SlideShare a Scribd company logo
Lecture 3
Mechanics of Biomaterials
http://www.aeromech.usyd.edu.au/people/academic/qingli/MECH4981.htm
Course Web
• Establish biomaterial constitutive models
• Determine the biomechanical response to load
• Analyse the prosthetic design
• Estimate the health status of living tissues under stress
ObjectivesObjectives
Introductory Mechanics ModelIntroductory Mechanics Model
M
M
T
T
F
F
Recall “Lecture 1”:
statics/dynamics
methods to determine
force/moment/torque
Introductory Mechanics Model – Stress AnalysisIntroductory Mechanics Model – Stress Analysis
z
y x
M M
Normal stress
[ ]?zz σσ ≤
Motion Measurement
M
M
T
T
F
F
Dynamics analysis to
determine load
• Sport injury?
• Bone damage?
Pure bending analysis
xx
xx
zz
I
yM
=σ
Methods of BiomechanicsMethods of Biomechanics
 Analytical Method – Solid Mechanics I and II
 Biomechanical Experiment – Test
 Numerical Techniques – FEM
Elastic BehaviorElastic Behavior
 Basic element representing an elastic material
Hooke’s law, Young’s modulus, Poisson’s ratio etc
 Hooke’s Law (uniaxial):
• the strain is directly proportional to the stress
 Hooke’s Law (General):
• Stress tensor [σ]
• Strain tensor [ε]
• Stiffness tensor [S] (Stiffness tensor)
[ ] [ ] [ ]εσ S=
εσ E=
[ ] [ ] [ ] [ ][ ]σσε CS == −1
• Compliance tensor [C]=[S]-1
∆L L L
L∆
ε =
Elastic Constants – Young’s ModulusElastic Constants – Young’s Modulus
Young’s Modulus E:
• Relationship between tensile or compressive stress and strain
• Applies for small strains (within the elastic range)
εσ E=
* http://www.lib.umich.edu/dentlib/Dental_tables/toc.html
Biomaterials (Isotropic) E (GPa)*
Cancellous bone 0.49
Cortical bone 14.7
Long bone - Femur 17.2
Long bone - Humerus 17.2
Long bone - Radius 18.6
Long bone - Tibia 18.1
Vertebrae - Cervical 0.23
Vertebrae - Lumbar 0.16
 Undeformed Configuration
• length = L
• Undeformed area = A
 Deformed Configuration
• length = l
• Deformed area = a
 Cauchy Stress (True stress)
 Nominal Stress (Engineering Stress)
 Second Piola-Kirchhoff Stress
L
A
a
F
T =
Uniaxial Test – Finite Large DeformationUniaxial Test – Finite Large Deformation
Density ρ 0
ε
∆
ϑ +=
+
== 1
L
LL
L
l
T
a
F
L/l/m
/m
a
F
l
L
V
V
a
F
l
L
LA
la
A
F
Undef
def
ϑρ
ρ
ρ
ρ
σ
11 0
0
=====
A
F
l
L
P
ϑ
σ
1
==
a
FF
l Density ρ
L ∆L
Elastic Constants –Elastic Constants – (other 4 constants)(other 4 constants)
 Poisson’s ratio
Describe lateral deformation in response to an axial load
 Shear Modulus
Describes relationship between applied torque and angle of deformation
 Bulk Modulus
Describes the change in volume in response to hydrostatic pressure
(equal stresses in all directions)
 Lame’s constant λ – from tensor production
axial
lateral
ε
ε
ν −=
StrainShear
StressShear
G ==
γ
τ
V
P
V
V/V
P
e
P
K
∂
∂
−≈−=−=
∆
∆∆
[ ] [ ] [ ]εσ S=
ijijij µεδλεσ αα 2+=
Relationship Between theRelationship Between the Elastic ConstantsElastic Constants
 Young’s modulus (E)
 Poisson’s ratio (ν)
 Bulk modulus (K)
 Shear modulus (G)
 Lame’s constant (λ)
 For an isotropic material, elastic constants are CONSTANT
( )
( )( )νν
ν
ν
ν
λ
2113
2
21
2
−+
=
−
−
=
−
=
E
EG
GEGG
( )
( )νν
νλ
+
=
−
=
122
21 E
G
( ) ( )
1
232
−=
−
=
+
=
G
E
KG λ
λ
λ
λ
ν
( ) ( )( ) ( )ν
ν
ννλ
λ
λ
+=
−+
=
+
+
= 12
21123
G
G
GG
E
( )ν213 −
=
E
K
Hooke’s Law – Tensor RepresentationHooke’s Law – Tensor Representation
[ ] [ ][ ] [ ] [ ][ ]εσσε SC == or:LawsHooke'
[ ] [ ]










=










=
333231
232221
131211
OR:TensorStress
σσσ
σσσ
σσσ
σ
σσσ
σσσ
σσσ
σ
zzzyzx
yzyyyx
xzxyxx
[ ] [ ]










=










=
333231
232221
131211
OR:TensorStrain
εεε
εεε
εεε
ε
εεε
εεε
εεε
ε
zzzyzx
yzyyyx
xzxyxx
Remarks:
• Stress tensor and strain tensor are the 2nd
order tensors
• [S] and [C] are the fourth order tensor
(1  x, 2  y, 3  z)
ijijklij C σε = ijijklij S εσ =or
Hooke’s Law – Matrix RepresentationHooke’s Law – Matrix Representation
{ } [ ]{ }σε C=:LawsHooke'
{ }




















=




















=
12
13
23
33
22
11
12
13
23
33
22
11
τ
τ
τ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ{ }




















=




















=
12
13
23
33
22
11
12
13
23
33
22
11
γ
γ
γ
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
[ ]




















=
666564636261
565554535251
464544434241
363534333231
262524212221
161514131211
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
C
Compliance Matrix
Material Constitutive ModelsMaterial Constitutive Models
 Anisotropy
21 independent components elasticity matrix
 Orthotropy
9 independent components to elasticity matrix
 Transverse isotropy
5 independent components
 Isotropy
2 independent components
[ ] [ ][ ] [ ] [ ][ ]εσσε SC == or:LawsHooke'
Material Constitutive Models – AnisotropyMaterial Constitutive Models – Anisotropy
(Most likely) 21 independent components in elasticity matrix








































=




















12
13
23
33
22
11
665646362616
565545352515
464544342414
363534332313
262524212212
161514131211
12
13
23
33
22
11
σ
σ
σ
σ
σ
σ
ε
ε
ε
ε
ε
ε
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
Symmetric matrix
Material Constitutive ModelsMaterial Constitutive Models –– OrthotropyOrthotropy
9 independent components to elasticity matrix (along 3 directions)






















































−−
−−
−−
=




















12
13
23
33
22
11
12
31
23
33
23
3
13
2
32
22
12
1
31
1
21
1
12
13
23
33
22
11
1
00000
0
1
0000
00
1
000
000
1
000
1
000
1
σ
σ
σ
σ
σ
σ
νν
νν
νν
ε
ε
ε
ε
ε
ε
G
G
G
EEE
EEE
EEE
,,,
G,G,G
,E,E,E
311332232112
312312
321
:RatiossPoisson'3
:ModuliShear3
:ModulisYoung'3
νννννν ===
1
2
3
Orthotropic Properties – Cortical BoneOrthotropic Properties – Cortical Bone
E1: 6.91 - 18.1 GPa
E2 : 8.51 - 19.4 GPa
E3 : 17.0 - 26.5 GPa
G12: 2.41 - 7.22 GPa
G13: 3.28 - 8.65 GPa
G23: 3.28 - 8.67 GPa
νij: 0.12 - 0.62
Young’s Moduli
Shear Moduli
Poisson’s Ratios
Remarks: the high standard deviations in property values seen in one are
not necessarily (although may possibly be) due to experimental error
• E: 15%
• G: 10%
• ν : 30%
Material Constitutive Models – Transversely IsotropyMaterial Constitutive Models – Transversely Isotropy
5 independent components
1
2
3
( )12
1
123231
12
3231
3
21
12 ν
ν
νν
+
==•
•
=•
•
=•
E
GthatNoteGG
E
EE
( )






















































+
−−
−−
−−
=




















12
13
23
33
22
11
1
12
31
31
33
31
3
31
1
31
11
12
1
31
1
12
1
12
13
23
33
22
11
12
00000
0
1
0000
00
1
000
000
1
000
1
000
1
σ
σ
σ
σ
σ
σ
ν
νν
νν
νν
ε
ε
ε
ε
ε
ε
E
G
G
EEE
EEE
EEE
Material Constitutive Models – IsotropyMaterial Constitutive Models – Isotropy
2 independent components
( )ν
νννν
+
====
===•
===•
12
123231
123231
321
E
GGGGthatNote
EEEE
1
2
3
( )
( )
( )


















































+
+
+
−−
−−
−−
=




















12
13
23
33
22
11
12
13
23
33
22
11
12
00000
0
12
0000
00
12
000
000
1
000
1
000
1
σ
σ
σ
σ
σ
σ
ν
ν
ν
νν
νν
νν
ε
ε
ε
ε
ε
ε
E
E
E
EEE
EEE
EEE
Hooke’s Law for an Isotropic Elastic MaterialHooke’s Law for an Isotropic Elastic Material
[ ] [ ][ ] ijijijS µεδλεσεσ αα 2:LawsHooke' +=⇔=
( )
( )
( )











==
==
==
+++=
+++=
+++=
zxzxzxzx
yzyzyzyz
xyxyxyxy
zzzzyyxxzz
yyzzyyxxyy
xxzzyyxxxx
GG
GG
GG
G
G
G
22
22
22
2
2
2
τεσ
τεσ
γτεσ
εεεελσ
εεεελσ
εεεελσ ( )[ ]
( )[ ]
( )[ ]

















==
==
==
+−=
+−=
+−=
zxzxzxzx
yzyzyzyz
xyxxxyxy
yyxxzzzz
xxzzyyyy
zzyyxxxx
GG
GG
GG
E
E
E
τγσε
τγσε
τγσε
σσνσε
σσνσε
σσνσε
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
Stress-Strain Relationship Strain-Stress Relationship
where δij – Kronecker delta, δij =1 if i=j, otherwise (i≠j), δij =0. That is
[ ] [ ][ ] ijijijS µεδλεσεσ αα 2:LawsHooke' +=⇔=
ijkkijij
EE
δσ
ν
σ
ν
ε −
+
=
1
( )[ ]
( )[ ]
( )[ ]

















==
==
==
+−=
+−=
+−=
zxzxzxzx
yzyzyzyz
xyxxxyxy
yyxxzzzz
xxzzyyyy
zzyyxxxx
GG
GG
GG
E
E
E
τγσε
τγσε
τγσε
σσνσε
σσνσε
σσνσε
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
( ) ( )[ ]
( ) 23233322112323
3322113322111111
2
11
0
1
1
1
1
σσ
ν
σσσ
ν
σ
ν
ε
σσνσσσσ
ν
σ
ν
ε
GEEE
EEE
=
+
=×++−
+
=
+−=×++−
+
=
e.g.
Hooke’s Law (Isotropic) – Cont’dHooke’s Law (Isotropic) – Cont’d
Mechanics Model of Introductory ExampleMechanics Model of Introductory Example
z (3)
y (2)
x (1)
ez
et
en






















































−−
−−
−−
=




















nt
nz
tz
zz
tt
nn
nt
zn
tz
zt
tz
n
nz
z
zt
tn
nt
z
zn
t
tn
n
nt
nz
tz
zz
tt
nn
G
G
G
EEE
EEE
EEE
σ
σ
σ
σ
σ
σ
νν
νν
νν
ε
ε
ε
ε
ε
ε
1
00000
0
1
0000
00
1
000
000
1
000
1
000
1
z (3)
x (1)
ez
et
en
A
F
zz
3
−=σ




























−
−
=






















































−−
−−
−−
=




















0
0
0
0
0
0
0
0
1
00000
0
1
0000
00
1
000
000
1
000
1
000
1
z
zz
z
zzzt
z
zzzn
zz
nt
zn
tz
zt
tz
n
nz
z
zt
tn
nt
z
zn
t
tn
n
nt
nz
tz
zz
tt
nn
E
E
E
G
G
G
EEE
EEE
EEE
σ
σν
σν
σ
νν
νν
νν
ε
ε
ε
ε
ε
ε
F3 F3
Mechanics of Introductory Example – Cont’dMechanics of Introductory Example – Cont’d
Mechanics of Introductory Example – Cont’dMechanics of Introductory Example – Cont’d
ez
et Mxx
z (3)
y (2) x (1)
Myy
xx
xx
zzxx
I
yM
:M =σtoDue
yy
yy
zzyy
I
xM
:M =σtoDue
Pure Bending
Total stress in zz:
Eccentric Axial Loading
yy
yy
xx
xx
zz
I
xM
I
yM
±=σ








±+−=±+−=
yyxx
z
yy
yy
xx
xxz
zz
I
xx~
I
yy~
A
F
I
xM
I
yM
A
F 1
σ
( )y~,x~
x
y
Equilibrium Equations (General)Equilibrium Equations (General)
0
0
0
3
2
1
=+
∂
∂
+
∂
∂
+
∂
∂
=+
∂
∂
+
∂
∂
+
∂
∂
=+
∂
∂
+
∂
∂
+
∂
∂
b
zyx
b
zyx
b
zyx
zzzyzx
yzyyyx
xzxyxx
σσσ
σσσ
σσσ
[ ] TensorStress










=
zzzyzx
yzyyyx
xzxyxx
σσσ
σσσ
σσσ
σ
[ ] 0=+ bσdiv
Where:
div - Divergence
Dynamic equilibrium: [ ] ub ρ=+σdiv
[ ]T
b,b,b 321=b
0=+ ij,ij bσ
Biomechanical Test MethodBiomechanical Test Method
Site-specific testFemoral neck test
Finite Element MethodFinite Element Method
Femur Knee Hip
CT-Based Finite Element Modelling ProcedureCT-Based Finite Element Modelling Procedure
a) CT Image Segmentationa) CT Image Segmentation c) CAD modelc) CAD model d) FE modeld) FE model
FE modelFE model
PDL
Molar
Part of model
Computationally more efficient
Whole Jaw model
Computationally more accurate
b)b) Sectional curvesSectional curves
Finite Element Modelling ExampleFinite Element Modelling Example
3 unit all-ceramic dental bridge analysis3 unit all-ceramic dental bridge analysis
Solid model VM stress Contour
FT
z
S
S
Section S-S
x
y
yh
l l
x
y
Cortical
Cancellous
R
r
A
B
AssignmentAssignment
 Approximately use engineering beam theory to calculate principal stresses – 60%
• Mohr circles
• Nature of stress (tension or compression)
 Apply 3D finite element method to calculate the principal stress – 30%
• Selection of elements and mesh density
• Contours of principal stress
• Comparison against analytical solution from Beam Theory
Fixed
M
 Submission of tutorial question of callus formation mechanics – 10%

More Related Content

What's hot

Biocompatibility testing of "BIOMATERIALS"
Biocompatibility testing of "BIOMATERIALS"Biocompatibility testing of "BIOMATERIALS"
Biocompatibility testing of "BIOMATERIALS"
Swapnil Singh
 
Composite materials in aerospace applications
Composite materials in aerospace applicationsComposite materials in aerospace applications
Composite materials in aerospace applications
Ufuk KORTAĞ
 
Assistive technology principles and practice
Assistive technology principles and practiceAssistive technology principles and practice
Assistive technology principles and practice
haiglerc
 
classification of biomaterials by vishnumenon.m
classification of biomaterials by vishnumenon.mclassification of biomaterials by vishnumenon.m
classification of biomaterials by vishnumenon.m
Vishnu Menon
 
Medical imaging- Overview
Medical imaging- OverviewMedical imaging- Overview
Medical imaging- Overview
Satyanarayana Naidu
 
Medical imaging summary 1
Medical imaging summary 1Medical imaging summary 1
Medical imaging summary 1
sirrainbow
 
Lecture 1 introduction
Lecture 1 introductionLecture 1 introduction
Lecture 1 introduction
Annalyn Soria
 
GE Healthcare Optima CT660
GE Healthcare  Optima CT660GE Healthcare  Optima CT660
GE Healthcare Optima CT660
Jhon Arriaga Cordova
 
Biomaterials
BiomaterialsBiomaterials
Introduction to radiology
Introduction to radiologyIntroduction to radiology
Introduction to radiology
Mathew Joseph
 
Metal Additive Manufacturing
Metal Additive ManufacturingMetal Additive Manufacturing
Metal Additive Manufacturing
Rising Media, Inc.
 
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTSUnit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
KPR INSTITUE OF ENGINEERING AND TECHNOLOGY
 
Bit311 biomaterials unit 01-new
Bit311 biomaterials unit  01-newBit311 biomaterials unit  01-new
Bit311 biomaterials unit 01-new
Manjubala Us
 
Ultrasound imaging
Ultrasound imagingUltrasound imaging
Ultrasound imaging
NIVETA SINGH
 
Hybrid assistive system
Hybrid assistive systemHybrid assistive system
Hybrid assistive system
vaasukrishhna
 
Properties of materials / Mechanical Properties of materials
Properties of materials / Mechanical Properties of materialsProperties of materials / Mechanical Properties of materials
Properties of materials / Mechanical Properties of materials
Gulfam Hussain
 
Natural and synthetic polymers in medicine ppt [Autosaved].pptx
Natural and synthetic polymers in medicine ppt [Autosaved].pptxNatural and synthetic polymers in medicine ppt [Autosaved].pptx
Natural and synthetic polymers in medicine ppt [Autosaved].pptx
ShahRucksanaAkhterUr1
 
Bone development
Bone  developmentBone  development
Bone development
Madiha S Arain
 
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODSALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
NEERAJKUMAR1898
 
history of anatomy.pdf
history of anatomy.pdfhistory of anatomy.pdf
history of anatomy.pdf
AinaAdesola
 

What's hot (20)

Biocompatibility testing of "BIOMATERIALS"
Biocompatibility testing of "BIOMATERIALS"Biocompatibility testing of "BIOMATERIALS"
Biocompatibility testing of "BIOMATERIALS"
 
Composite materials in aerospace applications
Composite materials in aerospace applicationsComposite materials in aerospace applications
Composite materials in aerospace applications
 
Assistive technology principles and practice
Assistive technology principles and practiceAssistive technology principles and practice
Assistive technology principles and practice
 
classification of biomaterials by vishnumenon.m
classification of biomaterials by vishnumenon.mclassification of biomaterials by vishnumenon.m
classification of biomaterials by vishnumenon.m
 
Medical imaging- Overview
Medical imaging- OverviewMedical imaging- Overview
Medical imaging- Overview
 
Medical imaging summary 1
Medical imaging summary 1Medical imaging summary 1
Medical imaging summary 1
 
Lecture 1 introduction
Lecture 1 introductionLecture 1 introduction
Lecture 1 introduction
 
GE Healthcare Optima CT660
GE Healthcare  Optima CT660GE Healthcare  Optima CT660
GE Healthcare Optima CT660
 
Biomaterials
BiomaterialsBiomaterials
Biomaterials
 
Introduction to radiology
Introduction to radiologyIntroduction to radiology
Introduction to radiology
 
Metal Additive Manufacturing
Metal Additive ManufacturingMetal Additive Manufacturing
Metal Additive Manufacturing
 
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTSUnit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
 
Bit311 biomaterials unit 01-new
Bit311 biomaterials unit  01-newBit311 biomaterials unit  01-new
Bit311 biomaterials unit 01-new
 
Ultrasound imaging
Ultrasound imagingUltrasound imaging
Ultrasound imaging
 
Hybrid assistive system
Hybrid assistive systemHybrid assistive system
Hybrid assistive system
 
Properties of materials / Mechanical Properties of materials
Properties of materials / Mechanical Properties of materialsProperties of materials / Mechanical Properties of materials
Properties of materials / Mechanical Properties of materials
 
Natural and synthetic polymers in medicine ppt [Autosaved].pptx
Natural and synthetic polymers in medicine ppt [Autosaved].pptxNatural and synthetic polymers in medicine ppt [Autosaved].pptx
Natural and synthetic polymers in medicine ppt [Autosaved].pptx
 
Bone development
Bone  developmentBone  development
Bone development
 
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODSALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
ALUMINIUM METAL MATRIX COMPOSITE BY STIR CASTING METHODS
 
history of anatomy.pdf
history of anatomy.pdfhistory of anatomy.pdf
history of anatomy.pdf
 

Similar to Mechanics of Biomaterials

Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006
jeffleismer
 
Dr jehad al sukhun gives modelling of orbital deformation
Dr jehad al sukhun gives modelling of orbital deformationDr jehad al sukhun gives modelling of orbital deformation
Dr jehad al sukhun gives modelling of orbital deformation
jehadsukhun
 
Modelling of orbital deformation - Jehad Al Sukhun and others
Modelling of orbital deformation - Jehad Al Sukhun and othersModelling of orbital deformation - Jehad Al Sukhun and others
Modelling of orbital deformation - Jehad Al Sukhun and others
Dr Jehad Al Sukhun
 
An emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_eAn emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_e
sami bennour
 
Sifat elastik material komposit.pptx
Sifat elastik material komposit.pptxSifat elastik material komposit.pptx
Sifat elastik material komposit.pptx
Dyne6
 
Elasticity1.ppt
Elasticity1.pptElasticity1.ppt
Elasticity1.ppt
GodHeinsteinz
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
manishkurse
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-final
jagadish108
 
Ansys Workbench-Chapter01
Ansys Workbench-Chapter01Ansys Workbench-Chapter01
Ansys Workbench-Chapter01
Bui Vinh
 
Comparison of regression models for estimation of isometric wrist joint torqu...
Comparison of regression models for estimation of isometric wrist joint torqu...Comparison of regression models for estimation of isometric wrist joint torqu...
Comparison of regression models for estimation of isometric wrist joint torqu...
Amir Ziai
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregation
Colm Connaughton
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement
Pedro Craggett
 
Sf n 2016
Sf n 2016Sf n 2016
Sf n 2016
Simone Toma
 
Ijetr042313
Ijetr042313Ijetr042313
Fea 2 mark
Fea 2 markFea 2 mark
Fea 2 mark
jayarajmahalingam
 
1. Rock Elasticity
1. Rock Elasticity1. Rock Elasticity
1. Rock Elasticity
James Craig
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdf
mannimalik
 
20320140503029
2032014050302920320140503029
20320140503029
IAEME Publication
 
Geomechanics for Petroleum Engineers
Geomechanics for Petroleum EngineersGeomechanics for Petroleum Engineers
Geomechanics for Petroleum Engineers
HILONG GROUP OF COMPANIES
 
Finite element analysis in orthodontics
Finite element analysis in orthodonticsFinite element analysis in orthodontics
Finite element analysis in orthodontics
HussainLokhandwala9
 

Similar to Mechanics of Biomaterials (20)

Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006
 
Dr jehad al sukhun gives modelling of orbital deformation
Dr jehad al sukhun gives modelling of orbital deformationDr jehad al sukhun gives modelling of orbital deformation
Dr jehad al sukhun gives modelling of orbital deformation
 
Modelling of orbital deformation - Jehad Al Sukhun and others
Modelling of orbital deformation - Jehad Al Sukhun and othersModelling of orbital deformation - Jehad Al Sukhun and others
Modelling of orbital deformation - Jehad Al Sukhun and others
 
An emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_eAn emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_e
 
Sifat elastik material komposit.pptx
Sifat elastik material komposit.pptxSifat elastik material komposit.pptx
Sifat elastik material komposit.pptx
 
Elasticity1.ppt
Elasticity1.pptElasticity1.ppt
Elasticity1.ppt
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-final
 
Ansys Workbench-Chapter01
Ansys Workbench-Chapter01Ansys Workbench-Chapter01
Ansys Workbench-Chapter01
 
Comparison of regression models for estimation of isometric wrist joint torqu...
Comparison of regression models for estimation of isometric wrist joint torqu...Comparison of regression models for estimation of isometric wrist joint torqu...
Comparison of regression models for estimation of isometric wrist joint torqu...
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregation
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement
 
Sf n 2016
Sf n 2016Sf n 2016
Sf n 2016
 
Ijetr042313
Ijetr042313Ijetr042313
Ijetr042313
 
Fea 2 mark
Fea 2 markFea 2 mark
Fea 2 mark
 
1. Rock Elasticity
1. Rock Elasticity1. Rock Elasticity
1. Rock Elasticity
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdf
 
20320140503029
2032014050302920320140503029
20320140503029
 
Geomechanics for Petroleum Engineers
Geomechanics for Petroleum EngineersGeomechanics for Petroleum Engineers
Geomechanics for Petroleum Engineers
 
Finite element analysis in orthodontics
Finite element analysis in orthodonticsFinite element analysis in orthodontics
Finite element analysis in orthodontics
 

More from *noT yeT workinG! !M stilL studyinG*

Projectreportonvocational 141120000656-conversion-gate02
Projectreportonvocational 141120000656-conversion-gate02Projectreportonvocational 141120000656-conversion-gate02
Projectreportonvocational 141120000656-conversion-gate02
*noT yeT workinG! !M stilL studyinG*
 
Presentationforme 131229054440-phpapp01
Presentationforme 131229054440-phpapp01Presentationforme 131229054440-phpapp01
Presentationforme 131229054440-phpapp01
*noT yeT workinG! !M stilL studyinG*
 
Indianrailway 131124014609-phpapp02
Indianrailway 131124014609-phpapp02Indianrailway 131124014609-phpapp02
Indianrailway 131124014609-phpapp02
*noT yeT workinG! !M stilL studyinG*
 
Hightechvehicles 150910135052-lva1-app6891
Hightechvehicles 150910135052-lva1-app6891Hightechvehicles 150910135052-lva1-app6891
Hightechvehicles 150910135052-lva1-app6891
*noT yeT workinG! !M stilL studyinG*
 
Turbinetechnologyinautomobiles 150130070618-conversion-gate02
Turbinetechnologyinautomobiles 150130070618-conversion-gate02Turbinetechnologyinautomobiles 150130070618-conversion-gate02
Turbinetechnologyinautomobiles 150130070618-conversion-gate02
*noT yeT workinG! !M stilL studyinG*
 
32754131 recent-trends-in-automobile-seminar
32754131 recent-trends-in-automobile-seminar32754131 recent-trends-in-automobile-seminar
32754131 recent-trends-in-automobile-seminar
*noT yeT workinG! !M stilL studyinG*
 
Recent trends in automobile engg ppt
Recent trends in automobile engg ppt Recent trends in automobile engg ppt
Recent trends in automobile engg ppt
*noT yeT workinG! !M stilL studyinG*
 
Recent trends in automobile
Recent trends in automobileRecent trends in automobile
Recent trends in automobile
*noT yeT workinG! !M stilL studyinG*
 
Introduction of Fracture
Introduction of FractureIntroduction of Fracture
Introduction of Fracture
*noT yeT workinG! !M stilL studyinG*
 
Forming and rolling class 25 mar ppt
Forming and rolling class 25 mar pptForming and rolling class 25 mar ppt
Forming and rolling class 25 mar ppt
*noT yeT workinG! !M stilL studyinG*
 
Robotics sensor topic
Robotics sensor topicRobotics sensor topic
Class sheet metal processes
Class sheet metal processesClass sheet metal processes
Class sheet metal processes
*noT yeT workinG! !M stilL studyinG*
 
Introduction of creep
Introduction of creepIntroduction of creep
Casting processes
Casting processesCasting processes
Casting Defects And Remedies
Casting Defects And RemediesCasting Defects And Remedies
Casting Defects And Remedies
*noT yeT workinG! !M stilL studyinG*
 
Sherline Model 5400 Milling Machine
Sherline Model 5400 Milling MachineSherline Model 5400 Milling Machine
Sherline Model 5400 Milling Machine
*noT yeT workinG! !M stilL studyinG*
 
Machining Process
Machining Process Machining Process
Introduction to solid modeling
Introduction to solid modelingIntroduction to solid modeling
Introduction to solid modeling
*noT yeT workinG! !M stilL studyinG*
 
Abrasive jet machining.51 ppt
Abrasive jet machining.51 pptAbrasive jet machining.51 ppt
Abrasive jet machining.51 ppt
*noT yeT workinG! !M stilL studyinG*
 
Presenting
PresentingPresenting

More from *noT yeT workinG! !M stilL studyinG* (20)

Projectreportonvocational 141120000656-conversion-gate02
Projectreportonvocational 141120000656-conversion-gate02Projectreportonvocational 141120000656-conversion-gate02
Projectreportonvocational 141120000656-conversion-gate02
 
Presentationforme 131229054440-phpapp01
Presentationforme 131229054440-phpapp01Presentationforme 131229054440-phpapp01
Presentationforme 131229054440-phpapp01
 
Indianrailway 131124014609-phpapp02
Indianrailway 131124014609-phpapp02Indianrailway 131124014609-phpapp02
Indianrailway 131124014609-phpapp02
 
Hightechvehicles 150910135052-lva1-app6891
Hightechvehicles 150910135052-lva1-app6891Hightechvehicles 150910135052-lva1-app6891
Hightechvehicles 150910135052-lva1-app6891
 
Turbinetechnologyinautomobiles 150130070618-conversion-gate02
Turbinetechnologyinautomobiles 150130070618-conversion-gate02Turbinetechnologyinautomobiles 150130070618-conversion-gate02
Turbinetechnologyinautomobiles 150130070618-conversion-gate02
 
32754131 recent-trends-in-automobile-seminar
32754131 recent-trends-in-automobile-seminar32754131 recent-trends-in-automobile-seminar
32754131 recent-trends-in-automobile-seminar
 
Recent trends in automobile engg ppt
Recent trends in automobile engg ppt Recent trends in automobile engg ppt
Recent trends in automobile engg ppt
 
Recent trends in automobile
Recent trends in automobileRecent trends in automobile
Recent trends in automobile
 
Introduction of Fracture
Introduction of FractureIntroduction of Fracture
Introduction of Fracture
 
Forming and rolling class 25 mar ppt
Forming and rolling class 25 mar pptForming and rolling class 25 mar ppt
Forming and rolling class 25 mar ppt
 
Robotics sensor topic
Robotics sensor topicRobotics sensor topic
Robotics sensor topic
 
Class sheet metal processes
Class sheet metal processesClass sheet metal processes
Class sheet metal processes
 
Introduction of creep
Introduction of creepIntroduction of creep
Introduction of creep
 
Casting processes
Casting processesCasting processes
Casting processes
 
Casting Defects And Remedies
Casting Defects And RemediesCasting Defects And Remedies
Casting Defects And Remedies
 
Sherline Model 5400 Milling Machine
Sherline Model 5400 Milling MachineSherline Model 5400 Milling Machine
Sherline Model 5400 Milling Machine
 
Machining Process
Machining Process Machining Process
Machining Process
 
Introduction to solid modeling
Introduction to solid modelingIntroduction to solid modeling
Introduction to solid modeling
 
Abrasive jet machining.51 ppt
Abrasive jet machining.51 pptAbrasive jet machining.51 ppt
Abrasive jet machining.51 ppt
 
Presenting
PresentingPresenting
Presenting
 

Recently uploaded

Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
Madan Karki
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 

Recently uploaded (20)

Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 

Mechanics of Biomaterials

  • 1. Lecture 3 Mechanics of Biomaterials http://www.aeromech.usyd.edu.au/people/academic/qingli/MECH4981.htm Course Web
  • 2. • Establish biomaterial constitutive models • Determine the biomechanical response to load • Analyse the prosthetic design • Estimate the health status of living tissues under stress ObjectivesObjectives
  • 3. Introductory Mechanics ModelIntroductory Mechanics Model M M T T F F Recall “Lecture 1”: statics/dynamics methods to determine force/moment/torque
  • 4. Introductory Mechanics Model – Stress AnalysisIntroductory Mechanics Model – Stress Analysis z y x M M Normal stress [ ]?zz σσ ≤ Motion Measurement M M T T F F Dynamics analysis to determine load • Sport injury? • Bone damage? Pure bending analysis xx xx zz I yM =σ
  • 5. Methods of BiomechanicsMethods of Biomechanics  Analytical Method – Solid Mechanics I and II  Biomechanical Experiment – Test  Numerical Techniques – FEM
  • 6. Elastic BehaviorElastic Behavior  Basic element representing an elastic material Hooke’s law, Young’s modulus, Poisson’s ratio etc  Hooke’s Law (uniaxial): • the strain is directly proportional to the stress  Hooke’s Law (General): • Stress tensor [σ] • Strain tensor [ε] • Stiffness tensor [S] (Stiffness tensor) [ ] [ ] [ ]εσ S= εσ E= [ ] [ ] [ ] [ ][ ]σσε CS == −1 • Compliance tensor [C]=[S]-1 ∆L L L L∆ ε =
  • 7. Elastic Constants – Young’s ModulusElastic Constants – Young’s Modulus Young’s Modulus E: • Relationship between tensile or compressive stress and strain • Applies for small strains (within the elastic range) εσ E= * http://www.lib.umich.edu/dentlib/Dental_tables/toc.html Biomaterials (Isotropic) E (GPa)* Cancellous bone 0.49 Cortical bone 14.7 Long bone - Femur 17.2 Long bone - Humerus 17.2 Long bone - Radius 18.6 Long bone - Tibia 18.1 Vertebrae - Cervical 0.23 Vertebrae - Lumbar 0.16
  • 8.  Undeformed Configuration • length = L • Undeformed area = A  Deformed Configuration • length = l • Deformed area = a  Cauchy Stress (True stress)  Nominal Stress (Engineering Stress)  Second Piola-Kirchhoff Stress L A a F T = Uniaxial Test – Finite Large DeformationUniaxial Test – Finite Large Deformation Density ρ 0 ε ∆ ϑ += + == 1 L LL L l T a F L/l/m /m a F l L V V a F l L LA la A F Undef def ϑρ ρ ρ ρ σ 11 0 0 ===== A F l L P ϑ σ 1 == a FF l Density ρ L ∆L
  • 9. Elastic Constants –Elastic Constants – (other 4 constants)(other 4 constants)  Poisson’s ratio Describe lateral deformation in response to an axial load  Shear Modulus Describes relationship between applied torque and angle of deformation  Bulk Modulus Describes the change in volume in response to hydrostatic pressure (equal stresses in all directions)  Lame’s constant λ – from tensor production axial lateral ε ε ν −= StrainShear StressShear G == γ τ V P V V/V P e P K ∂ ∂ −≈−=−= ∆ ∆∆ [ ] [ ] [ ]εσ S= ijijij µεδλεσ αα 2+=
  • 10. Relationship Between theRelationship Between the Elastic ConstantsElastic Constants  Young’s modulus (E)  Poisson’s ratio (ν)  Bulk modulus (K)  Shear modulus (G)  Lame’s constant (λ)  For an isotropic material, elastic constants are CONSTANT ( ) ( )( )νν ν ν ν λ 2113 2 21 2 −+ = − − = − = E EG GEGG ( ) ( )νν νλ + = − = 122 21 E G ( ) ( ) 1 232 −= − = + = G E KG λ λ λ λ ν ( ) ( )( ) ( )ν ν ννλ λ λ += −+ = + + = 12 21123 G G GG E ( )ν213 − = E K
  • 11. Hooke’s Law – Tensor RepresentationHooke’s Law – Tensor Representation [ ] [ ][ ] [ ] [ ][ ]εσσε SC == or:LawsHooke' [ ] [ ]           =           = 333231 232221 131211 OR:TensorStress σσσ σσσ σσσ σ σσσ σσσ σσσ σ zzzyzx yzyyyx xzxyxx [ ] [ ]           =           = 333231 232221 131211 OR:TensorStrain εεε εεε εεε ε εεε εεε εεε ε zzzyzx yzyyyx xzxyxx Remarks: • Stress tensor and strain tensor are the 2nd order tensors • [S] and [C] are the fourth order tensor (1  x, 2  y, 3  z) ijijklij C σε = ijijklij S εσ =or
  • 12. Hooke’s Law – Matrix RepresentationHooke’s Law – Matrix Representation { } [ ]{ }σε C=:LawsHooke' { }                     =                     = 12 13 23 33 22 11 12 13 23 33 22 11 τ τ τ σ σ σ σ σ σ σ σ σ σ{ }                     =                     = 12 13 23 33 22 11 12 13 23 33 22 11 γ γ γ ε ε ε ε ε ε ε ε ε ε [ ]                     = 666564636261 565554535251 464544434241 363534333231 262524212221 161514131211 CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC C Compliance Matrix
  • 13. Material Constitutive ModelsMaterial Constitutive Models  Anisotropy 21 independent components elasticity matrix  Orthotropy 9 independent components to elasticity matrix  Transverse isotropy 5 independent components  Isotropy 2 independent components [ ] [ ][ ] [ ] [ ][ ]εσσε SC == or:LawsHooke'
  • 14. Material Constitutive Models – AnisotropyMaterial Constitutive Models – Anisotropy (Most likely) 21 independent components in elasticity matrix                                         =                     12 13 23 33 22 11 665646362616 565545352515 464544342414 363534332313 262524212212 161514131211 12 13 23 33 22 11 σ σ σ σ σ σ ε ε ε ε ε ε CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC Symmetric matrix
  • 15. Material Constitutive ModelsMaterial Constitutive Models –– OrthotropyOrthotropy 9 independent components to elasticity matrix (along 3 directions)                                                       −− −− −− =                     12 13 23 33 22 11 12 31 23 33 23 3 13 2 32 22 12 1 31 1 21 1 12 13 23 33 22 11 1 00000 0 1 0000 00 1 000 000 1 000 1 000 1 σ σ σ σ σ σ νν νν νν ε ε ε ε ε ε G G G EEE EEE EEE ,,, G,G,G ,E,E,E 311332232112 312312 321 :RatiossPoisson'3 :ModuliShear3 :ModulisYoung'3 νννννν === 1 2 3
  • 16. Orthotropic Properties – Cortical BoneOrthotropic Properties – Cortical Bone E1: 6.91 - 18.1 GPa E2 : 8.51 - 19.4 GPa E3 : 17.0 - 26.5 GPa G12: 2.41 - 7.22 GPa G13: 3.28 - 8.65 GPa G23: 3.28 - 8.67 GPa νij: 0.12 - 0.62 Young’s Moduli Shear Moduli Poisson’s Ratios Remarks: the high standard deviations in property values seen in one are not necessarily (although may possibly be) due to experimental error • E: 15% • G: 10% • ν : 30%
  • 17. Material Constitutive Models – Transversely IsotropyMaterial Constitutive Models – Transversely Isotropy 5 independent components 1 2 3 ( )12 1 123231 12 3231 3 21 12 ν ν νν + ==• • =• • =• E GthatNoteGG E EE ( )                                                       + −− −− −− =                     12 13 23 33 22 11 1 12 31 31 33 31 3 31 1 31 11 12 1 31 1 12 1 12 13 23 33 22 11 12 00000 0 1 0000 00 1 000 000 1 000 1 000 1 σ σ σ σ σ σ ν νν νν νν ε ε ε ε ε ε E G G EEE EEE EEE
  • 18. Material Constitutive Models – IsotropyMaterial Constitutive Models – Isotropy 2 independent components ( )ν νννν + ==== ===• ===• 12 123231 123231 321 E GGGGthatNote EEEE 1 2 3 ( ) ( ) ( )                                                   + + + −− −− −− =                     12 13 23 33 22 11 12 13 23 33 22 11 12 00000 0 12 0000 00 12 000 000 1 000 1 000 1 σ σ σ σ σ σ ν ν ν νν νν νν ε ε ε ε ε ε E E E EEE EEE EEE
  • 19. Hooke’s Law for an Isotropic Elastic MaterialHooke’s Law for an Isotropic Elastic Material [ ] [ ][ ] ijijijS µεδλεσεσ αα 2:LawsHooke' +=⇔= ( ) ( ) ( )            == == == +++= +++= +++= zxzxzxzx yzyzyzyz xyxyxyxy zzzzyyxxzz yyzzyyxxyy xxzzyyxxxx GG GG GG G G G 22 22 22 2 2 2 τεσ τεσ γτεσ εεεελσ εεεελσ εεεελσ ( )[ ] ( )[ ] ( )[ ]                  == == == +−= +−= +−= zxzxzxzx yzyzyzyz xyxxxyxy yyxxzzzz xxzzyyyy zzyyxxxx GG GG GG E E E τγσε τγσε τγσε σσνσε σσνσε σσνσε 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 Stress-Strain Relationship Strain-Stress Relationship
  • 20. where δij – Kronecker delta, δij =1 if i=j, otherwise (i≠j), δij =0. That is [ ] [ ][ ] ijijijS µεδλεσεσ αα 2:LawsHooke' +=⇔= ijkkijij EE δσ ν σ ν ε − + = 1 ( )[ ] ( )[ ] ( )[ ]                  == == == +−= +−= +−= zxzxzxzx yzyzyzyz xyxxxyxy yyxxzzzz xxzzyyyy zzyyxxxx GG GG GG E E E τγσε τγσε τγσε σσνσε σσνσε σσνσε 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 ( ) ( )[ ] ( ) 23233322112323 3322113322111111 2 11 0 1 1 1 1 σσ ν σσσ ν σ ν ε σσνσσσσ ν σ ν ε GEEE EEE = + =×++− + = +−=×++− + = e.g. Hooke’s Law (Isotropic) – Cont’dHooke’s Law (Isotropic) – Cont’d
  • 21. Mechanics Model of Introductory ExampleMechanics Model of Introductory Example z (3) y (2) x (1) ez et en                                                       −− −− −− =                     nt nz tz zz tt nn nt zn tz zt tz n nz z zt tn nt z zn t tn n nt nz tz zz tt nn G G G EEE EEE EEE σ σ σ σ σ σ νν νν νν ε ε ε ε ε ε 1 00000 0 1 0000 00 1 000 000 1 000 1 000 1
  • 22. z (3) x (1) ez et en A F zz 3 −=σ                             − − =                                                       −− −− −− =                     0 0 0 0 0 0 0 0 1 00000 0 1 0000 00 1 000 000 1 000 1 000 1 z zz z zzzt z zzzn zz nt zn tz zt tz n nz z zt tn nt z zn t tn n nt nz tz zz tt nn E E E G G G EEE EEE EEE σ σν σν σ νν νν νν ε ε ε ε ε ε F3 F3 Mechanics of Introductory Example – Cont’dMechanics of Introductory Example – Cont’d
  • 23. Mechanics of Introductory Example – Cont’dMechanics of Introductory Example – Cont’d ez et Mxx z (3) y (2) x (1) Myy xx xx zzxx I yM :M =σtoDue yy yy zzyy I xM :M =σtoDue Pure Bending Total stress in zz: Eccentric Axial Loading yy yy xx xx zz I xM I yM ±=σ         ±+−=±+−= yyxx z yy yy xx xxz zz I xx~ I yy~ A F I xM I yM A F 1 σ ( )y~,x~ x y
  • 24. Equilibrium Equations (General)Equilibrium Equations (General) 0 0 0 3 2 1 =+ ∂ ∂ + ∂ ∂ + ∂ ∂ =+ ∂ ∂ + ∂ ∂ + ∂ ∂ =+ ∂ ∂ + ∂ ∂ + ∂ ∂ b zyx b zyx b zyx zzzyzx yzyyyx xzxyxx σσσ σσσ σσσ [ ] TensorStress           = zzzyzx yzyyyx xzxyxx σσσ σσσ σσσ σ [ ] 0=+ bσdiv Where: div - Divergence Dynamic equilibrium: [ ] ub ρ=+σdiv [ ]T b,b,b 321=b 0=+ ij,ij bσ
  • 25. Biomechanical Test MethodBiomechanical Test Method Site-specific testFemoral neck test
  • 26. Finite Element MethodFinite Element Method Femur Knee Hip
  • 27. CT-Based Finite Element Modelling ProcedureCT-Based Finite Element Modelling Procedure a) CT Image Segmentationa) CT Image Segmentation c) CAD modelc) CAD model d) FE modeld) FE model FE modelFE model PDL Molar Part of model Computationally more efficient Whole Jaw model Computationally more accurate b)b) Sectional curvesSectional curves
  • 28. Finite Element Modelling ExampleFinite Element Modelling Example 3 unit all-ceramic dental bridge analysis3 unit all-ceramic dental bridge analysis Solid model VM stress Contour
  • 29. FT z S S Section S-S x y yh l l x y Cortical Cancellous R r A B AssignmentAssignment  Approximately use engineering beam theory to calculate principal stresses – 60% • Mohr circles • Nature of stress (tension or compression)  Apply 3D finite element method to calculate the principal stress – 30% • Selection of elements and mesh density • Contours of principal stress • Comparison against analytical solution from Beam Theory Fixed M  Submission of tutorial question of callus formation mechanics – 10%