protein engineering and site directed mutagenesis
  protein engineering and site directed mutagenesis  protein engineering and site directed mutagenesis
protein engineering and site directed mutagenesis
Nawfal Aldujaily
 
Metabolic engineering
Metabolic engineeringMetabolic engineering
Metabolic engineering
soniyakasliwal
 
Engineered enzymes and their applicationsppt.pptx
Engineered enzymes and their applicationsppt.pptxEngineered enzymes and their applicationsppt.pptx
Engineered enzymes and their applicationsppt.pptx
AdeeshRawat
 
BMB 422 site directed mutag.-1.ppt
BMB 422 site directed mutag.-1.pptBMB 422 site directed mutag.-1.ppt
BMB 422 site directed mutag.-1.ppt
MUHAMMEDBAWAYUSUF
 
Site-Directed-Mutagenesis.pptx
Site-Directed-Mutagenesis.pptxSite-Directed-Mutagenesis.pptx
Site-Directed-Mutagenesis.pptx
TechnoIndiaUniversit
 
Protein Engineering - Ashvini.pptx
Protein Engineering - Ashvini.pptxProtein Engineering - Ashvini.pptx
Protein Engineering - Ashvini.pptx
AshviniSoyam
 
Metabolic engineering ppt
Metabolic engineering pptMetabolic engineering ppt
Metabolic engineering ppt
Satyam singh
 
Protein Engineering.pptx
Protein Engineering.pptxProtein Engineering.pptx
Protein Engineering.pptx
TejaswiniAsawa
 
JBEI Research Highlights - January 2018
JBEI Research Highlights - January 2018  JBEI Research Highlights - January 2018
JBEI Research Highlights - January 2018
Irina Silva
 
Directed Evolution
Directed EvolutionDirected Evolution
Directed EvolutionIfrah Ishaq
 
JBEI May 2020 Highlights
JBEI May 2020 HighlightsJBEI May 2020 Highlights
JBEI May 2020 Highlights
LeahFreemanSloan
 
Objectives Of Protein Engineerihg BY Akash Das
Objectives Of Protein Engineerihg BY Akash DasObjectives Of Protein Engineerihg BY Akash Das
Objectives Of Protein Engineerihg BY Akash Das
AkashDas169
 
Recombinant Proteins
Recombinant ProteinsRecombinant Proteins
Recombinant Proteins
Amith Reddy
 

Similar to Protein engineering saurav (20)

proteinengineering-saurav-110510012515-phpapp02 (1).pdf
proteinengineering-saurav-110510012515-phpapp02 (1).pdfproteinengineering-saurav-110510012515-phpapp02 (1).pdf
proteinengineering-saurav-110510012515-phpapp02 (1).pdf
 
Protein Engineering.pptx Biotechnology class
Protein Engineering.pptx Biotechnology classProtein Engineering.pptx Biotechnology class
Protein Engineering.pptx Biotechnology class
 
Protein Engineering.pptx
Protein Engineering.pptxProtein Engineering.pptx
Protein Engineering.pptx
 
Seminar sandy
Seminar sandySeminar sandy
Seminar sandy
 
4 . Brief introduction to protein engineering.pptx
4 . Brief introduction to protein engineering.pptx4 . Brief introduction to protein engineering.pptx
4 . Brief introduction to protein engineering.pptx
 
Enzymology
Enzymology Enzymology
Enzymology
 
protein engineering and site directed mutagenesis
  protein engineering and site directed mutagenesis  protein engineering and site directed mutagenesis
protein engineering and site directed mutagenesis
 
Metabolic engineering
Metabolic engineeringMetabolic engineering
Metabolic engineering
 
Engineered enzymes and their applicationsppt.pptx
Engineered enzymes and their applicationsppt.pptxEngineered enzymes and their applicationsppt.pptx
Engineered enzymes and their applicationsppt.pptx
 
BMB 422 site directed mutag.-1.ppt
BMB 422 site directed mutag.-1.pptBMB 422 site directed mutag.-1.ppt
BMB 422 site directed mutag.-1.ppt
 
Site-Directed-Mutagenesis.pptx
Site-Directed-Mutagenesis.pptxSite-Directed-Mutagenesis.pptx
Site-Directed-Mutagenesis.pptx
 
Protein Engineering - Ashvini.pptx
Protein Engineering - Ashvini.pptxProtein Engineering - Ashvini.pptx
Protein Engineering - Ashvini.pptx
 
Metabolic engineering ppt
Metabolic engineering pptMetabolic engineering ppt
Metabolic engineering ppt
 
Protein Engineering.pptx
Protein Engineering.pptxProtein Engineering.pptx
Protein Engineering.pptx
 
Strain improvement
Strain improvementStrain improvement
Strain improvement
 
JBEI Research Highlights - January 2018
JBEI Research Highlights - January 2018  JBEI Research Highlights - January 2018
JBEI Research Highlights - January 2018
 
Directed Evolution
Directed EvolutionDirected Evolution
Directed Evolution
 
JBEI May 2020 Highlights
JBEI May 2020 HighlightsJBEI May 2020 Highlights
JBEI May 2020 Highlights
 
Objectives Of Protein Engineerihg BY Akash Das
Objectives Of Protein Engineerihg BY Akash DasObjectives Of Protein Engineerihg BY Akash Das
Objectives Of Protein Engineerihg BY Akash Das
 
Recombinant Proteins
Recombinant ProteinsRecombinant Proteins
Recombinant Proteins
 

Recently uploaded

Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 

Recently uploaded (20)

Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 

Protein engineering saurav

  • 2. PROTEIN ENGINEERING Protein engineering can be defined as the modification of protein structure with recombinant DNA technology or chemical treatment to get a desirable function for better use in medicine, industry and agriculture.
  • 3. OBJECTIVES OF PROTEIN ENGINEERING The objectives of protein engineering is as follows – (a) to create a superior enzyme to catalyze the production of high value specific chemicals. (b) to produce enzyme in large quantities. (c) to produce biological compounds(include synthetic peptide, storage protein, and synthetic drugs) superior to natural one.
  • 4. RETIONALE OF PROTEIN ENGINEERING For industrial application an enzyme, should possess some characteristics in addition to those of enzymes in cells. These characteristics are :- (1) enzyme should be robust with long life. (2) enzyme should be able to use the substrate supplied in the industry even it differs from that in the cell.
  • 5. (3) enzyme should be able to work under conditions, e.g. extreme of pH, temperature and concentration of the industry even if they differ from those in the cell.
  • 6. In view of above, the enzyme should be engineered to meet the altered needs. Therefore efforts have been made to alter the properties of enzymes. These are some character that one might have to change in a predictable manner in protein engineering or enzyme engineering to get the desired function :-
  • 7. Kinetic properties of enzyme-turnover and Michaelis constant, Km. Thermo stability and the optimum temperature for the enzyme. Stability and activity of enzyme in nonaqueous solvents. Substrate and reaction specificity. Cofactor requirements Optimum PH. Molecular weight and subunit structure.
  • 8. Therefore for a particular class of enzymes, variation in nature may occur for each of the above properties, so that one may like to combine all the optimum properties to the most efficient form of the enzyme. For an e.g. glucose isomerases, which convert glucose into other isomers like fructose and are used to make high fructose corn syrup vital for soft drink industries.
  • 9. Basic assumption for protein engineering While doing protein engineering should recognize the following properties of enzymes, many amino acid substitution, deletions or additions lead to no changes in enzyme activity so that they are silent mutator. Protein have limited number of basic structures and only minor changes are superimposed on them leading to variation Similar patterns of chain folding and domain structure can arise from different amino acid sequences with little or no homology.
  • 10. Steps involved in protein engineering A study of three dimensional structure of protein :- A study of three dimensional structure is the preliminary steps of protein engineering. And a 3d structure of protein is produced from the data generated from X-ray crystallography and NMR process by protein modeling.
  • 11. The three-dimensional structure of penicillin, for which Dorothy Crowfoot Hodgkin was awarded the Nobel Prize in Chemistry in 1964. The green, white, red, yellow and blue spheres represent atoms of carbon, hydrogen, oxygen, sulfur and nitrogen, respectively.
  • 12. Ribbon diagram of the structure of myoglobin determined with the x-ray crystallography
  • 13. Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample.
  • 14. Methods for protein engineering A variety of methods are used inprotein engineering such as mutagenesis, selection and recombinant DNA technology.
  • 15. Mutagenesis Mutagenesis and selection can be effectively utilized fro improving a specific property of an enzyme. E.g. for E.coli anthranilate synthetase enzyme is normally sensitive to tryptophan inhibitor due to feedback inhibition but an altered MTR2 mutation of E.coli was found to possess an altered form of enzyme anthranilate synthetase that is insensitive to tryptophan inhibition. And thus helping in the continuous synthesis of tryptophan without inhibition.
  • 16. Gene Modification The two process of gene modification are- In vitro mutagenesis using synthetic oligonucleotides. Synthesis of complete modified gene de novo.
  • 17. (a) In vitro mutagenesis using synthetic oligonucleotides. Synthetic oligonucleotides is used for invitro mutagenesis. In this method a small oligonucleotides primer containing the desired modification is first synthesized. It is then hybridized to the appropriate site and cloned gene and then the rest is replicated using DNA polymerase enzyme, so that the rest remains unaltered. This approach is actually used to modify the active site of the tyrosyl-tRNA synthetase
  • 18. Synthesis of complete modified gene de novo. Complete gene in some cases have been chemically synthesized in the form of several oligomers (e.g. genes for insulin, somatostain and interferon), that are ligated in correct order to produce a complete gene. The sequence of the synthetic gene can be designed in a modular fashion to get the desired function.
  • 19. Chemical modification of enzymes The protein synthesized under the control of gene sequence in a cell undergo post-transitional modification. This leads to stability, structural integrity, altered solubility and viscosity of individual proteins. for e.g. Enzyme-PEG conjugates. An enzyme L-asparaginase has antitumour properties but is toxic with a life time of less then 18hrs thus reducing its utility. L-asparginase can be modified by polyethene glycol derivatives to produce
  • 20. PEG-asparginase conjugates, which differ from the native enzyme in the following way (i) it retains only 52% of the catalytic activity of the native. (ii) it become resistant to proteolytic degradation. (iii) it doesn’t cause allergy.
  • 21. Achievements of protein engineering A number of proteins are known now where efforts have been made to know the effects of site specific mutagenesis involving substitution of one or more amino acids. Insulin- it consist of A and B chains are linked by C-peptide of 35 amino acids. It was shown that a sequence of 6 amino acids for c-peptide was adequate for the linking function.
  • 22. cytochrome c – A phenylalanine residue has been identified to be non-essential for electron transfer but is involved in determining the reduction potential of the protein. Trypsin- It could be redesigned to have altered substrate specificity.