Matrix And It’s
Operation
(Addition, Subtraction
& Multiplication).
Submitted To:
Submitted By:
MD. Mohiuddin
Lecturer
Department Of Natural Science
Daffodil International University
Nirnay Mukharjee
ID :– 143 - 15 – 4421
Department Of CSE
Daffodil International University
Index
About Matrices
Matrix Addition
Matrix Subtraction
Matrix Multiplication
About Matrices
 A matrix is a rectangular
arrangement of numbers in rows and
columns. Rows run horizontally and
columns run vertically.
 The dimensions of a matrix are stated
“m x n” where ‘m’ is the number of
rows and ‘n’ is the number of
columns.
•Only matrices with the same
dimensions can be added or
subtracted.
•The resulting matrix has the same
dimension of the two matrices being
added or subtracted.
Matrix Addition And
Subtraction
Example Of Matrix Addition
1.
−2 0 4
3 −10 12
3 −2 −2










+
−4 6 0
−15 2 −4
6 7 1










6 6 4
12 8 8
9 5 1
− 
 − − 
 − 
−2 − 4 0 + 6 4 + 0
3 −15 −10 + 2 12 − 4
3 + 6 −2 + 7 −2 + 1










Add the
corresponding
elements in each
matrix
3.
2 −18
20 −5





 −
−4 2
−5 1






2 − (−4) −18 − 2
20 − (−5) −5 −1






6 −20
25 −6






Example Of Matrix
Subtraction
Matrix
Multiplication
In Matrix Multiplication, if A is an n × m matrix and B is
an m × p matrix, their matrix product AB is
an n × p matrix. In which the n entries across a row
of A are multiplied with the p entries down a columns
of B and summed to produce an entry of AB.
Example Of Matrix
Multiplication
A = B =1 2 3
4 5 6
7 8 9
1 5 9
7 2 9
3 8 1
AB = 1x2+2x7+3x3 1x5+2x2+3x8 1x9+2x9+3x1
4x1+5x7+6x3 4x5+5x2+6x8 4x9+5x9+6x1
7x1+8x7+9x3 7x5+8x2+9x8 7x9+8x9+9x1
AB =
25 33 30
57 78 87
90 123 144
Thank You
Any Question???

Matrix and its operation (addition, subtraction, multiplication)

  • 1.
    Matrix And It’s Operation (Addition,Subtraction & Multiplication).
  • 2.
    Submitted To: Submitted By: MD.Mohiuddin Lecturer Department Of Natural Science Daffodil International University Nirnay Mukharjee ID :– 143 - 15 – 4421 Department Of CSE Daffodil International University
  • 3.
    Index About Matrices Matrix Addition MatrixSubtraction Matrix Multiplication
  • 4.
    About Matrices  Amatrix is a rectangular arrangement of numbers in rows and columns. Rows run horizontally and columns run vertically.  The dimensions of a matrix are stated “m x n” where ‘m’ is the number of rows and ‘n’ is the number of columns.
  • 5.
    •Only matrices withthe same dimensions can be added or subtracted. •The resulting matrix has the same dimension of the two matrices being added or subtracted. Matrix Addition And Subtraction
  • 6.
    Example Of MatrixAddition 1. −2 0 4 3 −10 12 3 −2 −2           + −4 6 0 −15 2 −4 6 7 1           6 6 4 12 8 8 9 5 1 −   − −   −  −2 − 4 0 + 6 4 + 0 3 −15 −10 + 2 12 − 4 3 + 6 −2 + 7 −2 + 1           Add the corresponding elements in each matrix
  • 7.
    3. 2 −18 20 −5      − −4 2 −5 1       2 − (−4) −18 − 2 20 − (−5) −5 −1       6 −20 25 −6       Example Of Matrix Subtraction
  • 8.
    Matrix Multiplication In Matrix Multiplication,if A is an n × m matrix and B is an m × p matrix, their matrix product AB is an n × p matrix. In which the n entries across a row of A are multiplied with the p entries down a columns of B and summed to produce an entry of AB.
  • 9.
    Example Of Matrix Multiplication A= B =1 2 3 4 5 6 7 8 9 1 5 9 7 2 9 3 8 1 AB = 1x2+2x7+3x3 1x5+2x2+3x8 1x9+2x9+3x1 4x1+5x7+6x3 4x5+5x2+6x8 4x9+5x9+6x1 7x1+8x7+9x3 7x5+8x2+9x8 7x9+8x9+9x1
  • 10.
    AB = 25 3330 57 78 87 90 123 144
  • 11.