SlideShare a Scribd company logo
Power divider, combiner and
coupler
By
Professor Syed Idris Syed Hassan
Sch of Elect. & Electron Eng
Engineering Campus USM
Nibong Tebal 14300
SPS Penang
Power divider and combiner/coupler
divider combiner
P1
P2= nP1
P3=(1-n)P1
P1
P2
P3=P1+P2
Divide into 4 output
Basic
S-parameter for power divider/coupler
 











33
32
31
23
22
21
13
12
11
S
S
S
S
S
S
S
S
S
S
Generally
For reciprocal and lossless network
j
i
for
S
S
N
k
kj
ki 



0
1
*
1
1
*



N
k
ki ki
S
S
1
13
12
11 

 S
S
S
1
23
22
21 

 S
S
S
1
33
32
31 

 S
S
S
0
*
23
13
*
22
12
*
21
11 

 S
S
S
S
S
S
0
*
33
23
*
32
22
*
31
21 

 S
S
S
S
S
S
0
*
33
13
*
32
12
*
31
11 

 S
S
S
S
S
S
Row 1x row 2
Row 2x row 3
Row 1x row 3
Continue
If all ports are matched properly , then Sii= 0
 











0
0
0
23
13
23
12
13
12
S
S
S
S
S
S
S
For Reciprocal
network
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
12 
 S
S
1
2
23
2
13 
 S
S
0
12
*
23

S
S
0
23
*
13 
S
S
0
13
*
12 
S
S
Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then
S23 should equal to 1 and the first equation will not equal to 1. This is invalid.
Another alternative for reciprocal network
 











33
23
13
23
12
13
12
0
0
S
S
S
S
S
S
S
S
Only two ports are matched , then for reciprocal network
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
12 
 S
S
1
2
33
2
23
2
13 

 S
S
S 0
13
*
33
12
*
23 
 S
S
S
S
0
23
*
13 
S
S
0
33
*
23
13
*
12 
 S
S
S
S
The two equations show
that |S13|=|S23|
thus S13=S23=0
and |S12|=|S33|=1
These have satisfied all
Reciprocal lossless network of two matched
S21
=ej 
S12=ej 
S33
=ej 
1
3
2
 
















j
j
j
e
e
e
S
0
0
0
0
0
0
For lossless network, must satisfy unitary
condition
1
2
13
2
12 
 S
S
1
2
23
2
21 
 S
S
1
2
32
2
31 
 S
S
0
32
*
31

S
S
0
23
*
21 
S
S
0
13
*
12

S
S
Nonreciprocal network (apply for circulator)
 











0
0
0
32
31
23
21
13
12
S
S
S
S
S
S
S
0
31
23
12 

 S
S
S
0
13
32
21 

 S
S
S
1
13
32
21 

 S
S
S
1
31
23
12 

 S
S
S
The above equations must satisfy the following either
or
Circulator (nonreciprocal network)
 











0
1
0
0
0
1
1
0
0
S
 











0
0
1
1
0
0
0
1
0
S
1
2
3
1
2
3
Four port network
 















44
43
42
41
34
24
14
33
32
31
23
22
21
13
12
11
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Generally
For reciprocal and lossless network
j
i
for
S
S
N
k
kj
ki 



0
1
*
1
1
*



N
k
ki ki
S
S
1
14
13
12
11 


 S
S
S
S
1
24
23
22
21 


 S
S
S
S
1
34
33
32
31 


 S
S
S
S
0
*
24
14
*
23
13
*
22
12
*
21
11 


 S
S
S
S
S
S
S
S
0
*
44
24
*
43
23
*
42
22
*
41
21 


 S
S
S
S
S
S
S
S
0
*
34
14
*
33
13
*
32
12
*
31
11 


 S
S
S
S
S
S
S
S
R 1x R 2
R 2x R3
R1x R4
1
44
43
42
41 


 S
S
S
S
0
*
44
14
*
43
13
*
42
12
*
41
11 


 S
S
S
S
S
S
S
S
0
*
34
24
*
33
23
*
32
22
*
31
21 


 S
S
S
S
S
S
S
S
0
*
44
34
*
43
33
*
42
32
*
41
31 


 S
S
S
S
S
S
S
S
R1x R3
R2x R4
R3x R4
Matched Four port network
 















0
0
0
0
34
24
14
34
24
14
23
13
23
12
13
12
S
S
S
S
S
S
S
S
S
S
S
S
S
The unitarity condition become
1
14
13
12 

 S
S
S
1
24
23
12 

 S
S
S
1
34
23
13 

 S
S
S
0
*
24
14
*
23
13 
 S
S
S
S
0
*
34
23
*
14
12 
 S
S
S
S
0
*
34
14
*
23
12 
 S
S
S
S
1
34
24
14 

 S
S
S
0
*
34
13
*
24
12 
 S
S
S
S
0
*
34
24
*
13
12 
 S
S
S
S
0
*
24
23
*
14
13 
 S
S
S
S
Say all ports are matched and symmetrical network, then
*
**
@
@@
#
##
To check validity
Multiply eq. * by S24
* and eq. ## by S13
* , and substract to obtain
0
2
14
2
13
*
14 





  S
S
S
Multiply eq. # by S34 and eq. @@ by S13 , and substract to obtain
0
2
34
2
12
23 





  S
S
S
%
$
Both equations % and $ will be satisfy if S14 = S23 = 0 . This means
that no coupling between port 1 and 4 , and between port 2 and 3 as
happening in most directional couplers.
Directional coupler
 















0
0
0
0
0
0
0
0
34
24
34
24
13
12
13
12
S
S
S
S
S
S
S
S
S
If all ports matched , symmetry and S14=S23=0 to be satisfied
The equations reduce to 6 equations
1
13
12 
 S
S
1
24
12 
 S
S
1
34
13 
 S
S
1
34
24 
 S
S
0
*
34
13
*
24
12 
 S
S
S
S
0
*
34
24
*
13
12 
 S
S
S
S
24
13 S
S 
By comparing these equations yield
*
*
**
**
By comparing equations * and ** yield 34
12 S
S 
Continue
 













0
0
0
0
0
0
0
0








j
j
j
j
S
Simplified by choosing S12= S34= ; S13=e j  and S24=  e j

Where  +  = p + 2np
 















0
0
0
0
0
0
0
0








S
1. Symmetry Coupler  =  = p/2
2. Antisymmetry Coupler  =0 , =p
2 cases
Both satisfy 2 +2 =1
Physical interpretation
|S13 | 2 = coupling factor = 2
|S12 | 2 = power deliver to port 2= 2 =1- 2
Characterization of coupler
Directivity= D= 10 log
dB
P
P

log
20
3
1 

Coupling= C= 10 log
dB
S
P
P
14
4
3 log
20



Isolation = I= 10 log dB
S
P
P
14
4
1 log
20


I = D + C dB
1
4 3
2
Input Through
Coupled
Isolated
For ideal case
|S14|=0
Practical coupler
Hybrid 3 dB couplers
Magic -T and Rat-race couplers
 =  = p/2
 













0
1
0
1
0
0
0
0
0
1
1
0
2
1
j
j
j
j
S
 















0
1
1
0
1
1
0
0
0
1
0
0
1
1
1
0
2
1
S
 =0 , =p
=  = 1 / 2
=  = 1 / 2
T-junction power divider
E-plane T
H-plane T
Microstrip T
T-model
jB
Z1
Z2
Vo
Yin
2
1
1
1
Z
Z
jB
Yin 


2
1
1
1
Z
Z
Yin 

Lossy line
Lossless line
If Zo = 50,then for equally
divided power, Z1 = Z2=100
Example
• If source impedance equal to 50 ohm and the
power to be divided into 2:1 ratio. Determine Z1
and Z2
in
o P
Z
V
P
3
1
2
1
1
2
1 

in
o P
Z
V
P
3
2
2
1
2
2
2 
 

 75
2
3
2
o
Z
Z


 150
3
1 o
Z
Z
o
o
in
Z
V
P
2
2
1
 

 50
// 2
1 Z
Z
Zo
Resistive divider
V2
V3
V1
Zo
Zo
P1
P2
P3
Zo V
o
o Z
Z
Z 

3
Zo/3
Zo/3
Zo/3
o
o
o
in Z
Z
Z
Z 


3
2
3
V
V
Z
Z
Z
V
o
o
o
3
2
3
/
2
3
/
3
/
2
1 


V
V
V
Z
Z
Z
V
V
o
o
o
2
1
4
3
3
/
3
2 




o
in
Z
V
P
2
1
2
1

 
in
o
P
Z
V
P
P
4
1
2
/
1
2
1
2
1
3
2 


Wilkinson Power Divider
50
50
50
100
70.7 
70.7 
/4
Zo
/2 Zo
/2 Zo
2Zo
Zo
Zo
/4
2
2
T
e Z
Zin

o
T Z
Z 2

For even mode
Therefore
For Zin =Zo=50 


 7
.
70
50
2
T
Z
And shunt resistor R =2 Zo = 100
Analysis (even and odd mode)
2
2
1
1
Port 1
Port 2
Port 3
Vg2
Vg3
Z
Z
4
+V2
+V3
r/2
r/2
4
For even mode Vg2 = Vg3 and
for odd mode Vg2 = -Vg3. Since
the circuit is symmetrical , we
can treat separately two
bisection circuit for even and
odd modes as shown in the next
slide. By superposition of these
two modes , we can find S -
parameter of the circuit. The
excitation is effectively Vg2=4V
and Vg3= 0V.
For simplicity all values are
normalized to line characteristic
impedance , I.e Zo = 50 .
Even mode
Vg2=Vg3= 2V
Looking at port 2
Zin
e= Z2/2
Therefore for matching
2

Z
then V2
e= V since Zin
e=1 (the circuit acting like voltage divider)
2
1
Port 1
Port 2
2V
Z
4
+V2
e
r/2
+V1
e
O.C
O.C out
inZ
Z
Z 
2
Note:
2

Z
If
To determine V2
e , using transmission line equation V(x) = V+ (e-jx + Ge+jx) , thus
V
jV
V
V e 
G


  )
1
(
)
4
(
2

1
1
)
1
(
)
0
(
1 
G

G

G


  jV
jV
V
V e
Reflection at port 1, refer to is
2
2
2
2



G
2

Z
Then 2
1 jV
V e 

Odd mode
Vg2= - Vg3= 2V
2
1
Port 1
Port 2
2V
Z
4
+V2
o
r/2
+V1
o
At port 2, V1
o =0 (short) ,
/4 transformer will be
looking as open circuit ,
thus Zin
o = r/2 . We choose
r =2 for matching. Hence
V2
o= 1V (looking as a
voltage divider)
S-parameters
S11= 0 (matched Zin=1 at port 1)
S22 = S33 = 0 (matched at ports 2 and 3 both even and odd modes)
S12 = S21 = 2
/
2
2
1
1 j
V
V
V
V
o
e
o
e




S13 = S31 = 2
/
j

S23 = S32 = 0 ( short or open at bisection , I.e no
coupling)
Example
Design an equal-split Wilkinson power divider for a 50 W system
impedance at frequency fo
The quarterwave-transformer characteristic is


 7
.
70
2 o
Z
Z


 100
2 o
Z
R
r
o


4


The quarterwave-transformer length is
Wilkinson splitter/combiner
application
/4
100
70.7
50
matching
networks
/4
100 50
70.7
70.7
70.7
Splitter
combiner
Power Amplifier
Unequal power Wilkinson
Divider
3
2
03
1
K
K
Z
Z o


)
1
( 2
03
2
02 K
K
Z
Z
K
Z o 










K
K
Z
R o
1
R2
=Zo
/K
R
R3=Zo/K
Z02
Z03
Zo
2
3
2
3
2




port
at
Power
port
at
Power
P
P
K
1
2
3
Parad and Moynihan power divider
4
/
1
2
01
1








K
K
Z
Z o
2
3
2
3
2




port
at
Power
port
at
Power
P
P
K








K
K
Z
R o
1
  4
/
1
2
4
/
3
02 1 K
K
Z
Z o 

 
4
/
5
4
/
1
2
03
1
K
K
Z
Z o


K
Z
Z o

04 K
Z
Z o

05
Zo
Zo
Zo
Z05
Zo4
Zo2
Zo3
Zo1
R
1
2
3
Cohn power divider

 



 



VSWR at port 1 = 1.106
VSWR at port 2 and port 3 = 1.021
Isolation between port 2 and 3 = 27.3 dB
Center frequency fo = (f1 + f2)/2
Frequency range (f2/f1) = 2
1
2
3
Couplers
/4
/4
Yo Yo
Yo
Yo
Yse
Ysh Ysh
Branch line coupler 2
sh
2
se Y
1
Y 

2
se
2
sh
sh
2
3
Y
Y
1
2Y
E
E



 
20
1
3 10
E
E x


x dB coupling
2
3
2
2
2
1 E
E
E 

2
1
3
2
1
2
E
E
E
E
1


















or
E1
E2
E3
Couplers
input
isolate
Output
3dB
Output
3dB 90o out of phase
3 dB Branch line coupler
/4
/4
Zo
Zo
Zo
Zo
2
/
Zo
2
/
Zo
Zo Zo
3
2 E
E 
1
Ysh 
2
Y
1
Y 2
2
se 

 sh
1.414
Yse 

 50
o
Z

 50
sh
Z

 5
.
35
se
Z
Couplers
9 dB Branch line coupler
  355
.
0
10 20
9
1
3 
 
E
E
 2
2
1
2 355
.
0
1 









E
E
  935
.
0
355
.
0
1 2
1
2 










E
E
38
.
0
935
.
0
355
.
0
2
3 









E
E
8
.
0

sh
Y
Let say we choose
38
.
0
8
.
0
1
8
.
0
2
1
2
2
2
2
2






 se
se
sh
sh
Y
Y
Y
Y
962
.
1
36
.
0
38
.
0
6
.
1



se
Y

 50
0
Z



 5
.
62
8
.
0
/
50
sh
Z



 5
.
25
962
.
1
/
50
se
Z
Note: Practically upto 9dB coupling
Couplers
/4
/4
/4
/4
Input
Output in-phase
Output in-phase
isolated
1
2
3
4
•Can be used as splitter , 1 as input and 2 and 3
as two output. Port is match with 50 ohm.
•Can be used as combiner , 2 and 3 as input
and 1 as output.Port 4 is matched with 50 ohm.
Hybrid-ring coupler
OC
1
2
1
2
OC
1/2
1/2
2
2
2
2
2
2
/8
/8
/4
/4
/8
/8
Te
To
Ge
Go
Analysis
The amplitude of scattered wave
o
e
B G

G

2
1
2
1
1
o
e T
T
B
2
1
2
1
4 

o
e T
T
B
2
1
2
1
2 

o
e
B G

G

2
1
2
1
3
Couple lines analysis
Planar Stacked
Coupled microstrip
b
w w
s
w
s
w w
s
b
d
r
r
r
The coupled lines are usually assumed to operate in TEM mode.
The electrical characteristics can be determined from effective
capacitances between lines and velocity of propagation.
Equivalent circuits
+V +V
H-wall
+V -V
E-wall
C11
C22
C11
C22
2C12
2C12
Even mode Odd mode
C11 and C22 are the capacitances between conductors and the ground
respectively. For symmetrical coupled line C11=C22 . C12 is the
capacitance between two strip of conductors in the absence of ground. In
even mode , there is no current flows between two strip conductors , thus
C12 is effectively open-circuited.
Continue
Even mode
The resulting capacitance Ce = C11 = C22
e
e
e
e
oe
C
C
LC
C
L
Z

1



Therefore, the line characteristic impedance
Odd mode
The resulting capacitance Co = C11 + 2 C12 = C22 + 2 C12
Therefore, the line characteristic impedance
o
oo
C
Z

1

Planar coupled stripline
Refer to Fig 7.29 in Pozar , Microwave Engineering
Stacked coupled stripline
   
m
F
s
b
b
s
b
s
b
C oW
r
oW
r
oW
r /
4
2
/
2
/ 2
2
11












w >> s and w >> b
m
F
s
C oW
r /
12



m
F
s
b
b
C
C oW
r
e /
4
2
2
11





m
F
s
s
b
b
w
C
C
C o
r
o /
1
2
2
2
2
2
12
11 











 

o
o
r 


 1

r
o
e
oe
bw
s
b
Z
C
Z

 4
1 2
2 


 
 
s
s
b
b
w
Z
C
Z
r
o
o
oo
/
1
/
2
2
1
1
2
2 





Coupled microstripline
Refer to Fig 7.30 in Pozar , Microwave Engineering
Design of Coupled line Couplers
input
output
Isolated
(can be matched)
Coupling
w
w
s
2
3 4
1
wc
/4
3 4
1 2
Zo
Zo Zo
Zo
Zoo
Zoe
2V
+V3
+V2
+V4
+V1

I1
I4
I3
I2
Schematic circuit
Layout
Even and odd modes analysis
3 4
1 2
Zo
Zo Zo
Zo
Zoo
V
+V3
o
+V2
o
+V4
o
+V1
o
I1
o
I4
o
I3
o
I2
o
V
_
+
+
_
3 4
1 2
Zo
Zo Zo
Zo
Zoe
V
+V3
e
+V2
e
+V4
e
+V1
e
I1
e
I4
e
I3
e
I2
e
V
_
+
+
_
I1
e = I3
e
I4
e = I2
e
Same
excitation
voltage
V1
e = V3
e
V4
e = V2
e
Even
I1
o = -I3
o
I4
o =- I2
o
V1
o = -V3
o
V4
o = -V2
o
Odd
Reverse
excitation
voltage
(100)
(99)
Analysis
o
o
in
o
in
o
Z
Z
Z
V
V


1


tan
tan
o
oe
oe
o
oe
e
in
jZ
Z
jZ
Z
Z
Z



o
e
o
e
in
I
I
V
V
I
V
Z
1
1
1
1
1
1




Zo = load for transmission line
 = electrical length of the line
Zoe or Zoo = characteristic impedance of
the line


tan
tan
o
oo
oo
o
oo
o
in
jZ
Z
jZ
Z
Z
Z



By voltage division
o
e
in
e
in
e
Z
Z
Z
V
V


1
o
o
in
o
Z
Z
V
I


1
o
e
in
e
Z
Z
V
I


1
From transmission line equation , we have
where
(101)
(102)
(103)
(104)
(105)
(106)
(107)
continue
Substituting eqs. (104) - (107) into eq. (101) yeilds
     
o
o
in
e
in
o
e
in
o
in
o
o
o
in
e
in
o
o
in
e
in
o
e
in
o
in
in
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
2
2
2
2











For matching we may consider the second term of eq. (108) will be zero , I.e
0
2 
 o
e
in
o
in Z
Z
Z or 2
o
oe
oo
e
in
o
in Z
Z
Z
Z
Z 

(108)
Let oe
oo
o Z
Z
Z 
Therefore eqs. (102) and (103) become


tan
tan
oo
oe
oe
oo
oe
e
in
Z
j
Z
Z
j
Z
Z
Z





tan
tan
oe
oo
oo
oe
oo
o
in
Z
j
Z
Z
j
Z
Z
Z



and (108) reduces to Zin=Zo
(110)
(109)
continue
Since Zin = Zo , then by voltage division V1 = V. The voltage at port 3, by
substitute (99), (100) , (104) and (105) is then
















o
o
in
o
in
o
e
in
e
in
o
e
o
e
Z
Z
Z
Z
Z
Z
V
V
V
V
V
V 1
1
3
3
3 (111)
Substitute (109) and (110) into (111)
  

tan
2
tan
oo
oe
o
oo
o
o
o
in
o
in
Z
Z
j
Z
jZ
Z
Z
Z
Z





  

tan
2
tan
oo
oe
o
oe
o
o
e
in
e
in
Z
Z
j
Z
jZ
Z
Z
Z
Z





Then (111) reduces to  
  

tan
2
tan
3
oo
oe
o
oo
oe
Z
Z
j
Z
Z
Z
j
V
V



 (112)
continue
We define coupling as
oo
oe
oo
oe
Z
Z
Z
Z
C



Then V3 / V , from ( 112) will become
oo
oe
o
Z
Z
Z
C



2
1 2
 
 
 
 
 




tan
1
tan
tan
2
tan
2
3
j
C
jC
V
Z
Z
Z
Z
j
Z
Z
Z
Z
Z
Z
Z
j
V
V
oo
oe
oo
oe
oo
oe
o
oo
oe
oo
oe










and

 sin
cos
1
1
2
2
2
2
2
j
C
C
V
V
V
V o
e






0
2
2
4
4
4 



 o
e
o
e V
V
V
V
V
Similarly
V1=V
Practical couple line coupler
V3 is maximum when  = p/2 , 3p/2, ...
Thus for quarterwave length coupler  = p/2 , the eqs V2 and V3 reduce to
V1=V
0
4 
V
VC
j
C
jC
V
j
C
jC
V
j
C
jC
V
V 












2
2
2
3
1
1
)
(
2
/
tan
1
2
/
tan
p
p
2
2
2
2
2 1
1
2
/
sin
2
/
cos
1
1
C
jV
j
C
V
j
C
C
V
V 








p
p C
C
Z
Z o
oe



1
1
C
C
Z
Z o
oo



1
1
Example
Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm
ground plane spacing , dielectric constant of 2. 56, a characteristic impedance
of 50  , and a center frequency of 3 GHz.
Coupling factor is C = 10-20/20 = 0.1
Characteristic impedance of even
and odd mode are




 28
.
55
1
.
0
1
1
.
0
1
50
oe
Z
23
.
45
1
.
0
1
1
.
0
1
50 



oo
Z
4
.
88

oe
r Z

4
.
72

oo
r Z

From fig 7.29 , we have
w/b=0.72 , s/b =0.34. These
give us
w=0.72b=0.114cm
s= 0.34b = 0.054cm
Then multiplied by r

Multisection Coupled line coupler (broadband)
V1
V3 V4
V2
input Through
Isolated
Coupled



  

C1
CN-2
C3
C2 CN
CN-1
....





 j
e
jC
j
jC
j
C
jC
V
V 





 sin
tan
1
tan
tan
1
tan
2
1
3



j
e
j
C
C
V
V 





sin
cos
1
1
2
2
1
2
For single section , whence C<<1 , then
V4=0
and For = p/ 2 then V3/V1= C
and V2/V1 = -j
Analysis
Result for cascading the couplers to form a multi section coupler is
   
  







)
1
(
2
1
2
1
2
1
1
3
sin
...
sin
sin









N
j
j
N
j
j
j
e
V
e
jC
e
V
e
jC
V
e
jC
V
 
  







)
1
(
)
2
(
2
2
2
)
1
(
2
1
1
3
...
1
sin













N
j
M
N
j
j
N
j
j
e
C
e
e
C
e
C
e
jV
V
 
  

M
jN
C
N
C
N
C
e
jV
2
1
...
3
cos
1
cos
sin
2 2
1
1




  

 
Where M= (N+1)/2
For symmetry C1=CN , C2= CN-1 ,
etc
At center frequency
2
/
1
3
p
 

V
V
Co
(200)
Example
Design a three-section 20 dB coupler with binomial response (maximally
flat), a system impedance 50  , and a center frequency of 3 GHz .
Solution
For maximally flat response for three section (N=3) coupler, we require
2
,
1
0
)
(
2
/



n
for
C
d
d
n
n
p



From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have








 2
1
1
3
2
1
2
cos
sin
2 C
C
V
V
C 

  



 sin
)
(
3
sin
sin
sin
3
sin 1
2
1
2
1 C
C
C
C
C 





(201)
(202)
Continue
Apply (201)
  0
cos
)
(
3
cos
3
2
/
1
2
1 



p



C
C
C
d
dC
  0
10
sin
)
(
3
sin
9 2
1
2
/
1
2
1
2
2








C
C
C
C
C
d
C
d
p



Midband Co= 20 dB at  =p/2. Thus C= 10-20/20=0.1
From (202), we C= C2 - 2C1= 0.1 © ©
©
Solving © and © © gives us C1= C3 = 0.0125 (symmetry) and C2 = 0.125
continue
Using even and odd mode analysis, we have








 63
.
50
0125
.
0
1
0125
.
0
1
50
1
1
3
1
C
C
Z
Z
Z o
oe
oe





 38
.
49
0125
.
0
1
0125
.
0
1
3
1 o
oo
oo Z
Z
Z







 69
.
56
125
.
0
1
125
.
0
1
50
1
1
2
C
C
Z
Z o
oe




 1
.
44
125
.
0
1
125
.
0
1
2 o
oo Z
Z
continue
Let say , r = 10 and d =0.7878mm


 63
.
50
3
1 oe
oe Z
Z 

 38
.
49
3
1 oo
oo Z
Z

 69
.
56
2
oe
Z 
 1
.
44
2
oo
Z
Plot points on graph Fig. 7.30
We have , w/d = 1.0 and s/d = 2.5 , thus
w = d = 0.7878mm and s = 2.5d = 1.9695mm
Similarly we plot points
We have , w/d = 0.95 and s/d = 1.1 , thus
w = 0.95d = 0.748mm and s =1.1d = 0.8666mm
For section 1 and 3
For section 2
Couplers
Lange Coupler
Evolution of Lange
coupler
1= input
2=output
3=coupling
4=isolated
w
w
w
w
w
s
s
s
s
1
4 3
2
1
3
4
2
1
2
3
4
2
4
1
3
Analysis
1
4 3
2
1
3
4
2
C
C
90o
Ze4
Zo4
Zo4
Ze4
1
4
3
2
1
2
Cm
Cex
Cex
C
Cex Cex
Cin
Cin
Cm
Cm
Cm
Simplified circuit Equivalent circuit
m
ex
m
ex
ex
in
C
C
C
C
C
C



where
Continue/ 4 wire coupler
Even mode
All Cm capacitance will be at same potential, thus the total capacitance is
in
ex
e C
C
C 

4
m
in
ex
o C
C
C
C 6
4 


Odd mode
All Cm capacitance will be considered, thus the total capacitance is
Even and Odd mode characteristic impedance
4
4
1
e
e
C
Z


4
4
1
o
o
C
Z

 line
on
transmissi
in
velocity


(300)
(301)
(302)
continue
Now consider isolated pairs. It’s equivalent circuit is same as two wire line ,
thus it’s even and odd mode capacitance is
ex
e C
C 
m
ex
o C
C
C 2


Substitute these into (300) and (301) ,
we have
 
o
e
o
e
e
e
C
C
C
C
C
C



3
4
m
ex
m
ex
ex
in
C
C
C
C
C
C



 
o
e
e
o
o
o
C
C
C
C
C
C



3
4
And in terms of impedance refer
to (302)
oe
oe
oo
oe
oo
e Z
Z
Z
Z
Z
Z



3
4
oo
oo
oe
oe
oo
o Z
Z
Z
Z
Z
Z



3
4
continue
 
  
oo
oe
oe
oo
oe
oo
oo
oe
o
e
o
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z





3
3
2
4
4
Characteristic impedance of the line is
 
  oo
oe
oo
oe
oo
oe
o
e
o
e
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
C
2
3
3
2
2
2
2
4
4
4
4







Coupling
The desired characteristic impedance in terms of coupling is
    o
oe Z
C
C
C
C
C
Z






1
/
1
2
8
9
3
4 2
    o
oo Z
C
C
C
C
C
Z






1
/
1
2
8
9
3
4 2
VHF/UHF Hybrid power splitter
50
input
50
output
50
output
100
C
T1
T2
1
5
6
7
8
2
3
4
Guanella power divider
(VHF/UHF)
RL
V2
I2
I1
V1
Rg
Vg I1
V2
I2

More Related Content

What's hot

Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
Dhruv Upadhaya
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
tamil arasan
 
Optical fiber communication Part 2 Sources and Detectors
Optical fiber communication Part 2 Sources and DetectorsOptical fiber communication Part 2 Sources and Detectors
Optical fiber communication Part 2 Sources and Detectors
Madhumita Tamhane
 
Multi Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCMulti Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMC
Vetrivel Chelian
 
Reflector antennas
Reflector antennasReflector antennas
Reflector antennas
ramalakshmi54
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on Scaling
Raviraj Kaur
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
SHIV DUTT
 
Impatt diode
Impatt diodeImpatt diode
Impatt diode
laddu13
 
Chapter 2b
Chapter 2bChapter 2b
Chapter 2b
Gabriel O'Brien
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor LogicDiwaker Pant
 
Directional couplers 22
Directional couplers 22Directional couplers 22
Directional couplers 22
HIMANSHU DIWAKAR
 
Fundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital SignalsFundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital Signals
Analog Devices, Inc.
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
Tapas Mondal
 
Low-Pass Filter Design using Microstrip
Low-Pass Filter Design using MicrostripLow-Pass Filter Design using Microstrip
Low-Pass Filter Design using MicrostripSarvajeet Halder
 
MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)
NARENDRA KUMAR REDDY
 
Two cavity klystron
Two cavity klystronTwo cavity klystron
Two cavity klystron
abhikalmegh
 

What's hot (20)

Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
 
Optical fiber communication Part 2 Sources and Detectors
Optical fiber communication Part 2 Sources and DetectorsOptical fiber communication Part 2 Sources and Detectors
Optical fiber communication Part 2 Sources and Detectors
 
Mimo
MimoMimo
Mimo
 
Multi Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCMulti Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMC
 
Reflector antennas
Reflector antennasReflector antennas
Reflector antennas
 
Monopole
MonopoleMonopole
Monopole
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on Scaling
 
Microwave
MicrowaveMicrowave
Microwave
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Impatt diode
Impatt diodeImpatt diode
Impatt diode
 
Chapter 2b
Chapter 2bChapter 2b
Chapter 2b
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Directional couplers 22
Directional couplers 22Directional couplers 22
Directional couplers 22
 
Fundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital SignalsFundamentals of the RF Transmission and Reception of Digital Signals
Fundamentals of the RF Transmission and Reception of Digital Signals
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Soliton
Soliton Soliton
Soliton
 
Low-Pass Filter Design using Microstrip
Low-Pass Filter Design using MicrostripLow-Pass Filter Design using Microstrip
Low-Pass Filter Design using Microstrip
 
MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)MINIMUM SHIFT KEYING(MSK)
MINIMUM SHIFT KEYING(MSK)
 
Two cavity klystron
Two cavity klystronTwo cavity klystron
Two cavity klystron
 

Similar to Power divider, combiner and coupler.ppt

S_parameters.pdf
S_parameters.pdfS_parameters.pdf
S_parameters.pdf
ManishKumawat77
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
Simen Li
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
Pei-Che Chang
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
kiran93845
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
Forward2025
 
Lecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridgeLecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridge
Muhamad Azwan
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
Simen Li
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
Sugavanam KR
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
Forward2025
 
Distance Protection.ppt
Distance Protection.pptDistance Protection.ppt
Distance Protection.ppt
RaviKumar400685
 
Presentation1current electricity
Presentation1current electricityPresentation1current electricity
Presentation1current electricity
terna vidyalaya and junior college
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
LingalaSowjanya
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
Mohammed Waris Senan
 
Unit 1
Unit 1Unit 1
Unit 1
Ramanalluri
 
Scattering matrix
Scattering matrixScattering matrix
Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16
BinodKumarSahu5
 
Alternator Basics.pdf
Alternator Basics.pdfAlternator Basics.pdf
Alternator Basics.pdf
bhupesh Dave
 
Magic tee
Magic tee  Magic tee
Magic tee
saniya shaikh
 
Two ports
Two ports Two ports
Two ports
Selomon birhane
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
lieulieuw
 

Similar to Power divider, combiner and coupler.ppt (20)

S_parameters.pdf
S_parameters.pdfS_parameters.pdf
S_parameters.pdf
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Lecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridgeLecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridge
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Distance Protection.ppt
Distance Protection.pptDistance Protection.ppt
Distance Protection.ppt
 
Presentation1current electricity
Presentation1current electricityPresentation1current electricity
Presentation1current electricity
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Unit 1
Unit 1Unit 1
Unit 1
 
Scattering matrix
Scattering matrixScattering matrix
Scattering matrix
 
Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16
 
Alternator Basics.pdf
Alternator Basics.pdfAlternator Basics.pdf
Alternator Basics.pdf
 
Magic tee
Magic tee  Magic tee
Magic tee
 
Two ports
Two ports Two ports
Two ports
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 

Recently uploaded

Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 

Recently uploaded (20)

Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 

Power divider, combiner and coupler.ppt

  • 1. Power divider, combiner and coupler By Professor Syed Idris Syed Hassan Sch of Elect. & Electron Eng Engineering Campus USM Nibong Tebal 14300 SPS Penang
  • 2. Power divider and combiner/coupler divider combiner P1 P2= nP1 P3=(1-n)P1 P1 P2 P3=P1+P2 Divide into 4 output Basic
  • 3. S-parameter for power divider/coupler              33 32 31 23 22 21 13 12 11 S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 13 12 11    S S S 1 23 22 21    S S S 1 33 32 31    S S S 0 * 23 13 * 22 12 * 21 11    S S S S S S 0 * 33 23 * 32 22 * 31 21    S S S S S S 0 * 33 13 * 32 12 * 31 11    S S S S S S Row 1x row 2 Row 2x row 3 Row 1x row 3
  • 4. Continue If all ports are matched properly , then Sii= 0              0 0 0 23 13 23 12 13 12 S S S S S S S For Reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 23 2 13   S S 0 12 * 23  S S 0 23 * 13  S S 0 13 * 12  S S Two of (S12, S13, S23) must be zero but it is not consistent. If S12=S13= 0, then S23 should equal to 1 and the first equation will not equal to 1. This is invalid.
  • 5. Another alternative for reciprocal network              33 23 13 23 12 13 12 0 0 S S S S S S S S Only two ports are matched , then for reciprocal network For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 12   S S 1 2 33 2 23 2 13    S S S 0 13 * 33 12 * 23   S S S S 0 23 * 13  S S 0 33 * 23 13 * 12   S S S S The two equations show that |S13|=|S23| thus S13=S23=0 and |S12|=|S33|=1 These have satisfied all
  • 6. Reciprocal lossless network of two matched S21 =ej  S12=ej  S33 =ej  1 3 2                   j j j e e e S 0 0 0 0 0 0
  • 7. For lossless network, must satisfy unitary condition 1 2 13 2 12   S S 1 2 23 2 21   S S 1 2 32 2 31   S S 0 32 * 31  S S 0 23 * 21  S S 0 13 * 12  S S Nonreciprocal network (apply for circulator)              0 0 0 32 31 23 21 13 12 S S S S S S S 0 31 23 12    S S S 0 13 32 21    S S S 1 13 32 21    S S S 1 31 23 12    S S S The above equations must satisfy the following either or
  • 8. Circulator (nonreciprocal network)              0 1 0 0 0 1 1 0 0 S              0 0 1 1 0 0 0 1 0 S 1 2 3 1 2 3
  • 9. Four port network                  44 43 42 41 34 24 14 33 32 31 23 22 21 13 12 11 S S S S S S S S S S S S S S S S S Generally For reciprocal and lossless network j i for S S N k kj ki     0 1 * 1 1 *    N k ki ki S S 1 14 13 12 11     S S S S 1 24 23 22 21     S S S S 1 34 33 32 31     S S S S 0 * 24 14 * 23 13 * 22 12 * 21 11     S S S S S S S S 0 * 44 24 * 43 23 * 42 22 * 41 21     S S S S S S S S 0 * 34 14 * 33 13 * 32 12 * 31 11     S S S S S S S S R 1x R 2 R 2x R3 R1x R4 1 44 43 42 41     S S S S 0 * 44 14 * 43 13 * 42 12 * 41 11     S S S S S S S S 0 * 34 24 * 33 23 * 32 22 * 31 21     S S S S S S S S 0 * 44 34 * 43 33 * 42 32 * 41 31     S S S S S S S S R1x R3 R2x R4 R3x R4
  • 10. Matched Four port network                  0 0 0 0 34 24 14 34 24 14 23 13 23 12 13 12 S S S S S S S S S S S S S The unitarity condition become 1 14 13 12    S S S 1 24 23 12    S S S 1 34 23 13    S S S 0 * 24 14 * 23 13   S S S S 0 * 34 23 * 14 12   S S S S 0 * 34 14 * 23 12   S S S S 1 34 24 14    S S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 0 * 24 23 * 14 13   S S S S Say all ports are matched and symmetrical network, then * ** @ @@ # ##
  • 11. To check validity Multiply eq. * by S24 * and eq. ## by S13 * , and substract to obtain 0 2 14 2 13 * 14         S S S Multiply eq. # by S34 and eq. @@ by S13 , and substract to obtain 0 2 34 2 12 23         S S S % $ Both equations % and $ will be satisfy if S14 = S23 = 0 . This means that no coupling between port 1 and 4 , and between port 2 and 3 as happening in most directional couplers.
  • 12. Directional coupler                  0 0 0 0 0 0 0 0 34 24 34 24 13 12 13 12 S S S S S S S S S If all ports matched , symmetry and S14=S23=0 to be satisfied The equations reduce to 6 equations 1 13 12   S S 1 24 12   S S 1 34 13   S S 1 34 24   S S 0 * 34 13 * 24 12   S S S S 0 * 34 24 * 13 12   S S S S 24 13 S S  By comparing these equations yield * * ** ** By comparing equations * and ** yield 34 12 S S 
  • 13. Continue                0 0 0 0 0 0 0 0         j j j j S Simplified by choosing S12= S34= ; S13=e j  and S24=  e j  Where  +  = p + 2np                  0 0 0 0 0 0 0 0         S 1. Symmetry Coupler  =  = p/2 2. Antisymmetry Coupler  =0 , =p 2 cases Both satisfy 2 +2 =1
  • 14. Physical interpretation |S13 | 2 = coupling factor = 2 |S12 | 2 = power deliver to port 2= 2 =1- 2 Characterization of coupler Directivity= D= 10 log dB P P  log 20 3 1   Coupling= C= 10 log dB S P P 14 4 3 log 20    Isolation = I= 10 log dB S P P 14 4 1 log 20   I = D + C dB 1 4 3 2 Input Through Coupled Isolated For ideal case |S14|=0
  • 15. Practical coupler Hybrid 3 dB couplers Magic -T and Rat-race couplers  =  = p/2                0 1 0 1 0 0 0 0 0 1 1 0 2 1 j j j j S                  0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 2 1 S  =0 , =p =  = 1 / 2 =  = 1 / 2
  • 16. T-junction power divider E-plane T H-plane T Microstrip T
  • 17. T-model jB Z1 Z2 Vo Yin 2 1 1 1 Z Z jB Yin    2 1 1 1 Z Z Yin   Lossy line Lossless line If Zo = 50,then for equally divided power, Z1 = Z2=100
  • 18. Example • If source impedance equal to 50 ohm and the power to be divided into 2:1 ratio. Determine Z1 and Z2 in o P Z V P 3 1 2 1 1 2 1   in o P Z V P 3 2 2 1 2 2 2      75 2 3 2 o Z Z    150 3 1 o Z Z o o in Z V P 2 2 1     50 // 2 1 Z Z Zo
  • 19. Resistive divider V2 V3 V1 Zo Zo P1 P2 P3 Zo V o o Z Z Z   3 Zo/3 Zo/3 Zo/3 o o o in Z Z Z Z    3 2 3 V V Z Z Z V o o o 3 2 3 / 2 3 / 3 / 2 1    V V V Z Z Z V V o o o 2 1 4 3 3 / 3 2      o in Z V P 2 1 2 1    in o P Z V P P 4 1 2 / 1 2 1 2 1 3 2   
  • 20. Wilkinson Power Divider 50 50 50 100 70.7  70.7  /4 Zo /2 Zo /2 Zo 2Zo Zo Zo /4 2 2 T e Z Zin  o T Z Z 2  For even mode Therefore For Zin =Zo=50     7 . 70 50 2 T Z And shunt resistor R =2 Zo = 100
  • 21. Analysis (even and odd mode) 2 2 1 1 Port 1 Port 2 Port 3 Vg2 Vg3 Z Z 4 +V2 +V3 r/2 r/2 4 For even mode Vg2 = Vg3 and for odd mode Vg2 = -Vg3. Since the circuit is symmetrical , we can treat separately two bisection circuit for even and odd modes as shown in the next slide. By superposition of these two modes , we can find S - parameter of the circuit. The excitation is effectively Vg2=4V and Vg3= 0V. For simplicity all values are normalized to line characteristic impedance , I.e Zo = 50 .
  • 22. Even mode Vg2=Vg3= 2V Looking at port 2 Zin e= Z2/2 Therefore for matching 2  Z then V2 e= V since Zin e=1 (the circuit acting like voltage divider) 2 1 Port 1 Port 2 2V Z 4 +V2 e r/2 +V1 e O.C O.C out inZ Z Z  2 Note: 2  Z If To determine V2 e , using transmission line equation V(x) = V+ (e-jx + Ge+jx) , thus V jV V V e  G     ) 1 ( ) 4 ( 2  1 1 ) 1 ( ) 0 ( 1  G  G  G     jV jV V V e Reflection at port 1, refer to is 2 2 2 2    G 2  Z Then 2 1 jV V e  
  • 23. Odd mode Vg2= - Vg3= 2V 2 1 Port 1 Port 2 2V Z 4 +V2 o r/2 +V1 o At port 2, V1 o =0 (short) , /4 transformer will be looking as open circuit , thus Zin o = r/2 . We choose r =2 for matching. Hence V2 o= 1V (looking as a voltage divider) S-parameters S11= 0 (matched Zin=1 at port 1) S22 = S33 = 0 (matched at ports 2 and 3 both even and odd modes) S12 = S21 = 2 / 2 2 1 1 j V V V V o e o e     S13 = S31 = 2 / j  S23 = S32 = 0 ( short or open at bisection , I.e no coupling)
  • 24. Example Design an equal-split Wilkinson power divider for a 50 W system impedance at frequency fo The quarterwave-transformer characteristic is    7 . 70 2 o Z Z    100 2 o Z R r o   4   The quarterwave-transformer length is
  • 26. Unequal power Wilkinson Divider 3 2 03 1 K K Z Z o   ) 1 ( 2 03 2 02 K K Z Z K Z o            K K Z R o 1 R2 =Zo /K R R3=Zo/K Z02 Z03 Zo 2 3 2 3 2     port at Power port at Power P P K 1 2 3
  • 27. Parad and Moynihan power divider 4 / 1 2 01 1         K K Z Z o 2 3 2 3 2     port at Power port at Power P P K         K K Z R o 1   4 / 1 2 4 / 3 02 1 K K Z Z o     4 / 5 4 / 1 2 03 1 K K Z Z o   K Z Z o  04 K Z Z o  05 Zo Zo Zo Z05 Zo4 Zo2 Zo3 Zo1 R 1 2 3
  • 28. Cohn power divider            VSWR at port 1 = 1.106 VSWR at port 2 and port 3 = 1.021 Isolation between port 2 and 3 = 27.3 dB Center frequency fo = (f1 + f2)/2 Frequency range (f2/f1) = 2 1 2 3
  • 29. Couplers /4 /4 Yo Yo Yo Yo Yse Ysh Ysh Branch line coupler 2 sh 2 se Y 1 Y   2 se 2 sh sh 2 3 Y Y 1 2Y E E      20 1 3 10 E E x   x dB coupling 2 3 2 2 2 1 E E E   2 1 3 2 1 2 E E E E 1                   or E1 E2 E3
  • 30. Couplers input isolate Output 3dB Output 3dB 90o out of phase 3 dB Branch line coupler /4 /4 Zo Zo Zo Zo 2 / Zo 2 / Zo Zo Zo 3 2 E E  1 Ysh  2 Y 1 Y 2 2 se    sh 1.414 Yse    50 o Z   50 sh Z   5 . 35 se Z
  • 31. Couplers 9 dB Branch line coupler   355 . 0 10 20 9 1 3    E E  2 2 1 2 355 . 0 1           E E   935 . 0 355 . 0 1 2 1 2            E E 38 . 0 935 . 0 355 . 0 2 3           E E 8 . 0  sh Y Let say we choose 38 . 0 8 . 0 1 8 . 0 2 1 2 2 2 2 2        se se sh sh Y Y Y Y 962 . 1 36 . 0 38 . 0 6 . 1    se Y   50 0 Z     5 . 62 8 . 0 / 50 sh Z     5 . 25 962 . 1 / 50 se Z Note: Practically upto 9dB coupling
  • 32. Couplers /4 /4 /4 /4 Input Output in-phase Output in-phase isolated 1 2 3 4 •Can be used as splitter , 1 as input and 2 and 3 as two output. Port is match with 50 ohm. •Can be used as combiner , 2 and 3 as input and 1 as output.Port 4 is matched with 50 ohm. Hybrid-ring coupler OC 1 2 1 2 OC 1/2 1/2 2 2 2 2 2 2 /8 /8 /4 /4 /8 /8 Te To Ge Go
  • 33. Analysis The amplitude of scattered wave o e B G  G  2 1 2 1 1 o e T T B 2 1 2 1 4   o e T T B 2 1 2 1 2   o e B G  G  2 1 2 1 3
  • 34. Couple lines analysis Planar Stacked Coupled microstrip b w w s w s w w s b d r r r The coupled lines are usually assumed to operate in TEM mode. The electrical characteristics can be determined from effective capacitances between lines and velocity of propagation.
  • 35. Equivalent circuits +V +V H-wall +V -V E-wall C11 C22 C11 C22 2C12 2C12 Even mode Odd mode C11 and C22 are the capacitances between conductors and the ground respectively. For symmetrical coupled line C11=C22 . C12 is the capacitance between two strip of conductors in the absence of ground. In even mode , there is no current flows between two strip conductors , thus C12 is effectively open-circuited.
  • 36. Continue Even mode The resulting capacitance Ce = C11 = C22 e e e e oe C C LC C L Z  1    Therefore, the line characteristic impedance Odd mode The resulting capacitance Co = C11 + 2 C12 = C22 + 2 C12 Therefore, the line characteristic impedance o oo C Z  1 
  • 37. Planar coupled stripline Refer to Fig 7.29 in Pozar , Microwave Engineering
  • 38. Stacked coupled stripline     m F s b b s b s b C oW r oW r oW r / 4 2 / 2 / 2 2 11             w >> s and w >> b m F s C oW r / 12    m F s b b C C oW r e / 4 2 2 11      m F s s b b w C C C o r o / 1 2 2 2 2 2 12 11                o o r     1  r o e oe bw s b Z C Z   4 1 2 2        s s b b w Z C Z r o o oo / 1 / 2 2 1 1 2 2      
  • 39. Coupled microstripline Refer to Fig 7.30 in Pozar , Microwave Engineering
  • 40. Design of Coupled line Couplers input output Isolated (can be matched) Coupling w w s 2 3 4 1 wc /4 3 4 1 2 Zo Zo Zo Zo Zoo Zoe 2V +V3 +V2 +V4 +V1  I1 I4 I3 I2 Schematic circuit Layout
  • 41. Even and odd modes analysis 3 4 1 2 Zo Zo Zo Zo Zoo V +V3 o +V2 o +V4 o +V1 o I1 o I4 o I3 o I2 o V _ + + _ 3 4 1 2 Zo Zo Zo Zo Zoe V +V3 e +V2 e +V4 e +V1 e I1 e I4 e I3 e I2 e V _ + + _ I1 e = I3 e I4 e = I2 e Same excitation voltage V1 e = V3 e V4 e = V2 e Even I1 o = -I3 o I4 o =- I2 o V1 o = -V3 o V4 o = -V2 o Odd Reverse excitation voltage (100) (99)
  • 42. Analysis o o in o in o Z Z Z V V   1   tan tan o oe oe o oe e in jZ Z jZ Z Z Z    o e o e in I I V V I V Z 1 1 1 1 1 1     Zo = load for transmission line  = electrical length of the line Zoe or Zoo = characteristic impedance of the line   tan tan o oo oo o oo o in jZ Z jZ Z Z Z    By voltage division o e in e in e Z Z Z V V   1 o o in o Z Z V I   1 o e in e Z Z V I   1 From transmission line equation , we have where (101) (102) (103) (104) (105) (106) (107)
  • 43. continue Substituting eqs. (104) - (107) into eq. (101) yeilds       o o in e in o e in o in o o o in e in o o in e in o e in o in in Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 2 2            For matching we may consider the second term of eq. (108) will be zero , I.e 0 2   o e in o in Z Z Z or 2 o oe oo e in o in Z Z Z Z Z   (108) Let oe oo o Z Z Z  Therefore eqs. (102) and (103) become   tan tan oo oe oe oo oe e in Z j Z Z j Z Z Z      tan tan oe oo oo oe oo o in Z j Z Z j Z Z Z    and (108) reduces to Zin=Zo (110) (109)
  • 44. continue Since Zin = Zo , then by voltage division V1 = V. The voltage at port 3, by substitute (99), (100) , (104) and (105) is then                 o o in o in o e in e in o e o e Z Z Z Z Z Z V V V V V V 1 1 3 3 3 (111) Substitute (109) and (110) into (111)     tan 2 tan oo oe o oo o o o in o in Z Z j Z jZ Z Z Z Z          tan 2 tan oo oe o oe o o e in e in Z Z j Z jZ Z Z Z Z      Then (111) reduces to       tan 2 tan 3 oo oe o oo oe Z Z j Z Z Z j V V     (112)
  • 45. continue We define coupling as oo oe oo oe Z Z Z Z C    Then V3 / V , from ( 112) will become oo oe o Z Z Z C    2 1 2               tan 1 tan tan 2 tan 2 3 j C jC V Z Z Z Z j Z Z Z Z Z Z Z j V V oo oe oo oe oo oe o oo oe oo oe           and   sin cos 1 1 2 2 2 2 2 j C C V V V V o e       0 2 2 4 4 4      o e o e V V V V V Similarly V1=V
  • 46. Practical couple line coupler V3 is maximum when  = p/2 , 3p/2, ... Thus for quarterwave length coupler  = p/2 , the eqs V2 and V3 reduce to V1=V 0 4  V VC j C jC V j C jC V j C jC V V              2 2 2 3 1 1 ) ( 2 / tan 1 2 / tan p p 2 2 2 2 2 1 1 2 / sin 2 / cos 1 1 C jV j C V j C C V V          p p C C Z Z o oe    1 1 C C Z Z o oo    1 1
  • 47. Example Design a 20 dB single-section coupled line coupler in stripline with a 0.158 cm ground plane spacing , dielectric constant of 2. 56, a characteristic impedance of 50  , and a center frequency of 3 GHz. Coupling factor is C = 10-20/20 = 0.1 Characteristic impedance of even and odd mode are      28 . 55 1 . 0 1 1 . 0 1 50 oe Z 23 . 45 1 . 0 1 1 . 0 1 50     oo Z 4 . 88  oe r Z  4 . 72  oo r Z  From fig 7.29 , we have w/b=0.72 , s/b =0.34. These give us w=0.72b=0.114cm s= 0.34b = 0.054cm Then multiplied by r 
  • 48. Multisection Coupled line coupler (broadband) V1 V3 V4 V2 input Through Isolated Coupled        C1 CN-2 C3 C2 CN CN-1 ....       j e jC j jC j C jC V V        sin tan 1 tan tan 1 tan 2 1 3    j e j C C V V       sin cos 1 1 2 2 1 2 For single section , whence C<<1 , then V4=0 and For = p/ 2 then V3/V1= C and V2/V1 = -j
  • 49. Analysis Result for cascading the couplers to form a multi section coupler is               ) 1 ( 2 1 2 1 2 1 1 3 sin ... sin sin          N j j N j j j e V e jC e V e jC V e jC V             ) 1 ( ) 2 ( 2 2 2 ) 1 ( 2 1 1 3 ... 1 sin              N j M N j j N j j e C e e C e C e jV V       M jN C N C N C e jV 2 1 ... 3 cos 1 cos sin 2 2 1 1           Where M= (N+1)/2 For symmetry C1=CN , C2= CN-1 , etc At center frequency 2 / 1 3 p    V V Co (200)
  • 50. Example Design a three-section 20 dB coupler with binomial response (maximally flat), a system impedance 50  , and a center frequency of 3 GHz . Solution For maximally flat response for three section (N=3) coupler, we require 2 , 1 0 ) ( 2 /    n for C d d n n p    From eq (200) and M= (N+1)/2 =( 3+1)/2=2 , we have          2 1 1 3 2 1 2 cos sin 2 C C V V C          sin ) ( 3 sin sin sin 3 sin 1 2 1 2 1 C C C C C       (201) (202)
  • 51. Continue Apply (201)   0 cos ) ( 3 cos 3 2 / 1 2 1     p    C C C d dC   0 10 sin ) ( 3 sin 9 2 1 2 / 1 2 1 2 2         C C C C C d C d p    Midband Co= 20 dB at  =p/2. Thus C= 10-20/20=0.1 From (202), we C= C2 - 2C1= 0.1 © © © Solving © and © © gives us C1= C3 = 0.0125 (symmetry) and C2 = 0.125
  • 52. continue Using even and odd mode analysis, we have          63 . 50 0125 . 0 1 0125 . 0 1 50 1 1 3 1 C C Z Z Z o oe oe       38 . 49 0125 . 0 1 0125 . 0 1 3 1 o oo oo Z Z Z         69 . 56 125 . 0 1 125 . 0 1 50 1 1 2 C C Z Z o oe      1 . 44 125 . 0 1 125 . 0 1 2 o oo Z Z
  • 53. continue Let say , r = 10 and d =0.7878mm    63 . 50 3 1 oe oe Z Z    38 . 49 3 1 oo oo Z Z   69 . 56 2 oe Z   1 . 44 2 oo Z Plot points on graph Fig. 7.30 We have , w/d = 1.0 and s/d = 2.5 , thus w = d = 0.7878mm and s = 2.5d = 1.9695mm Similarly we plot points We have , w/d = 0.95 and s/d = 1.1 , thus w = 0.95d = 0.748mm and s =1.1d = 0.8666mm For section 1 and 3 For section 2
  • 54. Couplers Lange Coupler Evolution of Lange coupler 1= input 2=output 3=coupling 4=isolated w w w w w s s s s 1 4 3 2 1 3 4 2 1 2 3 4 2 4 1 3
  • 55. Analysis 1 4 3 2 1 3 4 2 C C 90o Ze4 Zo4 Zo4 Ze4 1 4 3 2 1 2 Cm Cex Cex C Cex Cex Cin Cin Cm Cm Cm Simplified circuit Equivalent circuit m ex m ex ex in C C C C C C    where
  • 56. Continue/ 4 wire coupler Even mode All Cm capacitance will be at same potential, thus the total capacitance is in ex e C C C   4 m in ex o C C C C 6 4    Odd mode All Cm capacitance will be considered, thus the total capacitance is Even and Odd mode characteristic impedance 4 4 1 e e C Z   4 4 1 o o C Z   line on transmissi in velocity   (300) (301) (302)
  • 57. continue Now consider isolated pairs. It’s equivalent circuit is same as two wire line , thus it’s even and odd mode capacitance is ex e C C  m ex o C C C 2   Substitute these into (300) and (301) , we have   o e o e e e C C C C C C    3 4 m ex m ex ex in C C C C C C      o e e o o o C C C C C C    3 4 And in terms of impedance refer to (302) oe oe oo oe oo e Z Z Z Z Z Z    3 4 oo oo oe oe oo o Z Z Z Z Z Z    3 4
  • 58. continue      oo oe oe oo oe oo oo oe o e o Z Z Z Z Z Z Z Z Z Z Z      3 3 2 4 4 Characteristic impedance of the line is     oo oe oo oe oo oe o e o e Z Z Z Z Z Z Z Z Z Z C 2 3 3 2 2 2 2 4 4 4 4        Coupling The desired characteristic impedance in terms of coupling is     o oe Z C C C C C Z       1 / 1 2 8 9 3 4 2     o oo Z C C C C C Z       1 / 1 2 8 9 3 4 2
  • 59. VHF/UHF Hybrid power splitter 50 input 50 output 50 output 100 C T1 T2 1 5 6 7 8 2 3 4