Sample Math Homework | Sample Assignment | www.expertsmind.com




Solution:
(a) f(x)= Cos (ln(x))

     ò
I= Cos(ln(x)) dx
                                            Put ln(x) = t
                                                    X= et
                                     Differentiating dx = et dt
Then

     ò coste dt
                 t
I=
Integrating by parts we get

ò udv = uv - ò vdu                           dv= et dt            u= cost
                                                 t
                                             V= e                 du = -sint dt

                   ò e (-sint)dt
         t            t
I= e cost -

I= et        cost + ò e (sint)dt
                          t


Further integrating by parts we get
                                             dv= et dt            u= sint
                                             V= et                du = Cost dt



                              ò e (cost)dt
                                t
I= et cost + et sint -
I= et cost + et sint – I
2I= et cost + et sint
   1
I=    [ et cost + et sint]
   2
   1
I=    [ eln(x) cos(ln(x)) + eln(x) sin(ln(x))]
   2
1
I=   [x cos(ln(x)) +xsin(ln(x))]
   2
  x
I= [cos(ln(x))+sin(ln(x))]+C
  2


      dy          1
(b)       =
      dx 3 + 5cos(x)
            dx
y=    ò3 + 5cos(x)
                dx
y=    ò     é        2 x ù
            ê 1 - tan 2 ú
       3 + 5ê            ú
            ê1 + tan2 x ú
            ê
            ë           2ú
                         û
             é        2 xù
             ê1 + tan 2 údx
             ë           û
y=    ò            x
       3 + 3tan2 + 5 - 5tan2
                             x
                   2         2
            2 x
        Sec      dx
               2
y=    ò8 - 2tan2
                   x
                   2
                x
         Sec 2 dx
                2                                       x
y=    ò  é          xù
                                           Put    tan
                                                        2
                                                          =   t;   differentiating   we   get
       2ê4 - tan2 ú
         ë          2û
1      x
  Sec 2 dx = dt
2      2
       dt
y=    ò
     4 - t2
                                                                              x
                                                                      2 + tan
   1           2-t +2+ t        1 é dt          dt ù 1 2 + t 1                2 +c
y=
   4      ò   (2 - t)(2 + t)    ò
                            dt = ê
                                4ë 2-t
                                       +   ò          = ln   = ln
                                               2 + tú 4 2 - t 4
                                                    û                 2 - tan
                                                                              x
                                                                              2


      dy
(c)      =      x 2 - 8x - 9
      dx
dy
   = x 2 - 8x + 16 - 16 - 9
dx
dy
   = (x - 4)2 - 25
dx


y =   ò   (x - 4)2 - 25 dx                         Put x-4= 5 coshu
                                                   Differentiating dx= 5 sinhu du

y=    ò                              ò
          25cosh2u - 25 5sinhudu = 25sinh2udu
2

y=    ò
             é eu - e -u ù
           25ê
                  2
                         ú du =
                                25
                                 4     ò
                                   [e2u + e - 2u - 2]du =
                                                           8
                                                             [
                                                          25 2u
                                                             e - e - 2u - 4u ]
             ê
             ë           ú
                         û

y=
      25 u
       8
            [(            )(
         e - e -u eu + e -u - 4u   )       ]
                                  é              x 2 - 8x - 9          x - 4ù
y=
      25
         [4sinhucosh u - 4u] = 25 ê x - 4                     - cosh-1      ú+c
      8                        2 ê 5                  5                  5 ú
                                  ë                                         û




Solution:
(a)
I=    ò ucoshudu                               dv= coshudu          t= u
                                               V= sinhu             dt= du

ò tdv = tv - ò vdt
= usinhu - ò sinhudu
= usinhu - coshu + c

    dy       y
(b)     +       = (x2 + 4)Cosh(x 2 + 4)
    dx x + 2
This is a linear differential equation.
      1
P=         and Q = (x2 + 4)Cosh(x 2 + 4)
    x+2
Integrating factor is
                     dx
eò
     pdx         ò
       = e x + 2 = eln(x + 2) = (x + 2)
Multiplying the given ODE by the integrating factor we get
        dy
(x + 2)    + y = (x + 2)(x2 + 4)Cosh(x 2 + 4)
        dx
 d(x + 2)y
           = (x + 2)(x 2 + 4)Cosh(x 2 + 4)
    dx
Integrating on both sides
ò (x + 2)(x
                                                                      2
Y(x+2)=                                                                   + 4)Cosh(x2 + 4)dx =

ò x(x                              ò
        2
              + 4)Cosh(x2 + 4)dx + 2 (x2 + 4)Cosh(x2 + 4)dx = I1+I2


In the first integral Put (x2+4) = t differentiating we get 2x dx= dt then it gets
transformed to
     1             1                        1
I1=
     2    ò
        tcoshtdt = {tsinht -cosht}+C= {( x2+4)Sinh (x2+4)-cosh(x2+4)}+C
                   2                        2
I2 is not a standard integral. This has to be done by series method.
                          eu - e -u      u2   u4
We know that Coshu=                 =1 +    +    ... , where * stands for factorial of a
                             2           2* 4*
number.
                                                             (x2 + 4)2 (x2 + 4)4
In our case u= x2+4, replacing we get =Cosh (x2+4) 1 +                +           ...
                                                                2*         4*
          (x2 + 4)3 (x2 + 4)5
      ò
I2= 1 +
              2*
                   +
                         4*
                                ... dx expanding and integrating we get


            1 x 7 12x 5
I2=x+         [   +     + 24x 2 + 64x ]…..
            2   7   5

(c)




Area under region
p                      p

ò x coshx dx = 2ò x coshx dx
-p                     0
                                    due to its symmetry about y- axis.



= 2[xsinhx - coshx ]0 = 2[psinhp-coshp +1]
                           p

If the area density of the sheet is r, then the mass of the blade is 2r[psinhp-
coshp +1].
Center of mass
Consider a thin strip of thickness dx at a distance of x from the origin as shown in
the figure
Mass of the strip is rxcosh(x)dx
                                     π

                                     òx
                                          2
                                              coshx dx
Then the center of mass=             -π
                                                         =
                                                           [x Sinhx - 2xcoshx - 2sinhx]
                                                            2                         p
                                                                                      -p
                                                                                           (On
                                               M                         M
integrating by Parts successively)
Center of mass = 0 as the numerator vanishes. The center of mass lies at the
origin which is true from its symmetry.




                 d2 y          dy
Solution: (a)         2
                          -4      +4=0
                 dx            dx
      equation: m2 - 4m + 4 = 0 ; (m-2)2=0; m=2 the roots are real and equal.
Auxiliary

Hence y=(Ax+B)e 2x
Eigen vectors:
Eigen values:
    d2 y    dy
(b)      -4    + 4 = e x + 4x
    dx 2    dx
Auxiliary equation: m2 - 4m + 4 = 0 ; (m-2)2=0; m=2 the roots are real and
equal.
Hence
General solution: y=(Ax +B)e 2x
Particular Integral:
            e x + 4x            ex              4x               ex
PI=        2
                     =                 +                =                  +
         D - 4D + 4       D 2 - 4D + 4      D2 - 4D + 4    (1)2 - 4(1) + 4
            4x
4(1 - D + D 2 / 4)
=ex + (1-D+D2/4)-1(x)= ex + (x+1)
Hence Y= GS+PI= y=(Ax +B)e 2x + ex + (x+1)
Y(0) = 3; hence 3=B+2; B= 1
Y’= (Ax+B) 2 e2x +A e2x +ex +1
At x= 0 Y’=6
6= 2B +A +2; A= 2
                                                            2x
Substituting the values of A and B in Y= (Ax +B)e                + ex + (x+1); we get
Y= (2x +1)e 2x + ex + (x+1)




Solution:

              ò [cos x] dx
                           2
                      -1
(a) I=                              Put x= Cost; differentiating we get dx= sint dt

     ò t (sint)dt
          2
I=                                         dv= -sint dt             u= t2
                                           V= cost                  du=2tdt

ò udv = uv - ò vdu
I = t cost - ò 2tcostdt
      2


I = t 2cost - I1 where
I1=   ò 2tcostdt                           dv= cost dt              u=2t
                                           V= sint                  du= 2dt
I1 = 2tsint - 2sintdtò
I1 = 2tsint + 2cost

I= t2cost-2tsint-2cost+c                   { x= Cost;     1 - x 2 = sint ; t= cos -1 x }
      [          ]2
I= x cos -1x -2 cos -1 x       1 - x 2 -2x+C

(b) Trace of the given curve
Curve is symmetric about the Y axis
        p                 p
        2                 2               p
Hence   òp      cosxdx = 2 cosxdx = 2[sinx ]0 =2[1-0]=2
                          ò                 2

                          0
        -
            2
(b) Consider a small strip of thickness dx at a distance of x from the origin as
shown in the figure
To find the position on the Y axis,
Consider a thin horizontal strip of thickness dy at a distance of y from the origin;
the area of the strip is 2cos -1ydy. Hence the mass of the strip is r2cos -1ydy.
                         1                         1

                         ò ρ2ycos                  ò ρ2ycos
                                    -1                        -1
                                         ydy                       ydy       1

                                                                             ò ycos
                                                   0                                  -1
Center of mass=          0
                                               =                         =                 ydy =. Integrating by
                              M                         2ρ
                                                                             0
parts we get
After substituting y = cost we get
                     p                     p
1                    2                     2                                                 p
                               1                         1                       p
ò
        -1
                     ò
    ycos ydy = cost sint tdt =             ò   tsin2tdt = [- 2tcos2t + sin2t]0 =
                                                                             2
                               2                         8                       8
0                    0                     0


                                                               p
Hence the center of mass of the strip is (0,                     )
                                                               8




Microsoft Equation
       3.0
Math integration-homework help

Math integration-homework help

  • 1.
    Sample Math Homework| Sample Assignment | www.expertsmind.com Solution: (a) f(x)= Cos (ln(x)) ò I= Cos(ln(x)) dx Put ln(x) = t X= et Differentiating dx = et dt Then ò coste dt t I= Integrating by parts we get ò udv = uv - ò vdu dv= et dt u= cost t V= e du = -sint dt ò e (-sint)dt t t I= e cost - I= et cost + ò e (sint)dt t Further integrating by parts we get dv= et dt u= sint V= et du = Cost dt ò e (cost)dt t I= et cost + et sint - I= et cost + et sint – I 2I= et cost + et sint 1 I= [ et cost + et sint] 2 1 I= [ eln(x) cos(ln(x)) + eln(x) sin(ln(x))] 2
  • 2.
    1 I= [x cos(ln(x)) +xsin(ln(x))] 2 x I= [cos(ln(x))+sin(ln(x))]+C 2 dy 1 (b) = dx 3 + 5cos(x) dx y= ò3 + 5cos(x) dx y= ò é 2 x ù ê 1 - tan 2 ú 3 + 5ê ú ê1 + tan2 x ú ê ë 2ú û é 2 xù ê1 + tan 2 údx ë û y= ò x 3 + 3tan2 + 5 - 5tan2 x 2 2 2 x Sec dx 2 y= ò8 - 2tan2 x 2 x Sec 2 dx 2 x y= ò é xù Put tan 2 = t; differentiating we get 2ê4 - tan2 ú ë 2û 1 x Sec 2 dx = dt 2 2 dt y= ò 4 - t2 x 2 + tan 1 2-t +2+ t 1 é dt dt ù 1 2 + t 1 2 +c y= 4 ò (2 - t)(2 + t) ò dt = ê 4ë 2-t + ò = ln = ln 2 + tú 4 2 - t 4 û 2 - tan x 2 dy (c) = x 2 - 8x - 9 dx dy = x 2 - 8x + 16 - 16 - 9 dx dy = (x - 4)2 - 25 dx y = ò (x - 4)2 - 25 dx Put x-4= 5 coshu Differentiating dx= 5 sinhu du y= ò ò 25cosh2u - 25 5sinhudu = 25sinh2udu
  • 3.
    2 y= ò é eu - e -u ù 25ê 2 ú du = 25 4 ò [e2u + e - 2u - 2]du = 8 [ 25 2u e - e - 2u - 4u ] ê ë ú û y= 25 u 8 [( )( e - e -u eu + e -u - 4u ) ] é x 2 - 8x - 9 x - 4ù y= 25 [4sinhucosh u - 4u] = 25 ê x - 4 - cosh-1 ú+c 8 2 ê 5 5 5 ú ë û Solution: (a) I= ò ucoshudu dv= coshudu t= u V= sinhu dt= du ò tdv = tv - ò vdt = usinhu - ò sinhudu = usinhu - coshu + c dy y (b) + = (x2 + 4)Cosh(x 2 + 4) dx x + 2 This is a linear differential equation. 1 P= and Q = (x2 + 4)Cosh(x 2 + 4) x+2 Integrating factor is dx eò pdx ò = e x + 2 = eln(x + 2) = (x + 2) Multiplying the given ODE by the integrating factor we get dy (x + 2) + y = (x + 2)(x2 + 4)Cosh(x 2 + 4) dx d(x + 2)y = (x + 2)(x 2 + 4)Cosh(x 2 + 4) dx Integrating on both sides
  • 4.
    ò (x +2)(x 2 Y(x+2)= + 4)Cosh(x2 + 4)dx = ò x(x ò 2 + 4)Cosh(x2 + 4)dx + 2 (x2 + 4)Cosh(x2 + 4)dx = I1+I2 In the first integral Put (x2+4) = t differentiating we get 2x dx= dt then it gets transformed to 1 1 1 I1= 2 ò tcoshtdt = {tsinht -cosht}+C= {( x2+4)Sinh (x2+4)-cosh(x2+4)}+C 2 2 I2 is not a standard integral. This has to be done by series method. eu - e -u u2 u4 We know that Coshu= =1 + + ... , where * stands for factorial of a 2 2* 4* number. (x2 + 4)2 (x2 + 4)4 In our case u= x2+4, replacing we get =Cosh (x2+4) 1 + + ... 2* 4* (x2 + 4)3 (x2 + 4)5 ò I2= 1 + 2* + 4* ... dx expanding and integrating we get 1 x 7 12x 5 I2=x+ [ + + 24x 2 + 64x ]….. 2 7 5 (c) Area under region p p ò x coshx dx = 2ò x coshx dx -p 0 due to its symmetry about y- axis. = 2[xsinhx - coshx ]0 = 2[psinhp-coshp +1] p If the area density of the sheet is r, then the mass of the blade is 2r[psinhp- coshp +1]. Center of mass Consider a thin strip of thickness dx at a distance of x from the origin as shown in the figure
  • 5.
    Mass of thestrip is rxcosh(x)dx π òx 2 coshx dx Then the center of mass= -π = [x Sinhx - 2xcoshx - 2sinhx] 2 p -p (On M M integrating by Parts successively) Center of mass = 0 as the numerator vanishes. The center of mass lies at the origin which is true from its symmetry. d2 y dy Solution: (a) 2 -4 +4=0 dx dx equation: m2 - 4m + 4 = 0 ; (m-2)2=0; m=2 the roots are real and equal. Auxiliary Hence y=(Ax+B)e 2x Eigen vectors: Eigen values: d2 y dy (b) -4 + 4 = e x + 4x dx 2 dx Auxiliary equation: m2 - 4m + 4 = 0 ; (m-2)2=0; m=2 the roots are real and equal. Hence General solution: y=(Ax +B)e 2x Particular Integral: e x + 4x ex 4x ex PI= 2 = + = + D - 4D + 4 D 2 - 4D + 4 D2 - 4D + 4 (1)2 - 4(1) + 4 4x 4(1 - D + D 2 / 4) =ex + (1-D+D2/4)-1(x)= ex + (x+1) Hence Y= GS+PI= y=(Ax +B)e 2x + ex + (x+1)
  • 6.
    Y(0) = 3;hence 3=B+2; B= 1 Y’= (Ax+B) 2 e2x +A e2x +ex +1 At x= 0 Y’=6 6= 2B +A +2; A= 2 2x Substituting the values of A and B in Y= (Ax +B)e + ex + (x+1); we get Y= (2x +1)e 2x + ex + (x+1) Solution: ò [cos x] dx 2 -1 (a) I= Put x= Cost; differentiating we get dx= sint dt ò t (sint)dt 2 I= dv= -sint dt u= t2 V= cost du=2tdt ò udv = uv - ò vdu I = t cost - ò 2tcostdt 2 I = t 2cost - I1 where I1= ò 2tcostdt dv= cost dt u=2t V= sint du= 2dt I1 = 2tsint - 2sintdtò I1 = 2tsint + 2cost I= t2cost-2tsint-2cost+c { x= Cost; 1 - x 2 = sint ; t= cos -1 x } [ ]2 I= x cos -1x -2 cos -1 x 1 - x 2 -2x+C (b) Trace of the given curve
  • 7.
    Curve is symmetricabout the Y axis p p 2 2 p Hence òp cosxdx = 2 cosxdx = 2[sinx ]0 =2[1-0]=2 ò 2 0 - 2 (b) Consider a small strip of thickness dx at a distance of x from the origin as shown in the figure To find the position on the Y axis,
  • 8.
    Consider a thinhorizontal strip of thickness dy at a distance of y from the origin; the area of the strip is 2cos -1ydy. Hence the mass of the strip is r2cos -1ydy. 1 1 ò ρ2ycos ò ρ2ycos -1 -1 ydy ydy 1 ò ycos 0 -1 Center of mass= 0 = = ydy =. Integrating by M 2ρ 0 parts we get After substituting y = cost we get p p 1 2 2 p 1 1 p ò -1 ò ycos ydy = cost sint tdt = ò tsin2tdt = [- 2tcos2t + sin2t]0 = 2 2 8 8 0 0 0 p Hence the center of mass of the strip is (0, ) 8 Microsoft Equation 3.0