SlideShare a Scribd company logo
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

HIMPUNAN
SK & KD

MATERI

LATIHAN SOAL

HIMPUNAN
DAN
NOTASINYA

MACAMMACAM
HIMPUNAN

HIMPUNAN
SEMESTA

DIAGRAM
VENN

PENYUSUN

ANGGOTA
HIMPUNAN

IRISAN
2
HIMPUNAN

**Klik nomor untuk menuju silde selanjutnya

HIMPUNAN
BAGIAN

GABUNGAN
2
HIMPUNAN
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan adalah kumpulan benda/objek yang
dapat didefinisikan dengan jelas.
Contoh:
- Rombongan siswa kelas VIII SMP N 2
Sukoharjo yang berwisata ke Bali.
- Himpunan bilangan asli kurang dari 50
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Suatu himpunan dapat dinyatakan dengan:
a. Suatu kalimat (metode deskripsi)
Contoh:
A = { bilangan prima kurang 10 }
B = { faktor dari 12 }
C = { bilangan ganjil kurang dari 11 }
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

b. Notasi pembentuk himpunan (metode rule)
Contoh:
A = { x | x bil. prima kurang dari 10 }
B = { x | x faktor dari 12 }
C = { x | x bil. ganjil kurang dari 11 }
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

c. Mendaftar anggota-anggotanya (metode Roster)
Contoh:
A = { 2, 3, 5, 7 }
B = { 1, 2, 3, 4, 6, 12 }
C = { 1, 3, 5, 7, 9 }
SK & KD

MATERI

LATIHAN SOAL

a. Himpunan bilangan asli ;
A = { 1, 2, 3, 4, 5, 6, 7, . . . . }

b. Himpunan bilangan cacah ;
C = { 0, 1, 2, 3, 4, 5, 6, 7, . . . . }

c.

Himpunan bilangan ganjil ;
J = {1, 3, 5, 7, 9, 11, 13, . . . . }

d. Himpunan bilangan genap ;
G = { 2, 4, 6, 8, 10, 12, 14, . . . . }

PENYUSUN
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan kosong adalah suatu himpunan yang tidak
mempunyai anggota dan dinotasikan dengan atau {}
Contoh:
Jika H adalah himpunan nama-nama hari yang dimulai
dengan huruf B, nyatakan dalam notasi himpunan H
Jawab :
H = atau H = {} karena tidak ada nama hari yang
dimulai dengan huruf B.
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Merupakan himpunan yang memiliki banyak anggota terbatas

Contoh:
A adalah himpunan bilangan asli kurang dari 100
A = { 1, 2, 3, 4, 5, . . ., 99 }
B adalah himp bilangan prima kurang dari 25
B = { 2, 3, 5, 7, 11, 13, 17, 19, 23 }
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Merupakan himpunan yang memiliki banyak anggota
tak terbatas
Contoh:
A adalah himpunan bilangan asli lebih dari 8
A = { 9, 10, 11, 12, . . . }
B adalah himpunan bilangan prima lebih dari 7
B = { 11, 13, 17, 19 , . . . }
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan equal/himpunan sama adalah himpunanhimpunan yang anggotanya sama.
Contoh:
A= {b,c,d}

B={d,c,b}
Anggota A sama dengan Anggota B atau A=B
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan ekuivalen adalah himpunan-himpunan yang
jumlah anggotanya sama, namun anggotanya belum
tentu sama.
Contoh
A= {b,c,d}
B={d,c,b}

A jumlahnya sama dengan B atau A ~ B
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan Lepas adalah suatu himpunan yang tidak
mempunyai anggota persekutuan dengan himpunan lain.
Contoh:
A = {d,e,f}
B = {g,h,i}
maka himpunan A tidak mempunyai anggota

persekutuan dengan himpunan B atau A//B
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Anggota himpunan n adalah suatu unsur/elemen dari
suatu himpunan, dan dinyatakan dengan lambang
“ ”. Sedangkan yang bukan merupakan anggota
impunan dinyatakan dengan lambang “ ”.
Contoh:
A = (a,b,c,d,e}
maka
a A (a anggota himpunan A)
f A (f bukan anggota himpunan A)
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Jika ada himpunan A dan B dimana setiap anggota A
merupakan anggota B, maka dikatakan A merupakan
himpunan bagian (subset) dari B atau dikatakan B
memuat A dan dilambangkan A B.
A B = {x|x ∈ A ⇒ x ∈ B}
Jika ada anggota dari A yang bukan merupakan
anggota B, maka A bukan himpunan bagian dari B,
dan dilambangkan dengan A B.
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

2. Menetukan banyak himpunan bagian
Jika banyaknya anggota himpunan A adalah n
dan banyaknya himpunan bagian dari A adalah
N, maka berlaku rumus: N = 2n
Contoh:
Tentukan banyaknya himpunan bagian dari A jika A =
{1,2,3,4}
Himpunan bagian A adl sebagai berikut:
Jawab:
{ }, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3},
N(A) = 4
Jadi, N = 24 = 16 {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4},
{1,2,3,4}
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan semesta atau semesta pembicaraan adalah
himpunan yang memuat semua objek yang sedang
dibicarakan.
Semesta pembicaraan mempunyai anggota yang sama
atau lebih banyak dari pada himpunan yang sedang
dibicarakan.
Himpunan semesta disebut juga himpunan universal dan
disimbolkan “S” atau “U”.
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Himpunan dapat dinyatakan dalam bentuk gambar yang dikenal sebagai
Diagram Venn.
Hal-hal yang perlu diperhatikan dalam membuat diagram Venn yaitu:
 Himpunan semesta (S) digambarkan sebagai persegi panjang dan
huruf S diletakkan di sudut kiri atas persegi panjang
 Setiap himpunan yang dibicarakan (selain himpunan kosong)
ditunjukkan oleh kurva/lingkaran.
 Setiap anggota ditunjukkan dengan noktah (titik)
 Bila anggota suatu himpunan banyak sekali, maka anggotaanggotanya tidak perlu dituliskan.

KLIK
Klik untuk melihat
contoh diagram venn
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Irisan dua himpunan A dan B adalah himpunan
semua objek atau anggota himpunan yang
sekaligus menjadi anggota himpunan A dan B.
Adapun bentuk umum irisan adalah :
A ∩ B = {x|x ϵ A atau x ϵ B}

KLIK
Klik untuk melihat
contoh irisan
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Gabungan dua himpunan A dan B adalah semua
objek yang merupakan anggota A dan B. Adapun
bentuk umum dari Gabungan adalah :

A ∪ B = {x|x ϵ A atau x ϵ B}

KLIK
Klik untuk melihat
contoh gabungan
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Buatlah diagram Venn dari himpunan-himpunan
berikut ini S = {1,2,3,4,5,6,7}, A = {4,5}, dan R = {1,3,6}
Penyelesaian:
S

●2

●4
●7

●5
A

●1

●6

●3
R
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Diketahui S={1,2,3,4,5,6,7,8,9,10}, P = {1,2,3,4,6,8}
Q = {1,3,5,9,}
Gambarlah pada diagram venn dan tentukan P Q
dengan cara memberikan arsiran!
Jawab:
S

●1

●2

Q

P

●3 ●4
●5 ●6
●9
●10
●7 ●8

Jadi, P

Q = {1,3}
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Analog dari soal Irisan 2 himpunan, tentukan P
Jawab:
S

●1

●2

P

Q

●3 ●4
●5 ●6
●9
●10
●7 ●8

Jadi, P

Q = {1,2,3,4,5,6,8,9}

Q!
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN
SK & KD

MATERI

LATIHAN SOAL

PENYUSUN

Standar Kompetensi
Menggunakan konsep himpunan dan diagram Venn dalam pemecahan masalah.
Kompetensi Dasar
4.1 Memahami pengertian dan notasi himpunan, serta penyajiannya.
4.2 Memahami konsep himpunan bagian.
4.3 Melakukan operasi irisan, gabungan, kurang (difference), dan komplemen pada
himpunan.
4.4 Menyajikan himpunan dengan diagram Venn.
4.5 Mengggunakan konsep himpunan dalam pemecahan masalah.
Indikator
4.4.1 Menyajikan irisan dan gabungan dengan diagram Venn.
Tujuan Pembelajaran
Peserta didik dapat menyajikan irisan dan gabungan suau himpunan dengan diagram venn.

More Related Content

What's hot

PPT Garis dan Sudut Kelas 7 Semester 2
PPT Garis dan Sudut Kelas 7 Semester 2PPT Garis dan Sudut Kelas 7 Semester 2
PPT Garis dan Sudut Kelas 7 Semester 2
Kevin Arthur
 
PPT Relasi & Fungsi Matematika Kelas VIII
PPT Relasi & Fungsi Matematika Kelas VIIIPPT Relasi & Fungsi Matematika Kelas VIII
PPT Relasi & Fungsi Matematika Kelas VIII
Yoshiie Srinita
 
PPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaranPPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaran
trisno direction
 
Bilangan berpangkat
Bilangan berpangkatBilangan berpangkat
Bilangan berpangkatDesy Aryanti
 
Presentasi himpunan matematika kelas VII
Presentasi himpunan matematika kelas VIIPresentasi himpunan matematika kelas VII
Presentasi himpunan matematika kelas VII
MarhamahFajriyahNasution
 
MATRIKS (RPP & LKPD)
MATRIKS (RPP & LKPD)MATRIKS (RPP & LKPD)
MATRIKS (RPP & LKPD)
Muhammad Alfiansyah Alfi
 
Bangun ruang sisi lengkung
Bangun ruang sisi lengkungBangun ruang sisi lengkung
Bangun ruang sisi lengkung
Nety24
 
PLSV Kelas VII.pptx
PLSV Kelas VII.pptxPLSV Kelas VII.pptx
PLSV Kelas VII.pptx
Nabilah149373
 
PPT TEOREMA PYTHAGORAS KELAS 8 SMP
PPT TEOREMA PYTHAGORAS KELAS 8 SMPPPT TEOREMA PYTHAGORAS KELAS 8 SMP
PPT TEOREMA PYTHAGORAS KELAS 8 SMP
Binti Wulandari
 
Ppt spldv kelas viii
Ppt spldv kelas viiiPpt spldv kelas viii
Ppt spldv kelas viii
MartiwiFarisa
 
contoh LKS kelas X Bab LOGARITMA
contoh LKS kelas X Bab LOGARITMAcontoh LKS kelas X Bab LOGARITMA
contoh LKS kelas X Bab LOGARITMA
Nur Halimah
 
Barisan dan deret 1 bilingual
Barisan dan deret 1 bilingualBarisan dan deret 1 bilingual
Barisan dan deret 1 bilingualmentjirungkat
 
Ppt aritmatika sosial
Ppt aritmatika sosialPpt aritmatika sosial
Ppt aritmatika sosialWenniepooh
 
PPT MATERI BILANGAN KLS 7 SM 1.pptx
PPT  MATERI BILANGAN KLS 7 SM 1.pptxPPT  MATERI BILANGAN KLS 7 SM 1.pptx
PPT MATERI BILANGAN KLS 7 SM 1.pptx
satiarama
 
Irisan dan Gabungan Himpunan
Irisan dan Gabungan HimpunanIrisan dan Gabungan Himpunan
Irisan dan Gabungan Himpunan
Ninik Charmila
 
Makalah setengah putaran
Makalah setengah putaranMakalah setengah putaran
Makalah setengah putaran
Nia Matus
 
Bangun Ruang PPT
Bangun Ruang PPTBangun Ruang PPT
Bangun Ruang PPT
profkhafifa
 
PPT MATERI LINGKARAN SMP KELAS 8
PPT MATERI LINGKARAN SMP KELAS 8PPT MATERI LINGKARAN SMP KELAS 8
PPT MATERI LINGKARAN SMP KELAS 8
silviarahayu6
 
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIArpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
Muhammad Alfiansyah Alfi
 

What's hot (20)

PPT Garis dan Sudut Kelas 7 Semester 2
PPT Garis dan Sudut Kelas 7 Semester 2PPT Garis dan Sudut Kelas 7 Semester 2
PPT Garis dan Sudut Kelas 7 Semester 2
 
PPT Relasi & Fungsi Matematika Kelas VIII
PPT Relasi & Fungsi Matematika Kelas VIIIPPT Relasi & Fungsi Matematika Kelas VIII
PPT Relasi & Fungsi Matematika Kelas VIII
 
PPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaranPPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaran
 
Bilangan berpangkat
Bilangan berpangkatBilangan berpangkat
Bilangan berpangkat
 
Presentasi himpunan matematika kelas VII
Presentasi himpunan matematika kelas VIIPresentasi himpunan matematika kelas VII
Presentasi himpunan matematika kelas VII
 
MATRIKS (RPP & LKPD)
MATRIKS (RPP & LKPD)MATRIKS (RPP & LKPD)
MATRIKS (RPP & LKPD)
 
Bangun ruang sisi lengkung
Bangun ruang sisi lengkungBangun ruang sisi lengkung
Bangun ruang sisi lengkung
 
PLSV Kelas VII.pptx
PLSV Kelas VII.pptxPLSV Kelas VII.pptx
PLSV Kelas VII.pptx
 
PPT TEOREMA PYTHAGORAS KELAS 8 SMP
PPT TEOREMA PYTHAGORAS KELAS 8 SMPPPT TEOREMA PYTHAGORAS KELAS 8 SMP
PPT TEOREMA PYTHAGORAS KELAS 8 SMP
 
Ppt spldv kelas viii
Ppt spldv kelas viiiPpt spldv kelas viii
Ppt spldv kelas viii
 
contoh LKS kelas X Bab LOGARITMA
contoh LKS kelas X Bab LOGARITMAcontoh LKS kelas X Bab LOGARITMA
contoh LKS kelas X Bab LOGARITMA
 
Barisan dan deret 1 bilingual
Barisan dan deret 1 bilingualBarisan dan deret 1 bilingual
Barisan dan deret 1 bilingual
 
Ppt aritmatika sosial
Ppt aritmatika sosialPpt aritmatika sosial
Ppt aritmatika sosial
 
PPT MATERI BILANGAN KLS 7 SM 1.pptx
PPT  MATERI BILANGAN KLS 7 SM 1.pptxPPT  MATERI BILANGAN KLS 7 SM 1.pptx
PPT MATERI BILANGAN KLS 7 SM 1.pptx
 
Irisan dan Gabungan Himpunan
Irisan dan Gabungan HimpunanIrisan dan Gabungan Himpunan
Irisan dan Gabungan Himpunan
 
Makalah setengah putaran
Makalah setengah putaranMakalah setengah putaran
Makalah setengah putaran
 
Ppt himpunan
Ppt himpunanPpt himpunan
Ppt himpunan
 
Bangun Ruang PPT
Bangun Ruang PPTBangun Ruang PPT
Bangun Ruang PPT
 
PPT MATERI LINGKARAN SMP KELAS 8
PPT MATERI LINGKARAN SMP KELAS 8PPT MATERI LINGKARAN SMP KELAS 8
PPT MATERI LINGKARAN SMP KELAS 8
 
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIArpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
rpp, lkpd dan lembar penilaian materi fungsi invers kelas XI MIA
 

Viewers also liked

Langkah langkah membuat akun www.slideshare.net
Langkah langkah membuat akun www.slideshare.netLangkah langkah membuat akun www.slideshare.net
Langkah langkah membuat akun www.slideshare.net
Tri Budi Santoso
 
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
Sitti Nuramina
 
Matematika Ekonomi : Himpunan
Matematika Ekonomi : HimpunanMatematika Ekonomi : Himpunan
Matematika Ekonomi : Himpunan
MaharaniIka Chuby
 
Power Point Himpunan
Power Point HimpunanPower Point Himpunan
Power Point Himpunan
Sriwijaya University
 
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
hendrapratama
 

Viewers also liked (6)

Diagram venn
Diagram vennDiagram venn
Diagram venn
 
Langkah langkah membuat akun www.slideshare.net
Langkah langkah membuat akun www.slideshare.netLangkah langkah membuat akun www.slideshare.net
Langkah langkah membuat akun www.slideshare.net
 
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
RPP KURIKULUM 2013 OPERASI HIMPUNAN (IRISAN dan GABUNGAN) - SITTI NURAMINA PP...
 
Matematika Ekonomi : Himpunan
Matematika Ekonomi : HimpunanMatematika Ekonomi : Himpunan
Matematika Ekonomi : Himpunan
 
Power Point Himpunan
Power Point HimpunanPower Point Himpunan
Power Point Himpunan
 
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
Konsep Himpunan Kelas VII Semester 1 Kurikulum 2013
 

Similar to Ppt himpunan kelompok 7 [tanpa latihan soal]

Himpunan
HimpunanHimpunan
Himpunan
Dafid Kurniawan
 
Himpunan
HimpunanHimpunan
Himpunan
spensamat
 
Himpunan
HimpunanHimpunan
1268850 himpunan joniwarman.wordpress
1268850 himpunan joniwarman.wordpress1268850 himpunan joniwarman.wordpress
1268850 himpunan joniwarman.wordpress
fiko ahmad
 
Materi himpunan ok
Materi himpunan okMateri himpunan ok
Materi himpunan ok
MasfuahFuah
 
1. himpunan.ppt
1. himpunan.ppt1. himpunan.ppt
1. himpunan.ppt
NovitaSari652791
 
TUTORIAL 2 - PDGK 4108.pptx
TUTORIAL 2 - PDGK 4108.pptxTUTORIAL 2 - PDGK 4108.pptx
TUTORIAL 2 - PDGK 4108.pptx
muhamadinayatulloh
 
PPT by Liza juwita
PPT by Liza juwitaPPT by Liza juwita
PPT by Liza juwita
LizaJuwita
 
Matematika-Himpunan
Matematika-HimpunanMatematika-Himpunan
Matematika-Himpunan
Kardilah Azijehmail
 
PERTEMUAN KE II HIMPUNAN.pptx
PERTEMUAN KE II HIMPUNAN.pptxPERTEMUAN KE II HIMPUNAN.pptx
PERTEMUAN KE II HIMPUNAN.pptx
UNIVERSITAS MUHAMMADIYAH BERAU
 
Pertemuan ke ii himpunan
Pertemuan ke ii himpunanPertemuan ke ii himpunan
Pertemuan ke ii himpunan
UNIVERSITAS MUHAMMADIYAH BERAU
 
Puspasari Ramadhani_ PPT Himpunan
Puspasari Ramadhani_ PPT HimpunanPuspasari Ramadhani_ PPT Himpunan
Puspasari Ramadhani_ PPT Himpunan
PuspasariRamadhani
 
Himpunan Kelas 7 Semester Genap
Himpunan Kelas 7 Semester GenapHimpunan Kelas 7 Semester Genap
Himpunan Kelas 7 Semester Genap
DOLI SYAHPUTRA, ST
 
Menyatakan himpunan Kelas VII Semester Genap
Menyatakan himpunan Kelas VII Semester GenapMenyatakan himpunan Kelas VII Semester Genap
Menyatakan himpunan Kelas VII Semester Genap
Doli Syahputra
 
himpunan.pptx
himpunan.pptxhimpunan.pptx
himpunan.pptx
HeriAsbi1
 

Similar to Ppt himpunan kelompok 7 [tanpa latihan soal] (20)

Himpunan
HimpunanHimpunan
Himpunan
 
Himpunan
HimpunanHimpunan
Himpunan
 
Himpunan
HimpunanHimpunan
Himpunan
 
1268850 himpunan joniwarman.wordpress
1268850 himpunan joniwarman.wordpress1268850 himpunan joniwarman.wordpress
1268850 himpunan joniwarman.wordpress
 
Materi himpunan ok
Materi himpunan okMateri himpunan ok
Materi himpunan ok
 
Himpunan
HimpunanHimpunan
Himpunan
 
Rangkuman himpunan
Rangkuman himpunanRangkuman himpunan
Rangkuman himpunan
 
1. himpunan.ppt
1. himpunan.ppt1. himpunan.ppt
1. himpunan.ppt
 
R5a kelompok 3
R5a kelompok 3R5a kelompok 3
R5a kelompok 3
 
R5a kelompok 3
R5a kelompok 3R5a kelompok 3
R5a kelompok 3
 
R5a kelompok 3
R5a kelompok 3R5a kelompok 3
R5a kelompok 3
 
TUTORIAL 2 - PDGK 4108.pptx
TUTORIAL 2 - PDGK 4108.pptxTUTORIAL 2 - PDGK 4108.pptx
TUTORIAL 2 - PDGK 4108.pptx
 
PPT by Liza juwita
PPT by Liza juwitaPPT by Liza juwita
PPT by Liza juwita
 
Matematika-Himpunan
Matematika-HimpunanMatematika-Himpunan
Matematika-Himpunan
 
PERTEMUAN KE II HIMPUNAN.pptx
PERTEMUAN KE II HIMPUNAN.pptxPERTEMUAN KE II HIMPUNAN.pptx
PERTEMUAN KE II HIMPUNAN.pptx
 
Pertemuan ke ii himpunan
Pertemuan ke ii himpunanPertemuan ke ii himpunan
Pertemuan ke ii himpunan
 
Puspasari Ramadhani_ PPT Himpunan
Puspasari Ramadhani_ PPT HimpunanPuspasari Ramadhani_ PPT Himpunan
Puspasari Ramadhani_ PPT Himpunan
 
Himpunan Kelas 7 Semester Genap
Himpunan Kelas 7 Semester GenapHimpunan Kelas 7 Semester Genap
Himpunan Kelas 7 Semester Genap
 
Menyatakan himpunan Kelas VII Semester Genap
Menyatakan himpunan Kelas VII Semester GenapMenyatakan himpunan Kelas VII Semester Genap
Menyatakan himpunan Kelas VII Semester Genap
 
himpunan.pptx
himpunan.pptxhimpunan.pptx
himpunan.pptx
 

More from Diyah Sri Hariyanti

Segitiga & segiempat mtk smp kelas 7
Segitiga & segiempat mtk smp kelas 7Segitiga & segiempat mtk smp kelas 7
Segitiga & segiempat mtk smp kelas 7Diyah Sri Hariyanti
 
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083Diyah Sri Hariyanti
 
Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]Diyah Sri Hariyanti
 
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]Diyah Sri Hariyanti
 
Makalah teori belajar kecerdasan berganda
Makalah teori belajar kecerdasan bergandaMakalah teori belajar kecerdasan berganda
Makalah teori belajar kecerdasan bergandaDiyah Sri Hariyanti
 
Kristina apriliawati kelas 6 c nomor 21
Kristina apriliawati kelas 6 c nomor 21Kristina apriliawati kelas 6 c nomor 21
Kristina apriliawati kelas 6 c nomor 21Diyah Sri Hariyanti
 
Contoh tugas penilaian hasil belajar
Contoh tugas penilaian hasil belajarContoh tugas penilaian hasil belajar
Contoh tugas penilaian hasil belajarDiyah Sri Hariyanti
 
Contoh silabus matematika smp kelas 8
Contoh silabus matematika smp kelas 8Contoh silabus matematika smp kelas 8
Contoh silabus matematika smp kelas 8Diyah Sri Hariyanti
 
1051500083 c diyah sri hariyanti
1051500083 c diyah sri hariyanti1051500083 c diyah sri hariyanti
1051500083 c diyah sri hariyantiDiyah Sri Hariyanti
 

More from Diyah Sri Hariyanti (20)

Tugas pecahan
Tugas pecahanTugas pecahan
Tugas pecahan
 
Teori kecerdasan berganda 1
Teori kecerdasan berganda 1Teori kecerdasan berganda 1
Teori kecerdasan berganda 1
 
Soal kisi kisi
Soal kisi kisiSoal kisi kisi
Soal kisi kisi
 
Segitiga & segiempat mtk smp kelas 7
Segitiga & segiempat mtk smp kelas 7Segitiga & segiempat mtk smp kelas 7
Segitiga & segiempat mtk smp kelas 7
 
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083
Ppt spldv diyah sri hariyanti 6 c absen 10 nim 1051500083
 
Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]Ppt persamaan lingkaran [diyah sri hariyanti]
Ppt persamaan lingkaran [diyah sri hariyanti]
 
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]
Ppt persamaan kuadrat [diyah sri hariyanti 6 c nim 1051500083]
 
Ppt masalah tes kel.4
Ppt masalah tes kel.4Ppt masalah tes kel.4
Ppt masalah tes kel.4
 
Ppt manajemen kurikulum
Ppt manajemen kurikulumPpt manajemen kurikulum
Ppt manajemen kurikulum
 
Materi integral tak tentu
Materi integral tak tentuMateri integral tak tentu
Materi integral tak tentu
 
Makalah teori belajar kecerdasan berganda
Makalah teori belajar kecerdasan bergandaMakalah teori belajar kecerdasan berganda
Makalah teori belajar kecerdasan berganda
 
Magic graph
Magic graphMagic graph
Magic graph
 
Kristina apriliawati kelas 6 c nomor 21
Kristina apriliawati kelas 6 c nomor 21Kristina apriliawati kelas 6 c nomor 21
Kristina apriliawati kelas 6 c nomor 21
 
Kewirausahaan hasil observasi
Kewirausahaan hasil observasiKewirausahaan hasil observasi
Kewirausahaan hasil observasi
 
Contoh tugas penilaian hasil belajar
Contoh tugas penilaian hasil belajarContoh tugas penilaian hasil belajar
Contoh tugas penilaian hasil belajar
 
Contoh silabus matematika smp kelas 8
Contoh silabus matematika smp kelas 8Contoh silabus matematika smp kelas 8
Contoh silabus matematika smp kelas 8
 
Contoh rpp matematika sm
Contoh rpp matematika smContoh rpp matematika sm
Contoh rpp matematika sm
 
Aturan rantai 2 variable
Aturan rantai 2 variableAturan rantai 2 variable
Aturan rantai 2 variable
 
1051500083 c diyah sri hariyanti
1051500083 c diyah sri hariyanti1051500083 c diyah sri hariyanti
1051500083 c diyah sri hariyanti
 
Tugas apkom super junior a4
Tugas apkom super junior a4Tugas apkom super junior a4
Tugas apkom super junior a4
 

Ppt himpunan kelompok 7 [tanpa latihan soal]

  • 1. SK & KD MATERI LATIHAN SOAL PENYUSUN HIMPUNAN
  • 2. SK & KD MATERI LATIHAN SOAL HIMPUNAN DAN NOTASINYA MACAMMACAM HIMPUNAN HIMPUNAN SEMESTA DIAGRAM VENN PENYUSUN ANGGOTA HIMPUNAN IRISAN 2 HIMPUNAN **Klik nomor untuk menuju silde selanjutnya HIMPUNAN BAGIAN GABUNGAN 2 HIMPUNAN
  • 3. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan adalah kumpulan benda/objek yang dapat didefinisikan dengan jelas. Contoh: - Rombongan siswa kelas VIII SMP N 2 Sukoharjo yang berwisata ke Bali. - Himpunan bilangan asli kurang dari 50
  • 4. SK & KD MATERI LATIHAN SOAL PENYUSUN Suatu himpunan dapat dinyatakan dengan: a. Suatu kalimat (metode deskripsi) Contoh: A = { bilangan prima kurang 10 } B = { faktor dari 12 } C = { bilangan ganjil kurang dari 11 }
  • 5. SK & KD MATERI LATIHAN SOAL PENYUSUN b. Notasi pembentuk himpunan (metode rule) Contoh: A = { x | x bil. prima kurang dari 10 } B = { x | x faktor dari 12 } C = { x | x bil. ganjil kurang dari 11 }
  • 6. SK & KD MATERI LATIHAN SOAL PENYUSUN c. Mendaftar anggota-anggotanya (metode Roster) Contoh: A = { 2, 3, 5, 7 } B = { 1, 2, 3, 4, 6, 12 } C = { 1, 3, 5, 7, 9 }
  • 7. SK & KD MATERI LATIHAN SOAL a. Himpunan bilangan asli ; A = { 1, 2, 3, 4, 5, 6, 7, . . . . } b. Himpunan bilangan cacah ; C = { 0, 1, 2, 3, 4, 5, 6, 7, . . . . } c. Himpunan bilangan ganjil ; J = {1, 3, 5, 7, 9, 11, 13, . . . . } d. Himpunan bilangan genap ; G = { 2, 4, 6, 8, 10, 12, 14, . . . . } PENYUSUN
  • 8. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan kosong adalah suatu himpunan yang tidak mempunyai anggota dan dinotasikan dengan atau {} Contoh: Jika H adalah himpunan nama-nama hari yang dimulai dengan huruf B, nyatakan dalam notasi himpunan H Jawab : H = atau H = {} karena tidak ada nama hari yang dimulai dengan huruf B.
  • 9. SK & KD MATERI LATIHAN SOAL PENYUSUN Merupakan himpunan yang memiliki banyak anggota terbatas Contoh: A adalah himpunan bilangan asli kurang dari 100 A = { 1, 2, 3, 4, 5, . . ., 99 } B adalah himp bilangan prima kurang dari 25 B = { 2, 3, 5, 7, 11, 13, 17, 19, 23 }
  • 10. SK & KD MATERI LATIHAN SOAL PENYUSUN Merupakan himpunan yang memiliki banyak anggota tak terbatas Contoh: A adalah himpunan bilangan asli lebih dari 8 A = { 9, 10, 11, 12, . . . } B adalah himpunan bilangan prima lebih dari 7 B = { 11, 13, 17, 19 , . . . }
  • 11. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan equal/himpunan sama adalah himpunanhimpunan yang anggotanya sama. Contoh: A= {b,c,d} B={d,c,b} Anggota A sama dengan Anggota B atau A=B
  • 12. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan ekuivalen adalah himpunan-himpunan yang jumlah anggotanya sama, namun anggotanya belum tentu sama. Contoh A= {b,c,d} B={d,c,b} A jumlahnya sama dengan B atau A ~ B
  • 13. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan Lepas adalah suatu himpunan yang tidak mempunyai anggota persekutuan dengan himpunan lain. Contoh: A = {d,e,f} B = {g,h,i} maka himpunan A tidak mempunyai anggota persekutuan dengan himpunan B atau A//B
  • 14. SK & KD MATERI LATIHAN SOAL PENYUSUN Anggota himpunan n adalah suatu unsur/elemen dari suatu himpunan, dan dinyatakan dengan lambang “ ”. Sedangkan yang bukan merupakan anggota impunan dinyatakan dengan lambang “ ”. Contoh: A = (a,b,c,d,e} maka a A (a anggota himpunan A) f A (f bukan anggota himpunan A)
  • 15. SK & KD MATERI LATIHAN SOAL PENYUSUN Jika ada himpunan A dan B dimana setiap anggota A merupakan anggota B, maka dikatakan A merupakan himpunan bagian (subset) dari B atau dikatakan B memuat A dan dilambangkan A B. A B = {x|x ∈ A ⇒ x ∈ B} Jika ada anggota dari A yang bukan merupakan anggota B, maka A bukan himpunan bagian dari B, dan dilambangkan dengan A B.
  • 16. SK & KD MATERI LATIHAN SOAL PENYUSUN 2. Menetukan banyak himpunan bagian Jika banyaknya anggota himpunan A adalah n dan banyaknya himpunan bagian dari A adalah N, maka berlaku rumus: N = 2n Contoh: Tentukan banyaknya himpunan bagian dari A jika A = {1,2,3,4} Himpunan bagian A adl sebagai berikut: Jawab: { }, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, N(A) = 4 Jadi, N = 24 = 16 {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
  • 17. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan semesta atau semesta pembicaraan adalah himpunan yang memuat semua objek yang sedang dibicarakan. Semesta pembicaraan mempunyai anggota yang sama atau lebih banyak dari pada himpunan yang sedang dibicarakan. Himpunan semesta disebut juga himpunan universal dan disimbolkan “S” atau “U”.
  • 18. SK & KD MATERI LATIHAN SOAL PENYUSUN Himpunan dapat dinyatakan dalam bentuk gambar yang dikenal sebagai Diagram Venn. Hal-hal yang perlu diperhatikan dalam membuat diagram Venn yaitu:  Himpunan semesta (S) digambarkan sebagai persegi panjang dan huruf S diletakkan di sudut kiri atas persegi panjang  Setiap himpunan yang dibicarakan (selain himpunan kosong) ditunjukkan oleh kurva/lingkaran.  Setiap anggota ditunjukkan dengan noktah (titik)  Bila anggota suatu himpunan banyak sekali, maka anggotaanggotanya tidak perlu dituliskan. KLIK Klik untuk melihat contoh diagram venn
  • 19. SK & KD MATERI LATIHAN SOAL PENYUSUN Irisan dua himpunan A dan B adalah himpunan semua objek atau anggota himpunan yang sekaligus menjadi anggota himpunan A dan B. Adapun bentuk umum irisan adalah : A ∩ B = {x|x ϵ A atau x ϵ B} KLIK Klik untuk melihat contoh irisan
  • 20. SK & KD MATERI LATIHAN SOAL PENYUSUN Gabungan dua himpunan A dan B adalah semua objek yang merupakan anggota A dan B. Adapun bentuk umum dari Gabungan adalah : A ∪ B = {x|x ϵ A atau x ϵ B} KLIK Klik untuk melihat contoh gabungan
  • 21. SK & KD MATERI LATIHAN SOAL PENYUSUN Buatlah diagram Venn dari himpunan-himpunan berikut ini S = {1,2,3,4,5,6,7}, A = {4,5}, dan R = {1,3,6} Penyelesaian: S ●2 ●4 ●7 ●5 A ●1 ●6 ●3 R
  • 22. SK & KD MATERI LATIHAN SOAL PENYUSUN Diketahui S={1,2,3,4,5,6,7,8,9,10}, P = {1,2,3,4,6,8} Q = {1,3,5,9,} Gambarlah pada diagram venn dan tentukan P Q dengan cara memberikan arsiran! Jawab: S ●1 ●2 Q P ●3 ●4 ●5 ●6 ●9 ●10 ●7 ●8 Jadi, P Q = {1,3}
  • 23. SK & KD MATERI LATIHAN SOAL PENYUSUN Analog dari soal Irisan 2 himpunan, tentukan P Jawab: S ●1 ●2 P Q ●3 ●4 ●5 ●6 ●9 ●10 ●7 ●8 Jadi, P Q = {1,2,3,4,5,6,8,9} Q!
  • 24. SK & KD MATERI LATIHAN SOAL PENYUSUN
  • 25. SK & KD MATERI LATIHAN SOAL PENYUSUN Standar Kompetensi Menggunakan konsep himpunan dan diagram Venn dalam pemecahan masalah. Kompetensi Dasar 4.1 Memahami pengertian dan notasi himpunan, serta penyajiannya. 4.2 Memahami konsep himpunan bagian. 4.3 Melakukan operasi irisan, gabungan, kurang (difference), dan komplemen pada himpunan. 4.4 Menyajikan himpunan dengan diagram Venn. 4.5 Mengggunakan konsep himpunan dalam pemecahan masalah. Indikator 4.4.1 Menyajikan irisan dan gabungan dengan diagram Venn. Tujuan Pembelajaran Peserta didik dapat menyajikan irisan dan gabungan suau himpunan dengan diagram venn.