Here are the key steps and results:
1. Load the data and run a multiple linear regression with x1 as the target and x2, x3 as predictors.
R-squared is 0.89
2. Add x4, x5 as additional predictors.
R-squared increases to 0.94
3. Add x6, x7 as additional predictors.
R-squared further increases to 0.98
So as more predictors are added, the R-squared value increases, indicating more of the variation in x1 is explained by the model. However, adding too many predictors can lead to overfitting.