This document discusses Frullani integrals, which are integrals of the form ∫01 f(ax)−f(bx)x dx = [f(0)−f(∞)]ln(b/a). It provides 11 examples of integrals from Gradshteyn and Ryzhik that can be reduced to this Frullani form by appropriate choice of the function f(x). It also lists 9 examples found in Ramanujan's notebooks. One example, involving logarithms of trigonometric functions, requires a more complex approach. The document concludes by deriving the solution to this more delicate example.