SlideShare a Scribd company logo
January 27, 2005 11:46      L24-ch09               Sheet number 1 Page number 395           black



                                                                     CHAPTER 9
                         Mathematical Modeling with Differential
                                      Equations

              EXERCISE SET 9.1
                                 3
               1. y = 9x2 ex = 3x2 y and y(0) = 3 by inspection.

               2. y = x3 − 2 sin x, y(0) = 3 by inspection.

                                   dy               dy
               3. (a) first order;      = c; (1 + x)    = (1 + x)c = y
                                   dx               dx
                    (b) second order; y = c1 cos t − c2 sin t, y + y = −c1 sin t − c2 cos t + (c1 sin t + c2 cos t) = 0

                                             dy          c
               4. (a) first order; 2             + y = 2 − e−x/2 + 1 + ce−x/2 + x − 3 = x − 1
                                             dx          2
                    (b) second order; y = c1 et − c2 e−t , y − y = c1 et + c2 e−t − c1 et + c2 e−t = 0

                    1 dy            dy dy                      dy      y3
               5.        = y 2 + 2xy ,    (1 − 2xy 2 ) = y 3 ,    =
                    y dx            dx dx                      dx   1 − 2xy 2

                                      dy
               6. 2x + y 2 + 2xy         = 0, by inspection.
                                      dx
                                                 d
               7. (a) IF: µ = e3         dx
                                                    ye3x = 0, ye3x = C, y = Ce−3x
                                               = e3x ,
                                                dx
                                                   dy
                          separation of variables:    = −3dx, ln |y| = −3x + C1 , y = ±e−3x eC1 = Ce−3x
                                                    y
                          including C = 0 by inspection
                                                   d
                    (b) IF: µ = e−2           dt
                                                      [ye−2t ] = 0, ye−2t = C, y = Ce2t
                                                   = e−2t ,
                                                   dt
                                                    dy
                          separation of variables:      = 2dt, ln |y| = 2t + C1 , y = ±eC1 e2t = Ce2t
                                                     y
                          including C = 0 by inspection

                                                                   d
                                                                     ye−2x = 0, y = Ce2x
                                                                          2             2
               8. (a) IF: µ = e−4                    = e−2x ,
                                                              2
                                              x dx
                                                                  dx
                                                 dy                                           2      2
                          separation of variables:   = 4x dx, ln |y| = 2x2 + C1 , y = ±eC1 e2x = Ce2x
                                                  y
                          including C = 0 by inspection
                                              d
                    (b) IF: µ = e       dt
                                                  yet = 0, y = Ce−t
                                              = et ,
                                             dt
                                                   dy
                          separation of variables:    = −dt, ln |y| = −t + C1 , y = ±eC1 e−t = Ce−t
                                                    y
                          including C = 0 by inspection

               9. µ = e    4dx
                                 = e4x , e4x y =          ex dx = ex + C, y = e−3x + Ce−4x


                                               d                  1 2         1
                                                 yex = xex , yex = ex + C, y = + Ce−x
                                         2          2     2     2                    2
              10. µ = e2    x dx
                                     = ex ,
                                              dx                  2           2


                                                                           395
January 27, 2005 11:46      L24-ch09           Sheet number 2 Page number 396          black



             396                                                                                                  Chapter 9


             11. µ = e    dx
                               = ex , ex y =     ex cos(ex )dx = sin(ex ) + C, y = e−x sin(ex ) + Ce−x


                   dy       1                                        1 2x    1            1
             12.      + 2y = , µ = e       2dx
                                                 = e2x , e2x y =       e dx = e2x + C, y = + Ce−2x
                   dx       2                                        2       4            4

                   dy    x                     2           1     2
             13.      +      y = 0, µ = e (x/(x +1))dx = e 2 ln(x +1) =          x2 + 1,
                   dx x2 + 1
                    d                                           C
                       y x2 + 1 = 0, y x2 + 1 = C, y = √
                   dx                                          x2 + 1

                   dy          1                                           ex
             14.      +y = −        ,µ=e          dx
                                                       = ex , ex y = −          dx = ln |1−ex |+C, y = e−x ln |1−ex |+Ce−x
                   dx        1 − ex                                      1 − ex

                   1       1                            y       y
             15.     dy = dx, ln |y| = ln |x| + C1 , ln   = C1 , = ±eC1 = C, y = Cx
                   y       x                            x       x
                   including C = 0 by inspection

                     dy
             16.          = 2x dx, tan−1 y = x2 + C, y = tan x2 + C
                   1 + y2

                    dy        x                                                √             √
                       = −√        dx, ln |1 + y| = − 1 + x2 + C1 , 1 + y = ±e− 1+x eC1 = Ce− 1+x ,
                                                                                   2             2
             17.
                   1+y      1 + x2
                            √
                   y = Ce−   1+x2
                                    − 1, C = 0

                           x3 dx y 2  1
             18. y dy =          ,   = ln(1 + x4 ) + C1 , 2y 2 = ln(1 + x4 ) + C, y = ± [ln(1 + x4 ) + C]/2
                           1 + x4 2   4

                     2(1 + y 2 )
             19.                   dy = ex dx, 2 ln |y| + y 2 = ex + C; by inspection, y = 0 is also a solution
                         y

                   dy
                      = −x dx, ln |y| = −x2 /2 + C1 , y = ±eC1 e−x /2 = Ce−x /2 , including C = 0 by inspection
                                                                  2         2
             20.
                    y

                             sin x
             21. ey dy =           dx = sec x tan x dx, ey = sec x + C, y = ln(sec x + C)
                            cos2 x

                     dy                               x2
             22.          = (1 + x) dx, tan−1 y = x +    + C, y = tan(x + x2 /2 + C)
                   1 + y2                             2

                     dy       dx         1       1                        y−1
             23.          =        ,   − +            dy = csc x dx, ln         = ln | csc x − cot x| + C1 ,
                   y2 −y     sin x       y y−1                              y
                   y−1                                                            1
                         = ±eC1 (csc x − cot x) = C(csc x − cot x), y =                       , C = 0;
                     y                                                   1 − C(csc x − cot x)
                   by inspection, y = 0 is also a solution, as is y = 1.

                   1
             24.     dy = cos x dx, ln |y| = sin x + C, y = C1 esin x
                   y
January 27, 2005 11:46      L24-ch09                Sheet number 3 Page number 397                                  black



              Exercise Set 9.1                                                                                                                                         397


                    dy  1                           (1/x)dx                            d               1
              25.      + y = 1, µ = e                           = eln x = x,             [xy] = x, xy = x2 + C, y = x/2 + C/x
                    dx x                                                              dx               2
                                              1         3
                    (a) 2 = y(1) =              + C, C = , y = x/2 + 3/(2x)
                                              2         2
                    (b) 2 = y(−1) = −1/2 − C, C = −5/2, y = x/2 − 5/(2x)

                    dy                  x2                   2        2
              26.      = x dx, ln |y| =    + C1 , y = ±eC1 ex /2 = Cex /2
                     y                  2
                                                                         2
                    (a) 1 = y(0) = C so C = 1, y = ex                        /2


                          1                   1 2
                    (b)     = y(0) = C, so y = ex /2
                          2                   2


                                        = e−x , e−x y =               2xe−x dx = −e−x + C,
                                                        2                         2               2
              27. µ = e−2
                                                2
                                 x dx

                                        2                                                     2
                    y = −1 + Cex , 3 = −1 + C, C = 4, y = −1 + 4ex


              28. µ = e     dt
                                 = et , et y =        2et dt = 2et + C, y = 2 + Ce−t , 1 = 2 + C, C = −1, y = 2 − e−t


              29. (2y + cos y) dy = 3x2 dx, y 2 + sin y = x3 + C, π 2 + sin π = C, C = π 2 ,
                    y 2 + sin y = x3 + π 2

                    dy                                         1
              30.      = (x + 2)ey , e−y dy = (x + 2)dx, −e−y = x2 + 2x + C, −1 = C,
                    dx                                         2
                            1 2                     1 2                          1
                    −e−y = x + 2x − 1, e−y = − x − 2x + 1, y = − ln 1 − 2x − x2
                            2                       2                            2

              31. 2(y − 1) dy = (2t + 1) dt, y 2 − 2y = t2 + t + C, 1 + 2 = C, C = 3, y 2 − 2y = t2 + t + 3

                          sinh x                                 (sinh x/ cosh x)dx
              32. y +            y = cosh x, µ = e                                      = eln cosh x = cosh x,
                          cosh x
                                               1                   1         1                                                        1                1
                    (cosh x)y =             cosh2 x dx =
                                                 (cosh 2x + 1)dx = sinh 2x + x + C =                                                    sinh x cosh x + x + C,
                                               2                   4         2                                                        2                2
                       1        1                     1           1        1                                                          1
                    y = sinh x + x sech x + C sech x, = C, y = sinh x + x sech x +                                                      sech x
                       2        2                     4           2        2                                                          4

                          dy   dx           1
              33. (a)        =    , ln |y| = ln |x| + C1 ,                                                          x = –0.5y2
                                                                                                                                  2
                                                                                                                                      y
                           y   2x           2                                                         x = –1.5y2
                                                                                                                                          x = y2           x = 2y2
                          |y| = C|x|1/2 , y 2 = Cx;
                                                                                                                                                           x = 2.5y2
                          by inspection y = 0 is also a solution.                                      x = – 3y2                            y=0        x
                                                                                                                   –2                              2
                                        2                   2
                    (b) 1 = C(2) , C = 1/4, y = x/4

                                                                                                                                 –2
January 27, 2005 11:46       L24-ch09        Sheet number 4 Page number 398                black



             398                                                                                                                            Chapter 9

                                                                                                                 y
                                   y2    x2                                                                  3         y = √9 – x 2
             34. (a) y dy = −x dx,    = − + C1 , y = ± C 2 − x2
                                   2     2                                                                                       y = √2.25 – x 2
                         √
                 (b) y = 25 − x2                                                                                                       y = √0.25 – x 2
                                                                                                                                        x
                                                                                             –3                                    3
                                                                                                                                  y = – √1 – x 2
                                                                                                                                y = – √4 – x 2
                                                                                                            –3
                                                                                                                     y = – √6.25 – x 2



                   dy         x dx
             35.        =− 2       ,                             36. y + 2y = 3et , µ = e2 dt = e2t ,
                    y       x +4
                                                                      d
                               1                                        ye2t = 3e3t , ye2t = e3t + C,
                   ln |y| = − ln(x2 + 4) + C1 ,                      dt
                               2
                            C                                        y = et + Ce−2t
                   y=√
                           x2 + 4                                                       100
                                                                                 C=2
                                       1.5
                                                                                  C=1
                                                                                     C=0
                                                                       –2                                               2
                                                     C=2
                   C=0                               C=1
                                                                                    C = –1
                        –2                           2                           C = –2
                                                     C = –1
                                                     C = –2                                  –100

                                       –1


                                                                         1                                             y2
             37. (1 − y 2 ) dy = x2 dx,                          38.       +y              dy = dx, ln |y| +              = x + C1 ,
                                                                         y                                             2
                         y3   x3                                             2
                   y−       =    + C1 , x3 + y 3 − 3y = C              yey       /2
                                                                                      = ±eC1 ex = Cex including C = 0
                         3    3
                                   y                                                                    y
                                                                                                    3
                               2

                                                                                                                            x
                                                                                      –5                                5
                                                 x
                   –2                        2                                                     –3




                              –2



                                             1                                     1
             39. Of the solutions y =            , all pass through the point 0, −    and thus never through (0, 0).
                                        2x2 − C                                    C
                   A solution of the initial value problem with y(0) = 0 is (by inspection) y = 0. The methods of
                   Example 4 fail because the integrals there become divergent when the point x = 0 is included in
                   the integral.

                                                                            1              1
             40. If y0 = 0 then, proceeding as before, we get C = 2x2 − , C = 2x2 − , and
                                                                                      0
                                                                            y             y0
                               1
                 y=      2 − 2x2 + 1/y
                                         , which is defined for all x provided 2x2 is never equal to 2x2 − 1/y0 ; this
                                                                                                          0
                       2x       0      0
                 last condition will be satisfied if and only if 2x0 − 1/y0 < 0, or 0 < 2x0 y0 < 1. If y0 = 0 then y = 0
                                                                    2                    2

                 is, by inspection, also a solution for all real x.
January 27, 2005 11:46      L24-ch09           Sheet number 5 Page number 399               black



              Exercise Set 9.1                                                                                           399


                    dy                             x2
              41.      = xe−y , ey dy = x dx, ey =    + C, x = 2 when y = 0 so 1 = 2 + C, C = −1, ey = x2 /2 − 1
                    dx                             2

                    dy   3x2
              42.      =     , 2y dy = 3x2 dx, y 2 = x3 + C, 1 = 1 + C, C = 0,                          2
                    dx   2y
                    y 2 = x3 , y = x3/2 passes through (1, 1).




                                                                                                    0                    1.6
                                                                                                        0

                    dy
              43.      = rate in − rate out, where y is the amount of salt at time t,
                    dt
                    dy              y             1        dy   1
                       = (4)(2) −       (2) = 8 − y, so       + y = 8 and y(0) = 25.
                    dt             50            25        dt   25
                           (1/25)dt
                    µ=e                = et/25 , et/25 y =     8et/25 dt = 200et/25 + C,

                    y = 200 + Ce−t/25 , 25 = 200 + C, C = −175,

                    (a) y = 200 − 175e−t/25 oz                                   (b) when t = 25, y = 200 − 175e−1 ≈ 136 oz

                    dy              y              1      dy  1
              44.      = (5)(20) −     (20) = 100 − y, so    + y = 100 and y(0) = 0.
                    dt             200             10     dt  10
                            1
                    µ=e     10 dt   = et/10 , et/10 y =      100et/10 dt = 1000et/10 + C,

                    y = 1000 + Ce−t/10 , 0 = 1000 + C, C = −1000;

                    (a)   y = 1000 − 1000e−t/10 lb                      (b)   when t = 30, y = 1000 − 1000e−3 ≈ 950 lb

              45. The volume V of the (polluted) water is V (t) = 500 + (20 − 10)t = 500 + 10t;
                  if y(t) is the number of pounds of particulate matter in the water,
                                        dy           y       1       dy     1                  dt
                  then y(0) = 50, and      = 0 − 10 = −           y,    +        y = 0; µ = e 50+t = 50 + t;
                                        dt          V      50 + t    dt   50 + t
                   d
                     [(50 + t)y] = 0, (50 + t)y = C, 2500 = 50y(0) = C, y(t) = 2500/(50 + t).
                  dt
                    The tank reaches the point of overflowing when V = 500 + 10t = 1000, t = 50 min, so
                    y = 2500/(50 + 50) = 25 lb.

              46. The volume of the lake (in gallons) is V = 264πr2 h = 264π(15)2 3 = 178,200π gals. Let y(t) denote
                                                                             dy             y            y
                  the number of pounds of mercury salts at time t, then          = 0 − 103     = −          lb/h and
                                                                              dt           V         178.2π
                                            dy         dt                t
                  y0 = 10−5 V = 1.782π lb;     =−          , ln y = −        + C1 , y = Ce−t/(178.2π) , and
                                             y      178.2π            178.2π
                    C = y(0) = y0 10−5 V = 1.782π, y = 1.782πe−t/(178.2π) lb of mercury salts.

                      t     1     2     3     4     5     6     7     8     9    10    11    12
                     y(t) 5.588 5.578 5.568 5.558 5.549 5.539 5.529 5.519 5.509 5.499 5.489 5.480
January 27, 2005 11:46      L24-ch09               Sheet number 6 Page number 400                   black



             400                                                                                                                     Chapter 9


                       dv    c                                  d                                 gm ct/m
             47. (a)      + v = −g, µ = e(c/m) dt = ect/m ,         vect/m = −gect/m , vect/m = −    e    + C,
                       dt    m                                 dt                                  c
                             gm                                gm                gm         gm         gm −ct/m
                       v=−       +Ce−ct/m , but v0 = v(0) = −       +C, C = v0 +    ,v = −      + v0 +     e
                              c                                  c                c           c         c
                                mg
                   (b) Replace      with vτ and −ct/m with −gt/vτ in (23).
                                 c
                                                                   vτ
                   (c) From Part (b), s(t) = C − vτ t − (v0 + vτ ) e−gt/vτ ;
                                                                   g
                                               vτ                      vτ                  vτ
                       s0 = s(0) = C −(v0 +vτ ) , C = s0 +(v0 +vτ ) , s(t) = s0 −vτ t+ (v0 +vτ ) 1 − e−gt/vτ
                                               g                       g                   g

             48. Given m = 240, g = 32, vτ = mg/c: with a closed parachute vτ = 120 so c = 64, and with an open
                 parachute vτ = 24, c = 320.
                   (a) Let t denote time elapsed in seconds after the moment of the drop. From Exercise 47(b),
                       while the parachute is closed
                       v(t) = e−gt/vτ (v0 + vτ ) − vτ = e−32t/120 (0 + 120) − 120 = 120 e−4t/15 − 1 and thus
                       v(25) = 120 e−20/3 − 1 ≈ −119.85, so the parachutist is falling at a speed of 119.85 ft/s
                                                                                          120
                       when the parachute opens. From Exercise 47(c), s(t) = s0 − 120t +      120 1 − e−4t/15 ,
                                                                                          32
                       s(25) = 10000 − 120 · 25 + 450 1 − e−20/3 ≈ 7449.43 ft.

                   (b) If t denotes time elapsed after the parachute opens, then, by Exercise 47(c),
                                                24
                       s(t) = 7449.43 − 24t +      (−119.85 + 24) 1 − e−32t/24 = 0, with the solution (Newton’s
                                                32
                       Method) t = 307.4 s, so the sky diver is in the air for about 25 + 307.4 = 332.4 s.

                   dI  R   V (t)                                                 d Rt/L      V (t) Rt/L
             49.      + I=       , µ = e(R/L)                   dt
                                                                     = eRt/L ,      (e  I) =      e     ,
                   dt  L    L                                                    dt           L
                                               t                                                                t
                                       1                                                        1 −Rt/L
                   IeRt/L = I(0) +                 V (u)eRu/L du, I(t) = I(0)e−Rt/L +             e                 V (u)eRu/L du.
                                       L   0                                                    L           0
                                               t                                 t
                                 1 −2t
                   (a) I(t) =      e               20e2u du = 2e−2t e2u              = 2 1 − e−2t A.
                                 5         0                                     0

                   (b)     lim I(t) = 2 A
                         t→+∞


             50. From Exercise 49 and Endpaper Table #42,
                                                        t                                                               t
                                  1                                                          e2u
                   I(t) = 15e−2t + e−2t                     3e2u sin u du = 15e−2t + e−2t        (2 sin u − cos u)
                                  3                 0                                         5                         0

                              −2t    1                   1
                         = 15e      + (2 sin t − cos t) + e−2t .
                                     5                   5
                         dv       ck
             51. (a)        =            − g, v = −c ln(m0 − kt) − gt + C; v = 0 when t = 0 so 0 = −c ln m0 + C,
                         dt    m0 − kt
                                                                                m0
                         C = c ln m0 , v = c ln m0 − c ln(m0 − kt) − gt = c ln         − gt.
                                                                               m0 − kt
                   (b) m0 − kt = 0.2m0 when t = 100 so
                                    m0
                       v = 2500 ln       − 9.8(100) = 2500 ln 5 − 980 ≈ 3044 m/s.
                                   0.2m0
January 27, 2005 11:46      L24-ch09         Sheet number 7 Page number 401          black



              Exercise Set 9.1                                                                                        401


                                         dv     dv dx     dv        dv     dv
              52. (a) By the chain rule,     =         =     v so m    = mv .
                                          dt    dx dt     dx        dt     dx
                            mv              m
                    (b)           dv = −dx,    ln(kv 2 + mg) = −x + C; v = v0 when x = 0 so
                        kv 2 + mg           2k
                                                                                                    2
                                 m                m                       m                    m kv0 + mg
                          C=             2
                                    ln(kv0 + mg),    ln(kv 2 + mg) = −x +         2
                                                                             ln(kv0 + mg), x =   ln 2     .
                                 2k               2k                      2k                   2k kv + mg
                    (c) x = xmax when v = 0 so
                                          2
                                    m kv0 + mg    3.56 × 10−3      (7.3 × 10−6 )(988)2 + (3.56 × 10−3 )(9.8)
                          xmax =       ln      =                ln                                           ≈ 1298 m
                                    2k     mg    2(7.3 × 10−6 )              (3.56 × 10−3 )(9.8)

                                          dh          √    π                    √
              53. (a) A(h) = π(1)2 = π, π     = −0.025 h, √ dh = −0.025dt, 2π h = −0.025t + C; h = 4 when
                                           dt               h
                                          √                 √        0.025
                      t = 0, so 4π = C, 2π h = −0.025t + 4π, h = 2 −       t, h ≈ (2 − 0.003979 t)2 .
                                                                      2π
                    (b) h = 0 when t ≈ 2/0.003979 ≈ 502.6 s ≈ 8.4 min.


              54. (a) A(h) = 6 2           4 − (h − 2)2 = 12 4h − h2 ,                           2√4 − (h − 2)2
                                       dh          √      √
                          12 4h − h2      = −0.025 h, 12 4 − h dh = −0.025dt,
                                       dt
                                                                                                h−2
                          −8(4 − h)3/2
                                        = −0.025t + C; h = 4 when t = 0 so C = 0,                           2

                          (4 − h) 3/2
                                        = (0.025/8)t, 4 − h = (0.025/8)
                                                                      2/3 2/3
                                                                            t   ,                                 h

                        h ≈ 4 − 0.021375t2/3 ft
                                          8
                    (b) h = 0 when t =        (4 − 0)3/2 = 2560 s ≈ 42.7 min
                                        0.025
                    dv      1     1         1     1      1                                1
              55.       = − v 2 , 2 dv = − dt, − = − t + C; v = 128 when t = 0 so −           = C,
                    dt     32    v         32     v     32                               128
                      1      1      1        128                dx    dx    128
                    − =− t−           ,v =        cm/s. But v =    so    =        , x = 32 ln(4t + 1) + C1 ;
                      v     32    128      4t + 1               dt    dt   4t + 1
                    x = 0 when t = 0 so C1 = 0, x = 32 ln(4t + 1) cm.

                    dv         √    1                  √
              56.      = −0.02 v, √ dv = −0.02dt, 2 v = −0.02t + C; v = 9 when t = 0 so 6 = C,
                    dt               v
                     √                                                dx    dx
                    2 v = −0.02t + 6, v = (3 − 0.01t)2 cm/s. But v =     so      = (3 − 0.01t)2 ,
                                                                      dt     dt
                         100                                                              100
                    x=−      (3 − 0.01t)3 + C1 ; x = 0 when t = 0 so C1 = 900, x = 900 −      (3 − 0.01t)3 cm.
                          3                                                                3
                                           dy
                                              = − sin x + e−x , y(0) = 1.
                                                             2
              57. Differentiate to get
                                           dx
                                   1                               dP                d
              58. (a) Let y =        [H(x) + C] where µ = eP (x) ,    = p(x),          H(x) = µq, and C is an arbitrary
                                   µ                               dx               dx
                          constant. Then
                          dy            1         µ                                 p
                             + p(x)y = H (x) − 2 [H(x) + C] + p(x)y = q −             [H(x) + C] + p(x)y = q
                          dx            µ        µ                                  µ
January 27, 2005 11:46            L24-ch09           Sheet number 8 Page number 402             black



             402                                                                                                              Chapter 9


                                                                                               1
                   (b) Given the initial value problem, let C = µ(x0 )y0 −H(x0 ). Then y =       [H(x)+C] is a solution
                                                                                               µ
                          of the initial value problem with y(x0 ) = y0 . This shows that the initial value problem has
                          a solution.
                          To show uniqueness, suppose u(x) also satisfies (5) together with u(x0 ) = y0 . Following the
                                                                       1
                          arguments in the text we arrive at u(x) = [H(x) + C] for some constant C. The initial
                                                                       µ
                          condition requires C = µ(x0 )y0 − H(x0 ), and thus u(x) is identical with y(x).

                                                                    dH dy              dH            dG
             59. Suppose that H(y) = G(x) + C. Then                       = G (x). But    = h(y) and    = g(x), hence
                                                                    dy dx              dy            dx
                   y(x) is a solution of (10).

             60. (a) y = x and y = −x are both solutions of the given initial value problem.

                   (b)            y dy = −       x dx, y 2 = −x2 + C; but y(0) = 0, so C = 0. Thus y 2 = −x2 , which is

                          impossible.


             EXERCISE SET 9.2
                                                                                     y
              1. y 1 = xy/4                                               2.
                 −2 ≤ x ≤ +2                                                   4

                 −2 ≤ y ≤ +2                                                   3
                                       y
                                                                               2
                                  2
                                                                               1
                                                                                                                      x
                                                 x
                                                                                         1       2       3    4
                    –2                       2



                              –2



                              y
              3.                  y(0) = 2
                          2


                   y(0) = 1


                                                            x
                                                        5


                         –1   y(0) = –1



                   dy                                                                                y
              4.       + y = 1, µ = e dx = ex ,                           5.
                   dx                                                                           10
                    d
                      [yex ] = ex ,                                                                      y(1) = 1
                   dx                                                              y(–1) = 0
                   yex = ex + C, y = 1 + Ce−x                                                                             x
                                                                               -2                                 2
                   (a) −1 = 1 + C, C = −2, y = 1 − 2e−x                            y(0) = –1
                   (b) 1 = 1 + C, C = 0, y = 1
                   (c) 2 = 1 + C, C = 1, y = 1 + e−x                                           –10
January 27, 2005 11:46          L24-ch09                     Sheet number 9 Page number 403                            black



              Exercise Set 9.2                                                                                                                                     403


                    dy                                 d
               6.      − 2y = −x, µ = e−2 dx = e−2x ,     ye−2x = −xe−2x ,
                    dx                                dx
                            1                     1
                    ye−2x = (2x + 1)e−2x + C, y = (2x + 1) + Ce2x
                            4                     4
                                                                                          1           1
                    (a) 1 = 3/4 + Ce2 , C = 1/(4e2 ), y =                                   (2x + 1) + e2x−2
                                                                                          4           4
                                                                                    1           5
                    (b) −1 = 1/4 + C, C = −5/4, y =                                   (2x + 1) − e2x
                                                                                    4           4
                                                                                          1           1
                    (c) 0 = −1/4 + Ce−2 , C = e2 /4, y =                                    (2x + 1) + e2x+2
                                                                                          4           4

                                                                                                                              +∞          if y0 ≥ 1/4
               7.    lim y = 1                                                                      8.       lim y =
                    x→+∞                                                                                     x→+∞             −∞,         if y0 < 1/4

               9. (a) IV, since the slope is positive for x > 0 and negative for x < 0.
                    (b) VI, since the slope is positive for y > 0 and negative for y < 0.
                    (c) V, since the slope is always positive.
                    (d) II, since the slope changes sign when crossing the lines y = ±1.
                    (e) I, since the slope can be positive or negative in each quadrant but is not periodic.
                    (f )    III, since the slope is periodic in both x and y.

              11. (a) y0 = 1,                                                                                     n    0       1      2       3      4      5
                      yn+1 = yn + (xn + yn )(0.2) = (xn + 6yn )/5                                                xn    0      0.2    0.4     0.6    0.8    1.0
                                                                                                                 yn    1      1.20   1.48    1.86   2.35   2.98

                                                  d
                    (b) y − y = x, µ = e−x ,        ye−x = xe−x ,                                               xn             0     0.2     0.4    0.6    0.8    1.0
                                                 dx
                            ye−x = −(x + 1)e−x + C, 1 = −1 + C,                                                 y(xn)          1     1.24    1.58   2.04   2.65   3.44
                            C = 2, y = −(x + 1) + 2ex                                                           abs. error     0     0.04    0.10   0.19   0.30   0.46
                                                                                                                perc. error    0      3       6      9      11    13
                                  y
                    (c)
                            3




                                                                         x
                                      0.2    0.4       0.6    0.8   1



              12. h = 0.1, yn+1 = (xn + 11yn )/10
                      n      0         1           2          3      4        5       6       7          8      9     10
                     xn      0        0.1      0.2           0.3    0.4      0.5     0.6     0.7     0.8       0.9    1.0
                     yn    1.00       1.10     1.22          1.36   1.53     1.72    1.94    2.20    2.49     2.82    3.19

                    In Exercise 11, y(1) ≈ 2.98; in Exercise 12, y(1) ≈ 3.19; the true solution is y(1) ≈ 3.44; so the
                    absolute errors are approximately 0.46 and 0.25 respectively.
January 27, 2005 11:46       L24-ch09         Sheet number 10 Page number 404                       black



             404                                                                                                                                Chapter 9

                                              1/3
             13. y0 = 1, yn+1 = yn + 1 yn
                                     2
                                                                                                                y
                    n    0     1      2      3       4       5      6      7      8                     9
                   xn    0    0.5     1     1.5      2      2.5     3     3.5     4
                   yn    1    1.50   2.11   2.84    3.68    4.64   5.72   6.91   8.23




                                                                                                                                                    x
                                                                                                                        1         2   3         4

             14. y0 = 1, yn+1 = yn + (xn − yn )/4
                                            2

                                                                                                                    y
                    n    0     1      2      3       4       5      6      7      8
                   xn                                                                                       2
                         0    0.25   0.50   0.75    1.00    1.25   1.50   1.75   2.00
                   yn    1    0.75   0.67   0.68    0.75    0.86   0.99   1.12   1.24
                                                                                                        1.5

                                                                                                            1

                                                                                                        0.5
                                                                                                                                                        x
                                                                                                                            0.5   1   1.5       2

                                            1
             15. y0 = 1, yn+1 = yn +          cos yn
                                            2
                                                                                                                    y
                    n    0     1      2      3       4
                   tn    0    0.5     1     1.5      2                                                      3
                   yn    1    1.27   1.42   1.49    1.53




                                                                                                                                                    t
                                                                                                                                            3




             16. y0 = 0, yn+1 = yn + e−yn /10
                                                                                                                             y
                    n    0     1      2      3       4       5      6      7      8      9     10                       1
                   tn    0    0.1    0.2    0.3     0.4     0.5    0.6    0.7    0.8    0.9    1.0
                   yn    0    0.10   0.19   0.27    0.35    0.42   0.49   0.55   0.60   0.66   0.71




                                                                                                                                                                t
                                                                                                                                                            1

                                                           1
             17. h = 1/5, y0 = 1, yn+1 = yn +                sin(πn/5)
                                                           5
                   n     0     1      2      3       4       5
                   tn    0    0.2    0.4    0.6     0.8     1.0
                   yn    1     1     1.12   1.31    1.50    1.62
January 27, 2005 11:46      L24-ch09      Sheet number 11 Page number 405           black



              Exercise Set 9.2                                                                                         405


                                         dy
                                            = e−x and y(0) = 0.
                                                 2
              18. (a) By inspection,
                                         dx
                    (b) yn+1 = yn + e−xn /20 = yn + e−(n/20) /20 and y20 = 0.7625. From a CAS, y(1) = 0.7468.
                                          2                     2



                                                                                                                 √
              19. (b) y dy = −x dx, y 2 /2 = −x2 /2 + C1 , x2 + y 2 = C; if y(0) = 1 then C = 1 so y(1/2) =          3/2.
                                           √
              20. (a) y0 = 1, yn+1 = yn + ( yn /2)∆x
                                             √
                      ∆x = 0.2 : yn+1 = yn + yn /10; y5 ≈ 1.5489
                                             √
                      ∆x = 0.1 : yn+1 = yn + yn /20; y10 ≈ 1.5556
                                              √
                      ∆x = 0.05 : yn+1 = yn + yn /40; y20 ≈ 1.5590
                          dy     1     √
                    (c)   √ = dx, 2 y = x/2 + C, 2 = C,
                            y    2
                          √
                            y = x/4 + 1, y = (x/4 + 1)2 ,
                          y(1) = 25/16 = 1.5625

              21. (a) The slope field does not vary with t, hence along a given parallel line all values are equal
                      since they only depend on the height y.
                    (b) As in part (a), the slope field does not vary with t; it is independent of t.
                                                         d                1 dy            d             dy
                    (c) From G(y) − x = C we obtain        (G(y) − x) =            −1=      C = 0, i.e.    = f (y).
                                                        dx              f (y) dx         dx             dx

                                           dy          √
              22. (a) Separate variables: √ = dx, 2 y = x + C, y = (x/2 + C1 )2 is a parabola that opens up,
                                            y
                      and is therefore concave up.
                                                                                    √
                  (b) A curve is concave up if its derivative is increasing, and y = y is increasing.

                                                                dy             dy         dy     y 3 − 2xy
              23. (a) By implicit differentiation, y 3 + 3xy 2      − 2xy − x2     = 0,        = 2          .
                                                                dx             dx         dx    x − 3xy 2
                    (b) If y(x) is an integral curve of the slope field in part (a), then
                         d
                            {x[y(x)]3 − x2 y(x)} = [y(x)]3 + 3xy(x)2 y (x) − 2xy(x) − x2 y (x) = 0, so the integral curve
                        dx
                        must be of the form x[y(x)]3 − x2 y(x) = C.
                    (c) x[y(x)]3 − x2 y(x) = 2

                                                               dy      dy               dy   ey + yex
              24. (a) By implicit differentiation, ey + xey        + ex    + yex = 0,       =− y
                                                               dx      dx               dx   xe + ex
                    (b) If y(x) is an integral curve of the slope field in part (a), then
                         d
                            {xey(x) + y(x)ex } = ey(x) + xy (x)ey(x) + y (x)ex + y(x)ex = 0 from part (a). Thus
                        dx
                        xey(x) + y(x)ex = C.
                    (c) Any integral curve y(x) of the slope field above satisfies xey(x) + y(x)ex = C; if it passes
                        through (1, 1) then e + e = C, so xey(x) + y(x)ex = 2e defines the curve implicitly.

              25. Euler’s Method is repeated application of local linear approximation, each step dependent on the
                  previous step.

              26. (a) For any n, yn is the value of the discrete approximation at the right endpoint, that, is an
                      approximation of y(1). By increasing the number of subdivisions of the interval [0, 1] one
                      might expect more accuracy, and hence in the limit y(1).
January 27, 2005 11:46     L24-ch09        Sheet number 12 Page number 406                   black



             406                                                                                                             Chapter 9


                                                                                                             1   n+1
                   (b) For a fixed value of n we have, for k = 1, 2, . . . , n, yk = yk−1 + yk−1                =       yk−1 In partic-
                                                                                                             n     n
                                                                2                           n                     n
                                     n+1            n+1                               n+1                   n+1
                         ular yn =       yn−1 =                     yn−2 = . . . =              y0 =                . Consequently,
                                      n              n                                 n                      n
                                                         n
                                               n+1
                          lim yn = lim                       = e, which is the (correct) value y = ex                  .
                         n→+∞         n→+∞      n                                                                x=1




             EXERCISE SET 9.3
                         dy                                                            dy
              1. (a)        = ky 2 , y(0) = y0 , k > 0                          (b)       = −ky 2 , y(0) = y0 , k > 0
                         dt                                                            dt

                         ds  1                                                         d2 s    ds
              3. (a)        = s                                                 (b)         =2
                         dt  2                                                         dt2     dt

                                                                                                             2
                         dv                                                            d2 s            ds
              4. (a)        = −2v 2                                             (b)         = −2
                         dt                                                            dt2             dt

                       dy
              5. (a)      = 0.02y, y0 = 10,000                                  (b) y = 10,000e2t/100
                       dt
                            1
                   (c) T =      ln 2 ≈ 34.657 h                                 (d) 45,000 = 10,000e2t/100 ,
                           0.02
                                                                                              45,000
                                                                                    t = 50 ln        ≈ 75.20 h
                                                                                              10,000

                       1         1
              6. k =     ln 2 =     ln 2
                       T         20
                        dy
                   (a)      = ((ln 2)/20)y, y(0) = 1                            (b) y(t) = et(ln 2)/20 = 2t/20
                        dt
                   (c) y(120) = 26 = 64                                         (d) 1,000,000 = 2t/20 ,
                                                                                               ln 106
                                                                                      t = 20          ≈ 398.63 min
                                                                                                ln 2

                         dy                                     1             ln 2
              7. (a)        = −ky, y(0) = 5.0 × 107 ; 3.83 = T = ln 2, so k =      ≈ 0.1810
                         dt                                     k             3.83
                   (b) y = 5.0 × 107 e−0.181t
                   (c) y(30) = 5.0 × 107 e−0.1810(30) ≈ 219,000
                                                                                ln 0.1
                   (d) y(t) = (0.1)y0 = y0 e−kt , −kt = ln 0.1, t = −                  = 12.72 days
                                                                               0.1810
                             1         1                    dy
              8. (a) k =       ln 2 =     ln 2 ≈ 0.0050, so    = −0.0050y, y0 = 10.
                             T        140                   dt
                   (b) y = 10e−0.0050t
                   (c) 10 weeks = 70 days so y = 10e−0.35 ≈ 7 mg.
                                                  ln 0.3
                   (d) 0.3y0 = y0 e−kt , t = −           ≈ 240.8 days
                                                 0.0050
January 27, 2005 11:46      L24-ch09         Sheet number 13 Page number 407             black



              Exercise Set 9.3                                                                                          407


                                                                  1
               9. 100e0.02t = 10,000, e0.02t = 100, t =              ln 100 ≈ 230 days
                                                                0.02
                                                                                      1
              10. y = 10,000ekt , but y = 12,000 when t = 5 so 10,000e5k = 12,000, k = ln 1.2. y = 20,000 when
                                                                                      5
                                ln 2     ln 2
                  2 = ekt , t =      =5        ≈ 19, in the year 2017.
                                 k      ln 1.2
                                                                      1   3.5              1
              11. y(t) = y0 e−kt = 10.0e−kt , 3.5 = 10.0e−k(5) , k = − ln     ≈ 0.2100, T = ln 2 ≈ 3.30 days
                                                                      5 10.0               k
                                                        1
              12. y = y0 e−kt , 0.7y0 = y0 e−5k , k = − ln 0.7 ≈ 0.07
                                                        5
                             ln 2
                  (a) T =          ≈ 9.90 yr
                               k
                                            y
                  (b) y(t) ≈ y0 e−0.07t ,     ≈ e−0.07t , so e−0.07t × 100 percent will remain.
                                           y0

                                 ln 2
              13. (a) k =             ≈ 0.1155; y ≈ 3e0.1155t                 (b) y(t) = 4e0.02t
                                  6
                                                                                            1
                    (c) y = y0 ekt , 1 = y0 ek , 200 = y0 e10k . Divide: 200 = e9k , k =      ln 200 ≈ 0.5887,
                                                                                            9
                          y ≈ y0 e0.5887t ; also y(1) = 1, so y0 = e−0.5887    ≈ 0.5550, y ≈ 0.5550e0.5887t .
                                 ln 2
                    (d) k =           ≈ 0.1155, 2 = y(1) ≈ y0 e0.1155 , y0 ≈ 2e−0.1155 ≈ 1.7818, y ≈ 1.7818e0.1155t
                                  T
                                 ln 2
              14. (a) k =             ≈ 0.1386, y ≈ 10e−0.1386t               (b) y = 10e−0.015t
                                  T
                                                                                    1
                    (c) 100 = y0 e−k , 1 = y0 e−10k . Divide: e9k = 100, k =          ln 100 ≈ 0.5117;
                                                                                    9
                          y0 = e10k ≈ e5.117 ≈ 166.83, y = 166.83e−0.5117t .
                                 ln 2
                    (d) k =           ≈ 0.1386, 10 = y(1) ≈ y0 e−0.1386 , y0 ≈ 10e0.1386 ≈ 11.4866, y ≈ 11.4866e−0.1386t
                                  T

              16. (a) None; the half-life is independent of the initial amount.
                  (b) kT = ln 2, so T is inversely proportional to k.

                               ln 2
              17. (a) T =           ; and ln 2 ≈ 0.6931. If k is measured in percent, k = 100k,
                                k
                                      ln 2   69.31    70
                          then T =         ≈       ≈     .
                                       k       k      k
                    (b) 70 yr                             (c) 20 yr                              (d) 7%

              18. Let y = y0 ekt with y = y1 when t = t1 and y = 3y1 when t = t1 + T ; then y0 ekt1 = y1 (i) and
                                                                                  1
                  y0 ek(t1 +T ) = 3y1 (ii). Divide (ii) by (i) to get ekT = 3, T = ln 3.
                                                                                  k

                                                                     y(t)                           ln 0.27
              19. From (11), y(t) = y0 e−0.000121t . If 0.27 =            = e−0.000121t then t = −          ≈ 10,820 yr, and
                                                                      y0                           0.000121
                                 y(t)             ln 0.30
                    if 0.30 =         then t = −          ≈ 9950, or roughly between 9000 B.C. and 8000 B.C.
                                  y0             0.000121
January 27, 2005 11:46           L24-ch09   Sheet number 14 Page number 408                 black



             408                                                                                                          Chapter 9


             20. (a)         1                                               (b) t = 1988 yields
                                                                                     y/y0 = e−0.000121(1988) ≈ 79%.




                         0                              50000
                             0

                                                         ln 2
             21. (a) Let T1 = 5730 − 40 = 5690, k1 =          ≈ 0.00012182; T2 = 5730 + 40 = 5770, k2 ≈ 0.00012013.
                                                          T1
                                                        1     y                          1
                         With y/y0 = 0.92, 0.93, t1 = − ln       = 684.5, 595.7; t2 = − ln(y/y0 ) = 694.1, 604.1; in
                                                        k1 y0                            k2
                         1988 the shroud was at most 695 years old, which places its creation in or after the year 1293.

                   (b) Suppose T is the true half-life of carbon-14 and T1 = T (1 + r/100) is the false half-life. Then
                                  ln 2         ln 2
                       with k =        , k1 =       we have the formulae y(t) = y0 e−kt , y1 (t) = y0 e−k1 t . At a certain
                                   T            T1
                       point in time a reading of the carbon-14 is taken resulting in a certain value y, which in the
                       case of the true formula is given by y = y(t) for some t, and in the case of the false formula
                       is given by y = y1 (t1 ) for some t1 .
                                                                                                                1     y
                       If the true formula is used then the time t since the beginning is given by t = − ln . If
                                                                                                                k y0
                                                                                1     y
                       the false formula is used we get a false value t1 = − ln ; note that in both cases the
                                                                                k1 y0
                       value y/y0 is the same. Thus t1 /t = k/k1 = T1 /T = 1 + r/100, so the percentage error in
                       the time to be measured is the same as the percentage error in the half-life.
                         dp
             22. (a)        = −kp, p(0) = p0
                         dh
                   (b) p0 = 1, so p = e−kh , but p = 0.83 when h = 5000 thus e−5000k = 0.83,
                             ln 0.83
                       k=−           ≈ 0.0000373, p ≈ e−0.0000373h atm.
                              5000
             23. (a) y = y0 bt = y0 et ln b = y0 ekt with k = ln b > 0 since b > 1.
                   (b) y = y0 bt = y0 et ln b = y0 e−kt with k = − ln b > 0 since 0 < b < 1.

                   (c) y = 4(2t ) = 4et ln 2                                 (d) y = 4(0.5t ) = 4et ln 0.5 = 4e−t ln 2

                                                                                     ln(y1 /y0 )
             24. If y = y0 ekt and y = y1 = y0 ekt1 then y1 /y0 = ekt1 , k =                     ; if y = y0 e−kt and
                                                                                         t1
                                                                     ln(y1 /y0 )
                   y = y1 = y0 e−kt1 then y1 /y0 = e−kt1 , k = −                 .
                                                                         t1
                                                                                                                   1
             25. (a) If y = y0 ekt , then y1 = y0 ekt1 , y2 = y0 ekt2 , divide: y2 /y1 = ek(t2 −t1 ) , k =              ln(y2 /y1 ),
                                                                                                                t2 − t1
                               ln 2   (t2 − t1 ) ln 2
                         T =        =                 . If y = y0 e−kt , then y1 = y0 e−kt1 , y2 = y0 e−kt2 ,
                                k       ln(y2 /y1 )
                                                           1                      ln 2    (t2 − t1 ) ln 2
                         y2 /y1 = e−k(t2 −t1 ) , k = −         ln(y2 /y1 ), T =        =−                 .
                                                       t2 − t1                      k        ln(y2 /y1 )
                                                                    (t2 − t1 ) ln 2
                         In either case, T is positive, so T =                       .
                                                                      ln(y2 /y1 )
                                                                                                ln 2
                   (b) In Part (a) assume t2 = t1 + 1 and y2 = 1.25y1 . Then T =                      ≈ 3.1 h.
                                                                                              ln 1.25
January 27, 2005 11:46      L24-ch09      Sheet number 15 Page number 409              black



              Exercise Set 9.3                                                                                            409


              26. (a) In t years the interest will be compounded nt times at an interest rate of r/n each time. The
                      value at the end of 1 interval is P + (r/n)P = P (1 + r/n), at the end of 2 intervals it is
                      P (1 + r/n) + (r/n)P (1 + r/n) = P (1 + r/n)2 , and continuing in this fashion the value at the
                      end of nt intervals is P (1 + r/n)nt .
                    (b) Let x = r/n, then n = r/x and
                         lim P (1 + r/n)nt = lim P (1 + x)rt/x = lim P [(1 + x)1/x ]rt = P ert .
                          n→+∞                   +
                                                 x→0                +       x→0
                                                                   rt
                    (c) The rate of increase is dA/dt = rP e            = rA.

              27. (a) A = 1000e(0.08)(5) = 1000e0.4 ≈ $1, 491.82
                    (b) P e(0.08)(10) = 10, 000, P e0.8 = 10, 000, P = 10, 000e−0.8 ≈ $4, 493.29
                    (c) From (11), with k = r = 0.08, T = (ln 2)/0.08 ≈ 8.7 years.

              28. Let r be the annual interest rate when compounded continuously and r1 the effective annual
                  interest rate. Then an amount P invested at the beginning of the year is worth P er = P (1 + r1 )
                  at the end of the year, and r1 = er − 1.

                          dT                             dT
              29. (a)        = −k(T − 21), T (0) = 95,        = −k dt, ln(T − 21) = −kt + C1 ,
                          dt                           T − 21
                          T = 21 + eC1 e−kt = 21 + Ce−kt , 95 = T (0) = 21 + C, C = 74, T = 21 + 74e−kt
                                                                                                                      t
                                                                 64       32                                     32
                    (b) 85 = T (1) = 21 + 74e−k , k = − ln          = − ln , T = 21 + 74et ln(32/37) = 21 + 74            ,
                                                                 74       37                                     37
                                                     t
                                        30      32              ln(30/74)
                          T = 51 when      =             , t=             ≈ 6.22 min
                                        74      37              ln(32/37)

                    dT
              30.       = k(70 − T ), T (0) = 40; − ln(70 − T ) = kt + C, 70 − T = e−kt e−C , T = 40 when t = 0, so
                     dt
                                                                                    70 − 52       5
                    30 = e−C , T = 70 − 30e−kt ; 52 = T (1) = 70 − 30e−k , k = − ln           = ln ≈ 0.5,
                                                                                       30         3
                    T ≈ 70 − 30e−0.5t

              31. Let T denote the body temperature of McHam’s body at time t, the number of hours elapsed after
                                    dT                   dT
                  10:06 P.M.; then     = −k(T − 72),            = −kdt, ln(T − 72) = −kt + C, T = 72 + eC e−kt ,
                                    dt                 T − 72
                                                                                              3.6
                  77.9 = 72 + eC , eC = 5.9, T = 72 + 5.9e−kt , 75.6 = 72 + 5.9e−k , k = − ln     ≈ 0.4940,
                                                                                              5.9
                                                                                               ln(26.6/5.9)
                  T = 72+5.9e−0.4940t . McHam’s body temperature was last 98.6◦ when t = −                  ≈ −3.05,
                                                                                                  0.4940
                  so around 3 hours and 3 minutes before 10:06; the death took place at approximately 7:03 P.M.,
                  while Moore was on stage.

                                     dT                                             dT
              32. If T0 < Ta then         = k(Ta − T ) where k > 0. If T0 > Ta then    = −k(T − Ta ) where k > 0;
                                     dt                                             dt
                    both cases yield T (t) = Ta + (T0 − Ta )e−kt with k > 0.

                                                                                        dy          y
              33. (a) Both y(t) = 0 and y(t) = L are solutions of the logistic equation    = k 1−      y as both
                                                                                        dt          L
                      sides of the equation are then zero.
                                                                                                       dy
                  (b) If y is very small relative to L then y/L ≈ 0, and the logistic equation becomes     ≈ ky,
                                                                                                       dt
                      which is a form of the equation for exponential growth.
January 27, 2005 11:46           L24-ch09    Sheet number 16 Page number 410                black



             410                                                                                                     Chapter 9


                   (c) All the terms on the right-hand-side of the logistic equation are positive, except perhaps
                           y
                       1 − , which is positive if y < L and negative if y > L.
                           L
                   (d) The rate of change of y is a function of only one variable, y itself. The right-hand-side of the
                       differential equation is a quadratic equation in y, which can be thought of as a parabola in
                       y which opens down and crosses the y-axis at y = 0 and y = L. The parabola thus takes its
                       maximum midway between the two y-intercepts, namely at y = L/2.

                                 dy            y                                    1 1        1          k
             34. (a) Given          = k 1−        y, separation of variables yields       +           dy = dt so that
                                 dt            L                                    L y L−y               L
                         ln y − ln(L − y) = kt + C. The initial condition yields
                                                           y0                  y                y0
                         ln y0 − ln(L − y0 ) = C, C = ln        and thus ln         = kt + ln        ,
                                                         L − y0              L−y              L − y0
                          y            y0                                 y0 L
                             = ekt +        , with solution y(t) =                    .
                         L−y         L − y0                        y0 + (L − y0 )e−kt
                                                                        y0 L
                   (b) From part (a), lim y(t) =                                      =L
                                            t→+∞              y0 + (L − y0 ) lim e−kt
                                                                           t→+∞


             35. (a) k = L = 1, y0 = 2                                         (b) k = L = y0 = 1
                             2                                                          2




                         0                                2                         0                           2
                             0                                                          0

                   (c) k = y0 = 1, L = 2                                       (d) k = y0 = 1, L = 4
                             2                                                          4




                         0                                5                         0                           12
                             0                                                          0


             36. y0 = 400, L ≈ 1000, and y(300) ≈ 700; solve to obtain k ≈ 0.042

                                                                  2·8                                            16
             37. y0 ≈ 2, L ≈ 8; since the curve y =                  −kt
                                                                         passes through the point (2, 4), 4 =           ,
                                                               2 + 6e                                         2 + 6e−2k
                                       1
                   6e−2k = 2, k =        ln 3 ≈ 0.5493.
                                       2
January 27, 2005 11:46       L24-ch09         Sheet number 17 Page number 411            black



              Exercise Set 9.4                                                                                            411


                                                                      400,000
              38. y0 ≈ 400, L ≈ 1000; since the curve y =                          passes through the point (200, 600),
                                                                  400 + 600e−kt
                                400,000                        800        1
                    600 =                   , 600e−200k      =     , k=       ln 2.25 ≈ 0.00405.
                            400 + 600e−200k                     3        200

              39. (a) y0 = 5                                 (b) L = 12                          (c) k = 1
                                            60
                    (d) L/2 = 6 =                 , 5 + 7e−t = 10, t = − ln(5/7) ≈ 0.3365
                                         5 + 7e−t
                          dy    1
                    (e)      =    y(12 − y), y(0) = 5
                          dt   12

              40. (a) y0 = 1                                 (b) L = 1000                        (c) k = 0.9
                                         1000                                    1
                    (d) 750 =                −0.9t
                                                   , 3(1 + 999e−0.9t ) = 4, t =     ln(3 · 999) ≈ 8.8949
                                     1 + 999e                                   0.9
                          dy    0.9
                    (e)      =      y(1000 − y), y(0) = 1
                          dt   1000

              41. Assume y(t) students have had the flu t days after semester break. Then y(0) = 20, y(5) = 35.
                        dy
                    (a)    = ky(L − y) = ky(1000 − y), y0 = 20
                        dt
                                                      20000          1000
                    (b) Part (a) has solution y =           −kt
                                                                =            ;
                                                   20 + 980e      1 + 49e−kt
                                 1000                          1000
                        35 =         −5k
                                         , k = 0.115, y ≈                .
                             1 + 49e                      1 + 49e−0.115t
                    (c)       t 0 1 2 3             4 5 6 7 8 9 10 11 12 13 14
                            y(t) 20 22 25 28       31 35 39 44 49 54 61 67 75 83 93


                                 y
                    (d)
                          100

                            75

                            50

                            25
                                                         t
                                     3    6    9    12




              EXERCISE SET 9.4
               1. (a) y = e−2x , y = −2e−2x , y = 4e−2x ; y + y − 2y = 0
                      y = ex , y = ex , y = ex ; y + y − 2y = 0.
                    (b) y = c1 e−2x + c2 ex , y = −2c1 e−2x + c2 ex , y = 4c1 e−2x + c2 ex ; y + y − 2y = 0

               2. (a) y = e−2x , y = −2e−2x , y = 4e−2x ; y + 4y + 4y = 0
                      y = xe−2x , y = (1 − 2x)e−2x , y = (4x − 4)e−2x ; y + 4y + 4y = 0.
                    (b) y = c1 e−2x + c2 xe−2x , y = −2c1 e−2x + c2 (1 − 2x)e−2x ,
                        y = 4c1 e−2x + c2 (4x − 4)e−2x ; y + 4y + 4y = 0.
January 27, 2005 11:46     L24-ch09      Sheet number 18 Page number 412           black



             412                                                                                             Chapter 9


              3. m2 + 3m − 4 = 0, (m − 1)(m + 4) = 0; m = 1, −4 so y = c1 ex + c2 e−4x .

              4. m2 + 5m + 6 = 0, (m + 2)(m + 3) = 0; m = −2, −3 so y = c1 e−2x + c2 e−3x .

              5. m2 − 2m + 1 = 0, (m − 1)2 = 0; m = 1, so y = c1 ex + c2 xex .

              6. m2 − 6m + 9 = 0, (m − 3)2 = 0; m = 3 so y = c1 e3x + c2 xe3x .

              7. m2 + 1 = 0, m = ±i so y = c1 cos x + c2 sin x.
                                  √                 √            √
              8. m2 + 5 = 0, m = ± 5 i so y = c1 cos 5 x + c2 sin 5 x.

              9. m2 − m = 0, m(m − 1) = 0; m = 0, 1 so y = c1 + c2 ex .

             10. m2 + 3m = 0, m(m + 3) = 0; m = 0, −3 so y = c1 + c2 e−3x .

             11. m2 − 4m + 4 = 0, (m − 2)2 = 0; m = 2 so y = c1 e2t + c2 te2t .

             12. m2 − 10m + 25 = 0, (m − 5)2 = 0; m = 5 so y = c1 e5t + c2 te5t .

             13. m2 + 4m + 13 = 0, m = −2 ± 3i so y = e−2x (c1 cos 3x + c2 sin 3x).

             14. m2 − 6m + 25 = 0, m = 3 ± 4i so y = e3x (c1 cos 4x + c2 sin 4x).

             15. 8m2 − 2m − 1 = 0, (4m + 1)(2m − 1) = 0; m = −1/4, 1/2 so y = c1 e−x/4 + c2 ex/2 .

             16. 9m2 − 6m + 1 = 0, (3m − 1)2 = 0; m = 1/3 so y = c1 ex/3 + c2 xex/3 .

             17. m2 + 2m − 3 = 0, (m + 3)(m − 1) = 0; m = −3, 1 so y = c1 e−3x + c2 ex and y = −3c1 e−3x + c2 ex .
                 Solve the system c1 + c2 = 1, −3c1 + c2 = 9 to get c1 = −2, c2 = 3 so y = −2e−3x + 3ex .

             18. m2 − 6m − 7 = 0, (m + 1)(m − 7) = 0; m = −1, 7 so y = c1 e−x + c2 e7x , y = −c1 e−x + 7c2 e7x .
                 Solve the system c1 + c2 = 5, −c1 + 7c2 = 3 to get c1 = 4, c2 = 1 so y = 4e−x + e7x .

             19. m2 + 6m + 9 = 0, (m + 3)2 = 0; m = −3 so y = (c1 + c2 x)e−3x and y = (−3c1 + c2 − 3c2 x)e−3x .
                 Solve the system c1 = 2, −3c1 + c2 = −5 to get c1 = 2, c2 = 1 so y = (2 + x)e−3x .
                                           √                √              √
             20. m2 + 4m + 1 = 0, m = −2 ± 3 so y = c1 e(−2+ 3)x + c2 e(−2− 3)x ,
                            √         √           √         √
                 y = (−2 + 3)c1 e(−2+ 3)x + (−2 − 3)c2 e(−2− 3)x . Solve the system c1 + c2 = 5,
                        √            √                         √               √
                 (−2 + 3)c1 + (−2 − 3)c2 = 4 to get c1 = 5 + 7 3, c2 = 5 − 7 3 so
                                                          2  3           2   3
                            √       √            √        √
                 y = 5 + 7 3 e(−2+ 3)x + 5 − 7 3 e(−2− 3)x .
                      2   3                2   3

             21. m2 + 4m + 5 = 0, m = −2 ± i so y = e−2x (c1 cos x + c2 sin x),
                 y = e−2x [(c2 − 2c1 ) cos x − (c1 + 2c2 ) sin x]. Solve the system c1 = −3, c2 − 2c1 = 0
                 to get c1 = −3, c2 = −6 so y = −e−2x (3 cos x + 6 sin x).

             22. m2 − 6m + 13 = 0, m = 3 ± 2i so y = e3x (c1 cos 2x + c2 sin 2x),
                 y = e3x [(3c1 + 2c2 ) cos 2x + (−2c1 + 3c2 ) sin 2x]. Solve the system c1 = −2, 3c1 + 2c2 = 0
                 to get c1 = −2, c2 = 3 so y = e3x (−2 cos 2x + 3 sin 2x).

             23. (a) m = 5, −2 so (m − 5)(m + 2) = 0, m2 − 3m − 10 = 0; y − 3y − 10y = 0.
                   (b) m = 4, 4 so (m − 4)2 = 0, m2 − 8m + 16 = 0; y − 8y + 16y = 0.
                   (c) m = −1 ± 4i so (m + 1 − 4i)(m + 1 + 4i) = 0, m2 + 2m + 17 = 0; y + 2y + 17y = 0.
January 27, 2005 11:46      L24-ch09            Sheet number 19 Page number 413                 black



              Exercise Set 9.4                                                                                                    413


              24. c1 ex + c2 e−x is the general solution, but cosh x = 1 ex + 1 e−x and sinh x = 1 ex − 1 e−x
                                                                       2      2                  2      2
                  so cosh x and sinh x are also solutions.
                                                           √
              25. m2 + km + k = 0, m = −k ±                    k 2 − 4k /2
                    (a) k 2 − 4k > 0, k(k − 4) > 0; k < 0 or k > 4
                    (b) k 2 − 4k = 0; k = 0, 4                                        (c) k 2 − 4k < 0, k(k − 4) < 0; 0 < k < 4

                                 dy   dy dz   1 dy
              26. z = ln x;         =       =      and
                                 dx   dz dx   x dz
                    d2 y    d      dy           d   1 dy           1 d2 y dz   1 dy   1 d2 y   1 dy
                       2
                         =               =                     =        2 dx
                                                                             − 2    = 2    2
                                                                                             − 2    ,
                    dx     dx      dx          dx   x dz           x dz       x dz   x dz     x dz
                                                                            d2 y           dy
                    substitute into the original equation to get               2
                                                                                 + (p − 1)    + qy = 0.
                                                                            dz             dz

                        d2 y    dy
              27. (a)        +2     + 2y = 0, m2 + 2m + 2 = 0; m = −1 ± i so
                        dz 2    dz
                                                       1
                        y = e−z (c1 cos z + c2 sin z) = [c1 cos(ln x) + c2 sin(ln x)].
                                                       x
                        d2 y    dy                                           √
                    (b)    2
                             −2     − 2y = 0, m2 − 2m − 2 = 0; m = 1 ± 3 so
                        dz      dz
                                        √              √                   √           √
                          y = c1 e(1+    3)z
                                               + c2 e(1−3)z
                                                                = c1 x1+    3
                                                                                + c2 x1−3


              28. m2 + pm + q = 0, m = 1 (−p ± p2 − 4q ). If 0 < q < p2 /4 then y = c1 em1 x + c2 em2 x where
                                              2
                  m1 < 0 and m2 < 0, if q = p2 /4 then y = c1 e−px/2 + c2 xe−px/2 , if q > p2 /4 then
                  y = e−px/2 (c1 cos kx + c2 sin kx) where k = 1 4q − p2 . In all cases lim y(x) = 0.
                                                               2                                        x→+∞


              29. (a) Neither is a constant multiple of the other, since, e.g. if y1 = ky2 then em1 x = kem2 x ,
                      e(m1 −m2 )x = k. But the right hand side is constant, and the left hand side is constant only
                      if m1 = m2 , which is false.
                    (b) If y1 = ky2 then emx = kxemx , kx = 1 which is impossible. If y2 = y1 then xemx = kemx ,
                        x = k which is impossible.

              30. y1 = eax cos bx, y1 = eax (a cos bx − b sin bx), y1 = eax [(a2 − b2 ) cos bx − 2ab sin bx] so
                    y1 + py1 + qy1 = eax [(a2 − b2 + ap + q) cos bx − (2ab + bp) sin bx]. But a = − 1 p and b = 1 4q − p2
                                                                                                    2           2
                    so a2 − b2 + ap + q = 0 and 2ab + bp = 0 thus y1 + py1 + qy1 = 0. Similarly, y2 = eax sin bx is also
                    a solution.
                    Since y1 /y2 = cot bx and y2 /y1 = tan bx it is clear that the two solutions are linearly independent.

              31. (a) The general solution is c1 eµx + c2 emx ; let c1 = 1/(µ − m), c2 = −1/(µ − m).
                              eµx − emx
                    (b)    lim          = lim xeµx = xemx .
                          µ→m   µ−m      µ→m


              32. (a) If λ = 0, then y = 0, y = c1 + c2 x. Use y(0) = 0 and y(π) = 0 to get c1 = c2 = 0. If
                      λ < 0, then let λ = −a2 where a > 0 so y − a2 y = 0, y = c1 eax + c2 e−ax . Use y(0) = 0 and
                      y(π) = 0 to get c1 = c2 = 0.
                                                                              √              √            √
                  (b) If λ > 0, then m2 + λ = 0, m2 = −λ = λi2 , m = ± λi, y √ c1 cos λ x + c2 sin λ x. If
                                                                         √           =                √
                      y(0) = √ and y(π) = 0, then c1 = 0 and c1 cos π λ + c2 sin π λ = 0 so c2 sin π λ = 0. But
                              0                                         √        √
                      c2 sin π λ = 0 for arbitrary values of c2 if sin π λ = 0, π λ = nπ, λ = n2 for n = 1, 2, 3, . . .,
                      otherwise c2 = 0.
January 27, 2005 11:46        L24-ch09        Sheet number 20 Page number 414             black



             414                                                                                                 Chapter 9


             33. k/M = 0.5/2 = 0.25
                   (a) From (20), y = 0.4 cos(t/2)                             (b) T = 2π · 2 = 4π s, f = 1/T = 1/(4π) Hz
                   (c)     y                                                   (d) y = 0 at the equilibrium position,
                          0.3
                                                                                   so t/2 = π/2, t = π s.
                                                                               (e) t/2 = 2π at the maximum position below
                                                   x                               the equlibrium position, so t = 4π s.
                                      o       4c


                         –0.3
                                                                                        √
             34. 64 = w = −M g, M = 2, k/M = 0.25/2 = 1/8,                    k/M = 1/(2 2)
                                            √
                 (a) From (20), y = cos(t/(2 2))
                              M          √       √
                 (b) T = 2π       = 2π(2 2) = 4π 2 s,
                               k
                                     √
                      f = 1/T = 1/(4π 2) Hz
                 (c)     y
                          1



                                                            t
                                 2p      6p     10p



                         –1

                                                                 √               √
                   (d) y = 0 at the equilibrium position, so t/(2 2) = π/2, t = π 2 s
                           √               √
                   (e) t/(2 2) = π, t = 2π 2 s

             35. l = 0.05, k/M = g/l = 9.8/0.05 = 196 s−2
                   (a) From (20), y = −0.12 cos 14t.                           (b) T = 2π M/k = 2π/14 = π/7 s,
                                                                                   f = 7/π Hz
                                 y
                   (c)                                                         (d) 14t = π/2, t = π/28 s
                          0.15
                                                                               (e)   14t = π, t = π/14 s

                                                                t
                                          π            2π
                                          7             7


                         –0.15


             36. l = 2, k/M = g/l = 32/2 = 16,                      k/M = 4

                   (a) From (20), y = −2 cos 4t.                               (b) T = 2π M/k = 2π/4 = π/2 s;
                                                                                   f = 1/T = 2/π Hz
January 27, 2005 11:46         L24-ch09       Sheet number 21 Page number 415         black



              Exercise Set 9.4                                                                                     415


                    (c)          y                                          (d) 4t = π/2, t = π/8 s
                           2
                                                                            (e)   4t = π, t = π/4 s

                                                        t
                                          3        6



                          –2



              37. (a) From the graph it appears that the maximum velocity occurs at the equilibrium position,
                      t = π/8.
                                                                     dv                  dy              dv
                      To show this mathematically, vmax occurs when      = 0. But v =        = 8 sin 4t,    =
                                                                     dt                  dt              dt
                                 dv
                      32 cos 4t,    = 0 when 4t = π/2, t = π/8.
                                 dt
                    (b) From the graph it appears that the minimum velocity occurs at the equilibrium position as the
                                                                         dv
                        block is falling, i.e. t = 3π/8. Mathematically,    = 32 cos 4t = 0 when 4t = π/2, 3π/2, . . ..
                                                                         dt
                        When 4t = 3π/2 the block is falling, so t = 3π/8.


                                       M      4π 2  4π 2 w      4π 2 w   4π 2 w + 4
              38. (a) T = 2π             , k = 2 M = 2 , so k =        =            , 25w = 9(w + 4),
                                       k      T     T g          g 9      g    25
                                                   9      4π 2 w   4π 2 1   π2
                          25w = 9w + 36, w =         ,k =        =        =
                                                   4       g 9      32 4    32

                                                   9
                    (b) From Part (a), w =
                                                   4

              39. By Hooke’s Law, F (t) = −kx(t), since the only force is the restoring force of the spring. Newton’s
                  Second Law gives F (t) = M x (t), so M x (t) + kx(t) = 0, x(0) = x0 , x (0) = 0.

                                               k                                               k
              40. 0 = v(0) = y (0) = c2          , so c2 = 0; y0 = y(0) = c1 , so y = y0 cos     t.
                                               M                                               M

                                     k                 M              2πt
              41. y = y0 cos           t, T = 2π         , y = y0 cos
                                     M                 k               T
                                      2π        2πt
                    (a) v = y (t) = −    y0 sin     has maximum magnitude 2π|y0 |/T and occurs when
                                      T          T
                          2πt/T = nπ + π/2, y = y0 cos(nπ + π/2) = 0.
                                       4π 2        2πt
                    (b) a = y (t) = −       y0 cos     has maximum magnitude 4π 2 |y0 |/T 2 and occurs when
                                       T2           T
                          2πt/T = jπ, y = y0 cos jπ = ±y0 .

                    d 1            1                                               k
              42.        k[y(t)]2 + M (y (t))2 = ky(t)y (t)+M y (t)y (t) = M y (t)[ y(t)+y (t)] = 0, as required.
                    dt 2           2                                               M
Chapter 09
Chapter 09
Chapter 09
Chapter 09
Chapter 09
Chapter 09
Chapter 09
Chapter 09

More Related Content

What's hot

S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)yustar1026
 
Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)
Dan Al
 
Integrated Math 2 Section 8-4
Integrated Math 2 Section 8-4Integrated Math 2 Section 8-4
Integrated Math 2 Section 8-4
Jimbo Lamb
 
sscm 1703 - persamaan terbitan 1 - tutorial 2
sscm 1703 - persamaan terbitan 1 - tutorial 2sscm 1703 - persamaan terbitan 1 - tutorial 2
sscm 1703 - persamaan terbitan 1 - tutorial 2
hakimgear
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
sscm 1703 - persamaan terbitan 1 - tutorial 4
sscm 1703 - persamaan terbitan 1 - tutorial 4sscm 1703 - persamaan terbitan 1 - tutorial 4
sscm 1703 - persamaan terbitan 1 - tutorial 4
hakimgear
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
lia170494
 
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
M A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{WwwM A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{Www
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
Elementary differential equations with boundary value problems solutions
Elementary differential equations with boundary value problems solutionsElementary differential equations with boundary value problems solutions
Elementary differential equations with boundary value problems solutions
Hon Wa Wong
 
Diff. eq. peace group
Diff. eq. peace groupDiff. eq. peace group
Diff. eq. peace grouppkrai23
 

What's hot (20)

Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Ch33 11
Ch33 11Ch33 11
Ch33 11
 
Derivadas
DerivadasDerivadas
Derivadas
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Integrated Math 2 Section 8-4
Integrated Math 2 Section 8-4Integrated Math 2 Section 8-4
Integrated Math 2 Section 8-4
 
sscm 1703 - persamaan terbitan 1 - tutorial 2
sscm 1703 - persamaan terbitan 1 - tutorial 2sscm 1703 - persamaan terbitan 1 - tutorial 2
sscm 1703 - persamaan terbitan 1 - tutorial 2
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
Simultaneous eqn2
Simultaneous eqn2Simultaneous eqn2
Simultaneous eqn2
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
sscm 1703 - persamaan terbitan 1 - tutorial 4
sscm 1703 - persamaan terbitan 1 - tutorial 4sscm 1703 - persamaan terbitan 1 - tutorial 4
sscm 1703 - persamaan terbitan 1 - tutorial 4
 
Matematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhanaMatematika Ekonomi Diferensiasi fungsi sederhana
Matematika Ekonomi Diferensiasi fungsi sederhana
 
5HBC Conic Solutions
5HBC Conic Solutions5HBC Conic Solutions
5HBC Conic Solutions
 
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
M A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{WwwM A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{Www
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
 
Elementary differential equations with boundary value problems solutions
Elementary differential equations with boundary value problems solutionsElementary differential equations with boundary value problems solutions
Elementary differential equations with boundary value problems solutions
 
Diff. eq. peace group
Diff. eq. peace groupDiff. eq. peace group
Diff. eq. peace group
 

Similar to Chapter 09

Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
Debora Elluisa Manurung
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
Kuan-Lun Wang
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 
整卷
整卷整卷
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equationsJean Leano
 

Similar to Chapter 09 (20)

Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Sect1 4
Sect1 4Sect1 4
Sect1 4
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Assignment6
Assignment6Assignment6
Assignment6
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
整卷
整卷整卷
整卷
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equations
 
Add maths 2
Add maths 2Add maths 2
Add maths 2
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Ch[1].2
Ch[1].2Ch[1].2
Ch[1].2
 

More from ramiz100111

Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
ramiz100111
 

More from ramiz100111 (8)

Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
 

Recently uploaded

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
gb193092
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
Kartik Tiwari
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
ArianaBusciglio
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 

Recently uploaded (20)

special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 

Chapter 09

  • 1. January 27, 2005 11:46 L24-ch09 Sheet number 1 Page number 395 black CHAPTER 9 Mathematical Modeling with Differential Equations EXERCISE SET 9.1 3 1. y = 9x2 ex = 3x2 y and y(0) = 3 by inspection. 2. y = x3 − 2 sin x, y(0) = 3 by inspection. dy dy 3. (a) first order; = c; (1 + x) = (1 + x)c = y dx dx (b) second order; y = c1 cos t − c2 sin t, y + y = −c1 sin t − c2 cos t + (c1 sin t + c2 cos t) = 0 dy c 4. (a) first order; 2 + y = 2 − e−x/2 + 1 + ce−x/2 + x − 3 = x − 1 dx 2 (b) second order; y = c1 et − c2 e−t , y − y = c1 et + c2 e−t − c1 et + c2 e−t = 0 1 dy dy dy dy y3 5. = y 2 + 2xy , (1 − 2xy 2 ) = y 3 , = y dx dx dx dx 1 − 2xy 2 dy 6. 2x + y 2 + 2xy = 0, by inspection. dx d 7. (a) IF: µ = e3 dx ye3x = 0, ye3x = C, y = Ce−3x = e3x , dx dy separation of variables: = −3dx, ln |y| = −3x + C1 , y = ±e−3x eC1 = Ce−3x y including C = 0 by inspection d (b) IF: µ = e−2 dt [ye−2t ] = 0, ye−2t = C, y = Ce2t = e−2t , dt dy separation of variables: = 2dt, ln |y| = 2t + C1 , y = ±eC1 e2t = Ce2t y including C = 0 by inspection d ye−2x = 0, y = Ce2x 2 2 8. (a) IF: µ = e−4 = e−2x , 2 x dx dx dy 2 2 separation of variables: = 4x dx, ln |y| = 2x2 + C1 , y = ±eC1 e2x = Ce2x y including C = 0 by inspection d (b) IF: µ = e dt yet = 0, y = Ce−t = et , dt dy separation of variables: = −dt, ln |y| = −t + C1 , y = ±eC1 e−t = Ce−t y including C = 0 by inspection 9. µ = e 4dx = e4x , e4x y = ex dx = ex + C, y = e−3x + Ce−4x d 1 2 1 yex = xex , yex = ex + C, y = + Ce−x 2 2 2 2 2 10. µ = e2 x dx = ex , dx 2 2 395
  • 2. January 27, 2005 11:46 L24-ch09 Sheet number 2 Page number 396 black 396 Chapter 9 11. µ = e dx = ex , ex y = ex cos(ex )dx = sin(ex ) + C, y = e−x sin(ex ) + Ce−x dy 1 1 2x 1 1 12. + 2y = , µ = e 2dx = e2x , e2x y = e dx = e2x + C, y = + Ce−2x dx 2 2 4 4 dy x 2 1 2 13. + y = 0, µ = e (x/(x +1))dx = e 2 ln(x +1) = x2 + 1, dx x2 + 1 d C y x2 + 1 = 0, y x2 + 1 = C, y = √ dx x2 + 1 dy 1 ex 14. +y = − ,µ=e dx = ex , ex y = − dx = ln |1−ex |+C, y = e−x ln |1−ex |+Ce−x dx 1 − ex 1 − ex 1 1 y y 15. dy = dx, ln |y| = ln |x| + C1 , ln = C1 , = ±eC1 = C, y = Cx y x x x including C = 0 by inspection dy 16. = 2x dx, tan−1 y = x2 + C, y = tan x2 + C 1 + y2 dy x √ √ = −√ dx, ln |1 + y| = − 1 + x2 + C1 , 1 + y = ±e− 1+x eC1 = Ce− 1+x , 2 2 17. 1+y 1 + x2 √ y = Ce− 1+x2 − 1, C = 0 x3 dx y 2 1 18. y dy = , = ln(1 + x4 ) + C1 , 2y 2 = ln(1 + x4 ) + C, y = ± [ln(1 + x4 ) + C]/2 1 + x4 2 4 2(1 + y 2 ) 19. dy = ex dx, 2 ln |y| + y 2 = ex + C; by inspection, y = 0 is also a solution y dy = −x dx, ln |y| = −x2 /2 + C1 , y = ±eC1 e−x /2 = Ce−x /2 , including C = 0 by inspection 2 2 20. y sin x 21. ey dy = dx = sec x tan x dx, ey = sec x + C, y = ln(sec x + C) cos2 x dy x2 22. = (1 + x) dx, tan−1 y = x + + C, y = tan(x + x2 /2 + C) 1 + y2 2 dy dx 1 1 y−1 23. = , − + dy = csc x dx, ln = ln | csc x − cot x| + C1 , y2 −y sin x y y−1 y y−1 1 = ±eC1 (csc x − cot x) = C(csc x − cot x), y = , C = 0; y 1 − C(csc x − cot x) by inspection, y = 0 is also a solution, as is y = 1. 1 24. dy = cos x dx, ln |y| = sin x + C, y = C1 esin x y
  • 3. January 27, 2005 11:46 L24-ch09 Sheet number 3 Page number 397 black Exercise Set 9.1 397 dy 1 (1/x)dx d 1 25. + y = 1, µ = e = eln x = x, [xy] = x, xy = x2 + C, y = x/2 + C/x dx x dx 2 1 3 (a) 2 = y(1) = + C, C = , y = x/2 + 3/(2x) 2 2 (b) 2 = y(−1) = −1/2 − C, C = −5/2, y = x/2 − 5/(2x) dy x2 2 2 26. = x dx, ln |y| = + C1 , y = ±eC1 ex /2 = Cex /2 y 2 2 (a) 1 = y(0) = C so C = 1, y = ex /2 1 1 2 (b) = y(0) = C, so y = ex /2 2 2 = e−x , e−x y = 2xe−x dx = −e−x + C, 2 2 2 27. µ = e−2 2 x dx 2 2 y = −1 + Cex , 3 = −1 + C, C = 4, y = −1 + 4ex 28. µ = e dt = et , et y = 2et dt = 2et + C, y = 2 + Ce−t , 1 = 2 + C, C = −1, y = 2 − e−t 29. (2y + cos y) dy = 3x2 dx, y 2 + sin y = x3 + C, π 2 + sin π = C, C = π 2 , y 2 + sin y = x3 + π 2 dy 1 30. = (x + 2)ey , e−y dy = (x + 2)dx, −e−y = x2 + 2x + C, −1 = C, dx 2 1 2 1 2 1 −e−y = x + 2x − 1, e−y = − x − 2x + 1, y = − ln 1 − 2x − x2 2 2 2 31. 2(y − 1) dy = (2t + 1) dt, y 2 − 2y = t2 + t + C, 1 + 2 = C, C = 3, y 2 − 2y = t2 + t + 3 sinh x (sinh x/ cosh x)dx 32. y + y = cosh x, µ = e = eln cosh x = cosh x, cosh x 1 1 1 1 1 (cosh x)y = cosh2 x dx = (cosh 2x + 1)dx = sinh 2x + x + C = sinh x cosh x + x + C, 2 4 2 2 2 1 1 1 1 1 1 y = sinh x + x sech x + C sech x, = C, y = sinh x + x sech x + sech x 2 2 4 2 2 4 dy dx 1 33. (a) = , ln |y| = ln |x| + C1 , x = –0.5y2 2 y y 2x 2 x = –1.5y2 x = y2 x = 2y2 |y| = C|x|1/2 , y 2 = Cx; x = 2.5y2 by inspection y = 0 is also a solution. x = – 3y2 y=0 x –2 2 2 2 (b) 1 = C(2) , C = 1/4, y = x/4 –2
  • 4. January 27, 2005 11:46 L24-ch09 Sheet number 4 Page number 398 black 398 Chapter 9 y y2 x2 3 y = √9 – x 2 34. (a) y dy = −x dx, = − + C1 , y = ± C 2 − x2 2 2 y = √2.25 – x 2 √ (b) y = 25 − x2 y = √0.25 – x 2 x –3 3 y = – √1 – x 2 y = – √4 – x 2 –3 y = – √6.25 – x 2 dy x dx 35. =− 2 , 36. y + 2y = 3et , µ = e2 dt = e2t , y x +4 d 1 ye2t = 3e3t , ye2t = e3t + C, ln |y| = − ln(x2 + 4) + C1 , dt 2 C y = et + Ce−2t y=√ x2 + 4 100 C=2 1.5 C=1 C=0 –2 2 C=2 C=0 C=1 C = –1 –2 2 C = –2 C = –1 C = –2 –100 –1 1 y2 37. (1 − y 2 ) dy = x2 dx, 38. +y dy = dx, ln |y| + = x + C1 , y 2 y3 x3 2 y− = + C1 , x3 + y 3 − 3y = C yey /2 = ±eC1 ex = Cex including C = 0 3 3 y y 3 2 x –5 5 x –2 2 –3 –2 1 1 39. Of the solutions y = , all pass through the point 0, − and thus never through (0, 0). 2x2 − C C A solution of the initial value problem with y(0) = 0 is (by inspection) y = 0. The methods of Example 4 fail because the integrals there become divergent when the point x = 0 is included in the integral. 1 1 40. If y0 = 0 then, proceeding as before, we get C = 2x2 − , C = 2x2 − , and 0 y y0 1 y= 2 − 2x2 + 1/y , which is defined for all x provided 2x2 is never equal to 2x2 − 1/y0 ; this 0 2x 0 0 last condition will be satisfied if and only if 2x0 − 1/y0 < 0, or 0 < 2x0 y0 < 1. If y0 = 0 then y = 0 2 2 is, by inspection, also a solution for all real x.
  • 5. January 27, 2005 11:46 L24-ch09 Sheet number 5 Page number 399 black Exercise Set 9.1 399 dy x2 41. = xe−y , ey dy = x dx, ey = + C, x = 2 when y = 0 so 1 = 2 + C, C = −1, ey = x2 /2 − 1 dx 2 dy 3x2 42. = , 2y dy = 3x2 dx, y 2 = x3 + C, 1 = 1 + C, C = 0, 2 dx 2y y 2 = x3 , y = x3/2 passes through (1, 1). 0 1.6 0 dy 43. = rate in − rate out, where y is the amount of salt at time t, dt dy y 1 dy 1 = (4)(2) − (2) = 8 − y, so + y = 8 and y(0) = 25. dt 50 25 dt 25 (1/25)dt µ=e = et/25 , et/25 y = 8et/25 dt = 200et/25 + C, y = 200 + Ce−t/25 , 25 = 200 + C, C = −175, (a) y = 200 − 175e−t/25 oz (b) when t = 25, y = 200 − 175e−1 ≈ 136 oz dy y 1 dy 1 44. = (5)(20) − (20) = 100 − y, so + y = 100 and y(0) = 0. dt 200 10 dt 10 1 µ=e 10 dt = et/10 , et/10 y = 100et/10 dt = 1000et/10 + C, y = 1000 + Ce−t/10 , 0 = 1000 + C, C = −1000; (a) y = 1000 − 1000e−t/10 lb (b) when t = 30, y = 1000 − 1000e−3 ≈ 950 lb 45. The volume V of the (polluted) water is V (t) = 500 + (20 − 10)t = 500 + 10t; if y(t) is the number of pounds of particulate matter in the water, dy y 1 dy 1 dt then y(0) = 50, and = 0 − 10 = − y, + y = 0; µ = e 50+t = 50 + t; dt V 50 + t dt 50 + t d [(50 + t)y] = 0, (50 + t)y = C, 2500 = 50y(0) = C, y(t) = 2500/(50 + t). dt The tank reaches the point of overflowing when V = 500 + 10t = 1000, t = 50 min, so y = 2500/(50 + 50) = 25 lb. 46. The volume of the lake (in gallons) is V = 264πr2 h = 264π(15)2 3 = 178,200π gals. Let y(t) denote dy y y the number of pounds of mercury salts at time t, then = 0 − 103 = − lb/h and dt V 178.2π dy dt t y0 = 10−5 V = 1.782π lb; =− , ln y = − + C1 , y = Ce−t/(178.2π) , and y 178.2π 178.2π C = y(0) = y0 10−5 V = 1.782π, y = 1.782πe−t/(178.2π) lb of mercury salts. t 1 2 3 4 5 6 7 8 9 10 11 12 y(t) 5.588 5.578 5.568 5.558 5.549 5.539 5.529 5.519 5.509 5.499 5.489 5.480
  • 6. January 27, 2005 11:46 L24-ch09 Sheet number 6 Page number 400 black 400 Chapter 9 dv c d gm ct/m 47. (a) + v = −g, µ = e(c/m) dt = ect/m , vect/m = −gect/m , vect/m = − e + C, dt m dt c gm gm gm gm gm −ct/m v=− +Ce−ct/m , but v0 = v(0) = − +C, C = v0 + ,v = − + v0 + e c c c c c mg (b) Replace with vτ and −ct/m with −gt/vτ in (23). c vτ (c) From Part (b), s(t) = C − vτ t − (v0 + vτ ) e−gt/vτ ; g vτ vτ vτ s0 = s(0) = C −(v0 +vτ ) , C = s0 +(v0 +vτ ) , s(t) = s0 −vτ t+ (v0 +vτ ) 1 − e−gt/vτ g g g 48. Given m = 240, g = 32, vτ = mg/c: with a closed parachute vτ = 120 so c = 64, and with an open parachute vτ = 24, c = 320. (a) Let t denote time elapsed in seconds after the moment of the drop. From Exercise 47(b), while the parachute is closed v(t) = e−gt/vτ (v0 + vτ ) − vτ = e−32t/120 (0 + 120) − 120 = 120 e−4t/15 − 1 and thus v(25) = 120 e−20/3 − 1 ≈ −119.85, so the parachutist is falling at a speed of 119.85 ft/s 120 when the parachute opens. From Exercise 47(c), s(t) = s0 − 120t + 120 1 − e−4t/15 , 32 s(25) = 10000 − 120 · 25 + 450 1 − e−20/3 ≈ 7449.43 ft. (b) If t denotes time elapsed after the parachute opens, then, by Exercise 47(c), 24 s(t) = 7449.43 − 24t + (−119.85 + 24) 1 − e−32t/24 = 0, with the solution (Newton’s 32 Method) t = 307.4 s, so the sky diver is in the air for about 25 + 307.4 = 332.4 s. dI R V (t) d Rt/L V (t) Rt/L 49. + I= , µ = e(R/L) dt = eRt/L , (e I) = e , dt L L dt L t t 1 1 −Rt/L IeRt/L = I(0) + V (u)eRu/L du, I(t) = I(0)e−Rt/L + e V (u)eRu/L du. L 0 L 0 t t 1 −2t (a) I(t) = e 20e2u du = 2e−2t e2u = 2 1 − e−2t A. 5 0 0 (b) lim I(t) = 2 A t→+∞ 50. From Exercise 49 and Endpaper Table #42, t t 1 e2u I(t) = 15e−2t + e−2t 3e2u sin u du = 15e−2t + e−2t (2 sin u − cos u) 3 0 5 0 −2t 1 1 = 15e + (2 sin t − cos t) + e−2t . 5 5 dv ck 51. (a) = − g, v = −c ln(m0 − kt) − gt + C; v = 0 when t = 0 so 0 = −c ln m0 + C, dt m0 − kt m0 C = c ln m0 , v = c ln m0 − c ln(m0 − kt) − gt = c ln − gt. m0 − kt (b) m0 − kt = 0.2m0 when t = 100 so m0 v = 2500 ln − 9.8(100) = 2500 ln 5 − 980 ≈ 3044 m/s. 0.2m0
  • 7. January 27, 2005 11:46 L24-ch09 Sheet number 7 Page number 401 black Exercise Set 9.1 401 dv dv dx dv dv dv 52. (a) By the chain rule, = = v so m = mv . dt dx dt dx dt dx mv m (b) dv = −dx, ln(kv 2 + mg) = −x + C; v = v0 when x = 0 so kv 2 + mg 2k 2 m m m m kv0 + mg C= 2 ln(kv0 + mg), ln(kv 2 + mg) = −x + 2 ln(kv0 + mg), x = ln 2 . 2k 2k 2k 2k kv + mg (c) x = xmax when v = 0 so 2 m kv0 + mg 3.56 × 10−3 (7.3 × 10−6 )(988)2 + (3.56 × 10−3 )(9.8) xmax = ln = ln ≈ 1298 m 2k mg 2(7.3 × 10−6 ) (3.56 × 10−3 )(9.8) dh √ π √ 53. (a) A(h) = π(1)2 = π, π = −0.025 h, √ dh = −0.025dt, 2π h = −0.025t + C; h = 4 when dt h √ √ 0.025 t = 0, so 4π = C, 2π h = −0.025t + 4π, h = 2 − t, h ≈ (2 − 0.003979 t)2 . 2π (b) h = 0 when t ≈ 2/0.003979 ≈ 502.6 s ≈ 8.4 min. 54. (a) A(h) = 6 2 4 − (h − 2)2 = 12 4h − h2 , 2√4 − (h − 2)2 dh √ √ 12 4h − h2 = −0.025 h, 12 4 − h dh = −0.025dt, dt h−2 −8(4 − h)3/2 = −0.025t + C; h = 4 when t = 0 so C = 0, 2 (4 − h) 3/2 = (0.025/8)t, 4 − h = (0.025/8) 2/3 2/3 t , h h ≈ 4 − 0.021375t2/3 ft 8 (b) h = 0 when t = (4 − 0)3/2 = 2560 s ≈ 42.7 min 0.025 dv 1 1 1 1 1 1 55. = − v 2 , 2 dv = − dt, − = − t + C; v = 128 when t = 0 so − = C, dt 32 v 32 v 32 128 1 1 1 128 dx dx 128 − =− t− ,v = cm/s. But v = so = , x = 32 ln(4t + 1) + C1 ; v 32 128 4t + 1 dt dt 4t + 1 x = 0 when t = 0 so C1 = 0, x = 32 ln(4t + 1) cm. dv √ 1 √ 56. = −0.02 v, √ dv = −0.02dt, 2 v = −0.02t + C; v = 9 when t = 0 so 6 = C, dt v √ dx dx 2 v = −0.02t + 6, v = (3 − 0.01t)2 cm/s. But v = so = (3 − 0.01t)2 , dt dt 100 100 x=− (3 − 0.01t)3 + C1 ; x = 0 when t = 0 so C1 = 900, x = 900 − (3 − 0.01t)3 cm. 3 3 dy = − sin x + e−x , y(0) = 1. 2 57. Differentiate to get dx 1 dP d 58. (a) Let y = [H(x) + C] where µ = eP (x) , = p(x), H(x) = µq, and C is an arbitrary µ dx dx constant. Then dy 1 µ p + p(x)y = H (x) − 2 [H(x) + C] + p(x)y = q − [H(x) + C] + p(x)y = q dx µ µ µ
  • 8. January 27, 2005 11:46 L24-ch09 Sheet number 8 Page number 402 black 402 Chapter 9 1 (b) Given the initial value problem, let C = µ(x0 )y0 −H(x0 ). Then y = [H(x)+C] is a solution µ of the initial value problem with y(x0 ) = y0 . This shows that the initial value problem has a solution. To show uniqueness, suppose u(x) also satisfies (5) together with u(x0 ) = y0 . Following the 1 arguments in the text we arrive at u(x) = [H(x) + C] for some constant C. The initial µ condition requires C = µ(x0 )y0 − H(x0 ), and thus u(x) is identical with y(x). dH dy dH dG 59. Suppose that H(y) = G(x) + C. Then = G (x). But = h(y) and = g(x), hence dy dx dy dx y(x) is a solution of (10). 60. (a) y = x and y = −x are both solutions of the given initial value problem. (b) y dy = − x dx, y 2 = −x2 + C; but y(0) = 0, so C = 0. Thus y 2 = −x2 , which is impossible. EXERCISE SET 9.2 y 1. y 1 = xy/4 2. −2 ≤ x ≤ +2 4 −2 ≤ y ≤ +2 3 y 2 2 1 x x 1 2 3 4 –2 2 –2 y 3. y(0) = 2 2 y(0) = 1 x 5 –1 y(0) = –1 dy y 4. + y = 1, µ = e dx = ex , 5. dx 10 d [yex ] = ex , y(1) = 1 dx y(–1) = 0 yex = ex + C, y = 1 + Ce−x x -2 2 (a) −1 = 1 + C, C = −2, y = 1 − 2e−x y(0) = –1 (b) 1 = 1 + C, C = 0, y = 1 (c) 2 = 1 + C, C = 1, y = 1 + e−x –10
  • 9. January 27, 2005 11:46 L24-ch09 Sheet number 9 Page number 403 black Exercise Set 9.2 403 dy d 6. − 2y = −x, µ = e−2 dx = e−2x , ye−2x = −xe−2x , dx dx 1 1 ye−2x = (2x + 1)e−2x + C, y = (2x + 1) + Ce2x 4 4 1 1 (a) 1 = 3/4 + Ce2 , C = 1/(4e2 ), y = (2x + 1) + e2x−2 4 4 1 5 (b) −1 = 1/4 + C, C = −5/4, y = (2x + 1) − e2x 4 4 1 1 (c) 0 = −1/4 + Ce−2 , C = e2 /4, y = (2x + 1) + e2x+2 4 4 +∞ if y0 ≥ 1/4 7. lim y = 1 8. lim y = x→+∞ x→+∞ −∞, if y0 < 1/4 9. (a) IV, since the slope is positive for x > 0 and negative for x < 0. (b) VI, since the slope is positive for y > 0 and negative for y < 0. (c) V, since the slope is always positive. (d) II, since the slope changes sign when crossing the lines y = ±1. (e) I, since the slope can be positive or negative in each quadrant but is not periodic. (f ) III, since the slope is periodic in both x and y. 11. (a) y0 = 1, n 0 1 2 3 4 5 yn+1 = yn + (xn + yn )(0.2) = (xn + 6yn )/5 xn 0 0.2 0.4 0.6 0.8 1.0 yn 1 1.20 1.48 1.86 2.35 2.98 d (b) y − y = x, µ = e−x , ye−x = xe−x , xn 0 0.2 0.4 0.6 0.8 1.0 dx ye−x = −(x + 1)e−x + C, 1 = −1 + C, y(xn) 1 1.24 1.58 2.04 2.65 3.44 C = 2, y = −(x + 1) + 2ex abs. error 0 0.04 0.10 0.19 0.30 0.46 perc. error 0 3 6 9 11 13 y (c) 3 x 0.2 0.4 0.6 0.8 1 12. h = 0.1, yn+1 = (xn + 11yn )/10 n 0 1 2 3 4 5 6 7 8 9 10 xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 yn 1.00 1.10 1.22 1.36 1.53 1.72 1.94 2.20 2.49 2.82 3.19 In Exercise 11, y(1) ≈ 2.98; in Exercise 12, y(1) ≈ 3.19; the true solution is y(1) ≈ 3.44; so the absolute errors are approximately 0.46 and 0.25 respectively.
  • 10. January 27, 2005 11:46 L24-ch09 Sheet number 10 Page number 404 black 404 Chapter 9 1/3 13. y0 = 1, yn+1 = yn + 1 yn 2 y n 0 1 2 3 4 5 6 7 8 9 xn 0 0.5 1 1.5 2 2.5 3 3.5 4 yn 1 1.50 2.11 2.84 3.68 4.64 5.72 6.91 8.23 x 1 2 3 4 14. y0 = 1, yn+1 = yn + (xn − yn )/4 2 y n 0 1 2 3 4 5 6 7 8 xn 2 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 yn 1 0.75 0.67 0.68 0.75 0.86 0.99 1.12 1.24 1.5 1 0.5 x 0.5 1 1.5 2 1 15. y0 = 1, yn+1 = yn + cos yn 2 y n 0 1 2 3 4 tn 0 0.5 1 1.5 2 3 yn 1 1.27 1.42 1.49 1.53 t 3 16. y0 = 0, yn+1 = yn + e−yn /10 y n 0 1 2 3 4 5 6 7 8 9 10 1 tn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 yn 0 0.10 0.19 0.27 0.35 0.42 0.49 0.55 0.60 0.66 0.71 t 1 1 17. h = 1/5, y0 = 1, yn+1 = yn + sin(πn/5) 5 n 0 1 2 3 4 5 tn 0 0.2 0.4 0.6 0.8 1.0 yn 1 1 1.12 1.31 1.50 1.62
  • 11. January 27, 2005 11:46 L24-ch09 Sheet number 11 Page number 405 black Exercise Set 9.2 405 dy = e−x and y(0) = 0. 2 18. (a) By inspection, dx (b) yn+1 = yn + e−xn /20 = yn + e−(n/20) /20 and y20 = 0.7625. From a CAS, y(1) = 0.7468. 2 2 √ 19. (b) y dy = −x dx, y 2 /2 = −x2 /2 + C1 , x2 + y 2 = C; if y(0) = 1 then C = 1 so y(1/2) = 3/2. √ 20. (a) y0 = 1, yn+1 = yn + ( yn /2)∆x √ ∆x = 0.2 : yn+1 = yn + yn /10; y5 ≈ 1.5489 √ ∆x = 0.1 : yn+1 = yn + yn /20; y10 ≈ 1.5556 √ ∆x = 0.05 : yn+1 = yn + yn /40; y20 ≈ 1.5590 dy 1 √ (c) √ = dx, 2 y = x/2 + C, 2 = C, y 2 √ y = x/4 + 1, y = (x/4 + 1)2 , y(1) = 25/16 = 1.5625 21. (a) The slope field does not vary with t, hence along a given parallel line all values are equal since they only depend on the height y. (b) As in part (a), the slope field does not vary with t; it is independent of t. d 1 dy d dy (c) From G(y) − x = C we obtain (G(y) − x) = −1= C = 0, i.e. = f (y). dx f (y) dx dx dx dy √ 22. (a) Separate variables: √ = dx, 2 y = x + C, y = (x/2 + C1 )2 is a parabola that opens up, y and is therefore concave up. √ (b) A curve is concave up if its derivative is increasing, and y = y is increasing. dy dy dy y 3 − 2xy 23. (a) By implicit differentiation, y 3 + 3xy 2 − 2xy − x2 = 0, = 2 . dx dx dx x − 3xy 2 (b) If y(x) is an integral curve of the slope field in part (a), then d {x[y(x)]3 − x2 y(x)} = [y(x)]3 + 3xy(x)2 y (x) − 2xy(x) − x2 y (x) = 0, so the integral curve dx must be of the form x[y(x)]3 − x2 y(x) = C. (c) x[y(x)]3 − x2 y(x) = 2 dy dy dy ey + yex 24. (a) By implicit differentiation, ey + xey + ex + yex = 0, =− y dx dx dx xe + ex (b) If y(x) is an integral curve of the slope field in part (a), then d {xey(x) + y(x)ex } = ey(x) + xy (x)ey(x) + y (x)ex + y(x)ex = 0 from part (a). Thus dx xey(x) + y(x)ex = C. (c) Any integral curve y(x) of the slope field above satisfies xey(x) + y(x)ex = C; if it passes through (1, 1) then e + e = C, so xey(x) + y(x)ex = 2e defines the curve implicitly. 25. Euler’s Method is repeated application of local linear approximation, each step dependent on the previous step. 26. (a) For any n, yn is the value of the discrete approximation at the right endpoint, that, is an approximation of y(1). By increasing the number of subdivisions of the interval [0, 1] one might expect more accuracy, and hence in the limit y(1).
  • 12. January 27, 2005 11:46 L24-ch09 Sheet number 12 Page number 406 black 406 Chapter 9 1 n+1 (b) For a fixed value of n we have, for k = 1, 2, . . . , n, yk = yk−1 + yk−1 = yk−1 In partic- n n 2 n n n+1 n+1 n+1 n+1 ular yn = yn−1 = yn−2 = . . . = y0 = . Consequently, n n n n n n+1 lim yn = lim = e, which is the (correct) value y = ex . n→+∞ n→+∞ n x=1 EXERCISE SET 9.3 dy dy 1. (a) = ky 2 , y(0) = y0 , k > 0 (b) = −ky 2 , y(0) = y0 , k > 0 dt dt ds 1 d2 s ds 3. (a) = s (b) =2 dt 2 dt2 dt 2 dv d2 s ds 4. (a) = −2v 2 (b) = −2 dt dt2 dt dy 5. (a) = 0.02y, y0 = 10,000 (b) y = 10,000e2t/100 dt 1 (c) T = ln 2 ≈ 34.657 h (d) 45,000 = 10,000e2t/100 , 0.02 45,000 t = 50 ln ≈ 75.20 h 10,000 1 1 6. k = ln 2 = ln 2 T 20 dy (a) = ((ln 2)/20)y, y(0) = 1 (b) y(t) = et(ln 2)/20 = 2t/20 dt (c) y(120) = 26 = 64 (d) 1,000,000 = 2t/20 , ln 106 t = 20 ≈ 398.63 min ln 2 dy 1 ln 2 7. (a) = −ky, y(0) = 5.0 × 107 ; 3.83 = T = ln 2, so k = ≈ 0.1810 dt k 3.83 (b) y = 5.0 × 107 e−0.181t (c) y(30) = 5.0 × 107 e−0.1810(30) ≈ 219,000 ln 0.1 (d) y(t) = (0.1)y0 = y0 e−kt , −kt = ln 0.1, t = − = 12.72 days 0.1810 1 1 dy 8. (a) k = ln 2 = ln 2 ≈ 0.0050, so = −0.0050y, y0 = 10. T 140 dt (b) y = 10e−0.0050t (c) 10 weeks = 70 days so y = 10e−0.35 ≈ 7 mg. ln 0.3 (d) 0.3y0 = y0 e−kt , t = − ≈ 240.8 days 0.0050
  • 13. January 27, 2005 11:46 L24-ch09 Sheet number 13 Page number 407 black Exercise Set 9.3 407 1 9. 100e0.02t = 10,000, e0.02t = 100, t = ln 100 ≈ 230 days 0.02 1 10. y = 10,000ekt , but y = 12,000 when t = 5 so 10,000e5k = 12,000, k = ln 1.2. y = 20,000 when 5 ln 2 ln 2 2 = ekt , t = =5 ≈ 19, in the year 2017. k ln 1.2 1 3.5 1 11. y(t) = y0 e−kt = 10.0e−kt , 3.5 = 10.0e−k(5) , k = − ln ≈ 0.2100, T = ln 2 ≈ 3.30 days 5 10.0 k 1 12. y = y0 e−kt , 0.7y0 = y0 e−5k , k = − ln 0.7 ≈ 0.07 5 ln 2 (a) T = ≈ 9.90 yr k y (b) y(t) ≈ y0 e−0.07t , ≈ e−0.07t , so e−0.07t × 100 percent will remain. y0 ln 2 13. (a) k = ≈ 0.1155; y ≈ 3e0.1155t (b) y(t) = 4e0.02t 6 1 (c) y = y0 ekt , 1 = y0 ek , 200 = y0 e10k . Divide: 200 = e9k , k = ln 200 ≈ 0.5887, 9 y ≈ y0 e0.5887t ; also y(1) = 1, so y0 = e−0.5887 ≈ 0.5550, y ≈ 0.5550e0.5887t . ln 2 (d) k = ≈ 0.1155, 2 = y(1) ≈ y0 e0.1155 , y0 ≈ 2e−0.1155 ≈ 1.7818, y ≈ 1.7818e0.1155t T ln 2 14. (a) k = ≈ 0.1386, y ≈ 10e−0.1386t (b) y = 10e−0.015t T 1 (c) 100 = y0 e−k , 1 = y0 e−10k . Divide: e9k = 100, k = ln 100 ≈ 0.5117; 9 y0 = e10k ≈ e5.117 ≈ 166.83, y = 166.83e−0.5117t . ln 2 (d) k = ≈ 0.1386, 10 = y(1) ≈ y0 e−0.1386 , y0 ≈ 10e0.1386 ≈ 11.4866, y ≈ 11.4866e−0.1386t T 16. (a) None; the half-life is independent of the initial amount. (b) kT = ln 2, so T is inversely proportional to k. ln 2 17. (a) T = ; and ln 2 ≈ 0.6931. If k is measured in percent, k = 100k, k ln 2 69.31 70 then T = ≈ ≈ . k k k (b) 70 yr (c) 20 yr (d) 7% 18. Let y = y0 ekt with y = y1 when t = t1 and y = 3y1 when t = t1 + T ; then y0 ekt1 = y1 (i) and 1 y0 ek(t1 +T ) = 3y1 (ii). Divide (ii) by (i) to get ekT = 3, T = ln 3. k y(t) ln 0.27 19. From (11), y(t) = y0 e−0.000121t . If 0.27 = = e−0.000121t then t = − ≈ 10,820 yr, and y0 0.000121 y(t) ln 0.30 if 0.30 = then t = − ≈ 9950, or roughly between 9000 B.C. and 8000 B.C. y0 0.000121
  • 14. January 27, 2005 11:46 L24-ch09 Sheet number 14 Page number 408 black 408 Chapter 9 20. (a) 1 (b) t = 1988 yields y/y0 = e−0.000121(1988) ≈ 79%. 0 50000 0 ln 2 21. (a) Let T1 = 5730 − 40 = 5690, k1 = ≈ 0.00012182; T2 = 5730 + 40 = 5770, k2 ≈ 0.00012013. T1 1 y 1 With y/y0 = 0.92, 0.93, t1 = − ln = 684.5, 595.7; t2 = − ln(y/y0 ) = 694.1, 604.1; in k1 y0 k2 1988 the shroud was at most 695 years old, which places its creation in or after the year 1293. (b) Suppose T is the true half-life of carbon-14 and T1 = T (1 + r/100) is the false half-life. Then ln 2 ln 2 with k = , k1 = we have the formulae y(t) = y0 e−kt , y1 (t) = y0 e−k1 t . At a certain T T1 point in time a reading of the carbon-14 is taken resulting in a certain value y, which in the case of the true formula is given by y = y(t) for some t, and in the case of the false formula is given by y = y1 (t1 ) for some t1 . 1 y If the true formula is used then the time t since the beginning is given by t = − ln . If k y0 1 y the false formula is used we get a false value t1 = − ln ; note that in both cases the k1 y0 value y/y0 is the same. Thus t1 /t = k/k1 = T1 /T = 1 + r/100, so the percentage error in the time to be measured is the same as the percentage error in the half-life. dp 22. (a) = −kp, p(0) = p0 dh (b) p0 = 1, so p = e−kh , but p = 0.83 when h = 5000 thus e−5000k = 0.83, ln 0.83 k=− ≈ 0.0000373, p ≈ e−0.0000373h atm. 5000 23. (a) y = y0 bt = y0 et ln b = y0 ekt with k = ln b > 0 since b > 1. (b) y = y0 bt = y0 et ln b = y0 e−kt with k = − ln b > 0 since 0 < b < 1. (c) y = 4(2t ) = 4et ln 2 (d) y = 4(0.5t ) = 4et ln 0.5 = 4e−t ln 2 ln(y1 /y0 ) 24. If y = y0 ekt and y = y1 = y0 ekt1 then y1 /y0 = ekt1 , k = ; if y = y0 e−kt and t1 ln(y1 /y0 ) y = y1 = y0 e−kt1 then y1 /y0 = e−kt1 , k = − . t1 1 25. (a) If y = y0 ekt , then y1 = y0 ekt1 , y2 = y0 ekt2 , divide: y2 /y1 = ek(t2 −t1 ) , k = ln(y2 /y1 ), t2 − t1 ln 2 (t2 − t1 ) ln 2 T = = . If y = y0 e−kt , then y1 = y0 e−kt1 , y2 = y0 e−kt2 , k ln(y2 /y1 ) 1 ln 2 (t2 − t1 ) ln 2 y2 /y1 = e−k(t2 −t1 ) , k = − ln(y2 /y1 ), T = =− . t2 − t1 k ln(y2 /y1 ) (t2 − t1 ) ln 2 In either case, T is positive, so T = . ln(y2 /y1 ) ln 2 (b) In Part (a) assume t2 = t1 + 1 and y2 = 1.25y1 . Then T = ≈ 3.1 h. ln 1.25
  • 15. January 27, 2005 11:46 L24-ch09 Sheet number 15 Page number 409 black Exercise Set 9.3 409 26. (a) In t years the interest will be compounded nt times at an interest rate of r/n each time. The value at the end of 1 interval is P + (r/n)P = P (1 + r/n), at the end of 2 intervals it is P (1 + r/n) + (r/n)P (1 + r/n) = P (1 + r/n)2 , and continuing in this fashion the value at the end of nt intervals is P (1 + r/n)nt . (b) Let x = r/n, then n = r/x and lim P (1 + r/n)nt = lim P (1 + x)rt/x = lim P [(1 + x)1/x ]rt = P ert . n→+∞ + x→0 + x→0 rt (c) The rate of increase is dA/dt = rP e = rA. 27. (a) A = 1000e(0.08)(5) = 1000e0.4 ≈ $1, 491.82 (b) P e(0.08)(10) = 10, 000, P e0.8 = 10, 000, P = 10, 000e−0.8 ≈ $4, 493.29 (c) From (11), with k = r = 0.08, T = (ln 2)/0.08 ≈ 8.7 years. 28. Let r be the annual interest rate when compounded continuously and r1 the effective annual interest rate. Then an amount P invested at the beginning of the year is worth P er = P (1 + r1 ) at the end of the year, and r1 = er − 1. dT dT 29. (a) = −k(T − 21), T (0) = 95, = −k dt, ln(T − 21) = −kt + C1 , dt T − 21 T = 21 + eC1 e−kt = 21 + Ce−kt , 95 = T (0) = 21 + C, C = 74, T = 21 + 74e−kt t 64 32 32 (b) 85 = T (1) = 21 + 74e−k , k = − ln = − ln , T = 21 + 74et ln(32/37) = 21 + 74 , 74 37 37 t 30 32 ln(30/74) T = 51 when = , t= ≈ 6.22 min 74 37 ln(32/37) dT 30. = k(70 − T ), T (0) = 40; − ln(70 − T ) = kt + C, 70 − T = e−kt e−C , T = 40 when t = 0, so dt 70 − 52 5 30 = e−C , T = 70 − 30e−kt ; 52 = T (1) = 70 − 30e−k , k = − ln = ln ≈ 0.5, 30 3 T ≈ 70 − 30e−0.5t 31. Let T denote the body temperature of McHam’s body at time t, the number of hours elapsed after dT dT 10:06 P.M.; then = −k(T − 72), = −kdt, ln(T − 72) = −kt + C, T = 72 + eC e−kt , dt T − 72 3.6 77.9 = 72 + eC , eC = 5.9, T = 72 + 5.9e−kt , 75.6 = 72 + 5.9e−k , k = − ln ≈ 0.4940, 5.9 ln(26.6/5.9) T = 72+5.9e−0.4940t . McHam’s body temperature was last 98.6◦ when t = − ≈ −3.05, 0.4940 so around 3 hours and 3 minutes before 10:06; the death took place at approximately 7:03 P.M., while Moore was on stage. dT dT 32. If T0 < Ta then = k(Ta − T ) where k > 0. If T0 > Ta then = −k(T − Ta ) where k > 0; dt dt both cases yield T (t) = Ta + (T0 − Ta )e−kt with k > 0. dy y 33. (a) Both y(t) = 0 and y(t) = L are solutions of the logistic equation = k 1− y as both dt L sides of the equation are then zero. dy (b) If y is very small relative to L then y/L ≈ 0, and the logistic equation becomes ≈ ky, dt which is a form of the equation for exponential growth.
  • 16. January 27, 2005 11:46 L24-ch09 Sheet number 16 Page number 410 black 410 Chapter 9 (c) All the terms on the right-hand-side of the logistic equation are positive, except perhaps y 1 − , which is positive if y < L and negative if y > L. L (d) The rate of change of y is a function of only one variable, y itself. The right-hand-side of the differential equation is a quadratic equation in y, which can be thought of as a parabola in y which opens down and crosses the y-axis at y = 0 and y = L. The parabola thus takes its maximum midway between the two y-intercepts, namely at y = L/2. dy y 1 1 1 k 34. (a) Given = k 1− y, separation of variables yields + dy = dt so that dt L L y L−y L ln y − ln(L − y) = kt + C. The initial condition yields y0 y y0 ln y0 − ln(L − y0 ) = C, C = ln and thus ln = kt + ln , L − y0 L−y L − y0 y y0 y0 L = ekt + , with solution y(t) = . L−y L − y0 y0 + (L − y0 )e−kt y0 L (b) From part (a), lim y(t) = =L t→+∞ y0 + (L − y0 ) lim e−kt t→+∞ 35. (a) k = L = 1, y0 = 2 (b) k = L = y0 = 1 2 2 0 2 0 2 0 0 (c) k = y0 = 1, L = 2 (d) k = y0 = 1, L = 4 2 4 0 5 0 12 0 0 36. y0 = 400, L ≈ 1000, and y(300) ≈ 700; solve to obtain k ≈ 0.042 2·8 16 37. y0 ≈ 2, L ≈ 8; since the curve y = −kt passes through the point (2, 4), 4 = , 2 + 6e 2 + 6e−2k 1 6e−2k = 2, k = ln 3 ≈ 0.5493. 2
  • 17. January 27, 2005 11:46 L24-ch09 Sheet number 17 Page number 411 black Exercise Set 9.4 411 400,000 38. y0 ≈ 400, L ≈ 1000; since the curve y = passes through the point (200, 600), 400 + 600e−kt 400,000 800 1 600 = , 600e−200k = , k= ln 2.25 ≈ 0.00405. 400 + 600e−200k 3 200 39. (a) y0 = 5 (b) L = 12 (c) k = 1 60 (d) L/2 = 6 = , 5 + 7e−t = 10, t = − ln(5/7) ≈ 0.3365 5 + 7e−t dy 1 (e) = y(12 − y), y(0) = 5 dt 12 40. (a) y0 = 1 (b) L = 1000 (c) k = 0.9 1000 1 (d) 750 = −0.9t , 3(1 + 999e−0.9t ) = 4, t = ln(3 · 999) ≈ 8.8949 1 + 999e 0.9 dy 0.9 (e) = y(1000 − y), y(0) = 1 dt 1000 41. Assume y(t) students have had the flu t days after semester break. Then y(0) = 20, y(5) = 35. dy (a) = ky(L − y) = ky(1000 − y), y0 = 20 dt 20000 1000 (b) Part (a) has solution y = −kt = ; 20 + 980e 1 + 49e−kt 1000 1000 35 = −5k , k = 0.115, y ≈ . 1 + 49e 1 + 49e−0.115t (c) t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 y(t) 20 22 25 28 31 35 39 44 49 54 61 67 75 83 93 y (d) 100 75 50 25 t 3 6 9 12 EXERCISE SET 9.4 1. (a) y = e−2x , y = −2e−2x , y = 4e−2x ; y + y − 2y = 0 y = ex , y = ex , y = ex ; y + y − 2y = 0. (b) y = c1 e−2x + c2 ex , y = −2c1 e−2x + c2 ex , y = 4c1 e−2x + c2 ex ; y + y − 2y = 0 2. (a) y = e−2x , y = −2e−2x , y = 4e−2x ; y + 4y + 4y = 0 y = xe−2x , y = (1 − 2x)e−2x , y = (4x − 4)e−2x ; y + 4y + 4y = 0. (b) y = c1 e−2x + c2 xe−2x , y = −2c1 e−2x + c2 (1 − 2x)e−2x , y = 4c1 e−2x + c2 (4x − 4)e−2x ; y + 4y + 4y = 0.
  • 18. January 27, 2005 11:46 L24-ch09 Sheet number 18 Page number 412 black 412 Chapter 9 3. m2 + 3m − 4 = 0, (m − 1)(m + 4) = 0; m = 1, −4 so y = c1 ex + c2 e−4x . 4. m2 + 5m + 6 = 0, (m + 2)(m + 3) = 0; m = −2, −3 so y = c1 e−2x + c2 e−3x . 5. m2 − 2m + 1 = 0, (m − 1)2 = 0; m = 1, so y = c1 ex + c2 xex . 6. m2 − 6m + 9 = 0, (m − 3)2 = 0; m = 3 so y = c1 e3x + c2 xe3x . 7. m2 + 1 = 0, m = ±i so y = c1 cos x + c2 sin x. √ √ √ 8. m2 + 5 = 0, m = ± 5 i so y = c1 cos 5 x + c2 sin 5 x. 9. m2 − m = 0, m(m − 1) = 0; m = 0, 1 so y = c1 + c2 ex . 10. m2 + 3m = 0, m(m + 3) = 0; m = 0, −3 so y = c1 + c2 e−3x . 11. m2 − 4m + 4 = 0, (m − 2)2 = 0; m = 2 so y = c1 e2t + c2 te2t . 12. m2 − 10m + 25 = 0, (m − 5)2 = 0; m = 5 so y = c1 e5t + c2 te5t . 13. m2 + 4m + 13 = 0, m = −2 ± 3i so y = e−2x (c1 cos 3x + c2 sin 3x). 14. m2 − 6m + 25 = 0, m = 3 ± 4i so y = e3x (c1 cos 4x + c2 sin 4x). 15. 8m2 − 2m − 1 = 0, (4m + 1)(2m − 1) = 0; m = −1/4, 1/2 so y = c1 e−x/4 + c2 ex/2 . 16. 9m2 − 6m + 1 = 0, (3m − 1)2 = 0; m = 1/3 so y = c1 ex/3 + c2 xex/3 . 17. m2 + 2m − 3 = 0, (m + 3)(m − 1) = 0; m = −3, 1 so y = c1 e−3x + c2 ex and y = −3c1 e−3x + c2 ex . Solve the system c1 + c2 = 1, −3c1 + c2 = 9 to get c1 = −2, c2 = 3 so y = −2e−3x + 3ex . 18. m2 − 6m − 7 = 0, (m + 1)(m − 7) = 0; m = −1, 7 so y = c1 e−x + c2 e7x , y = −c1 e−x + 7c2 e7x . Solve the system c1 + c2 = 5, −c1 + 7c2 = 3 to get c1 = 4, c2 = 1 so y = 4e−x + e7x . 19. m2 + 6m + 9 = 0, (m + 3)2 = 0; m = −3 so y = (c1 + c2 x)e−3x and y = (−3c1 + c2 − 3c2 x)e−3x . Solve the system c1 = 2, −3c1 + c2 = −5 to get c1 = 2, c2 = 1 so y = (2 + x)e−3x . √ √ √ 20. m2 + 4m + 1 = 0, m = −2 ± 3 so y = c1 e(−2+ 3)x + c2 e(−2− 3)x , √ √ √ √ y = (−2 + 3)c1 e(−2+ 3)x + (−2 − 3)c2 e(−2− 3)x . Solve the system c1 + c2 = 5, √ √ √ √ (−2 + 3)c1 + (−2 − 3)c2 = 4 to get c1 = 5 + 7 3, c2 = 5 − 7 3 so 2 3 2 3 √ √ √ √ y = 5 + 7 3 e(−2+ 3)x + 5 − 7 3 e(−2− 3)x . 2 3 2 3 21. m2 + 4m + 5 = 0, m = −2 ± i so y = e−2x (c1 cos x + c2 sin x), y = e−2x [(c2 − 2c1 ) cos x − (c1 + 2c2 ) sin x]. Solve the system c1 = −3, c2 − 2c1 = 0 to get c1 = −3, c2 = −6 so y = −e−2x (3 cos x + 6 sin x). 22. m2 − 6m + 13 = 0, m = 3 ± 2i so y = e3x (c1 cos 2x + c2 sin 2x), y = e3x [(3c1 + 2c2 ) cos 2x + (−2c1 + 3c2 ) sin 2x]. Solve the system c1 = −2, 3c1 + 2c2 = 0 to get c1 = −2, c2 = 3 so y = e3x (−2 cos 2x + 3 sin 2x). 23. (a) m = 5, −2 so (m − 5)(m + 2) = 0, m2 − 3m − 10 = 0; y − 3y − 10y = 0. (b) m = 4, 4 so (m − 4)2 = 0, m2 − 8m + 16 = 0; y − 8y + 16y = 0. (c) m = −1 ± 4i so (m + 1 − 4i)(m + 1 + 4i) = 0, m2 + 2m + 17 = 0; y + 2y + 17y = 0.
  • 19. January 27, 2005 11:46 L24-ch09 Sheet number 19 Page number 413 black Exercise Set 9.4 413 24. c1 ex + c2 e−x is the general solution, but cosh x = 1 ex + 1 e−x and sinh x = 1 ex − 1 e−x 2 2 2 2 so cosh x and sinh x are also solutions. √ 25. m2 + km + k = 0, m = −k ± k 2 − 4k /2 (a) k 2 − 4k > 0, k(k − 4) > 0; k < 0 or k > 4 (b) k 2 − 4k = 0; k = 0, 4 (c) k 2 − 4k < 0, k(k − 4) < 0; 0 < k < 4 dy dy dz 1 dy 26. z = ln x; = = and dx dz dx x dz d2 y d dy d 1 dy 1 d2 y dz 1 dy 1 d2 y 1 dy 2 = = = 2 dx − 2 = 2 2 − 2 , dx dx dx dx x dz x dz x dz x dz x dz d2 y dy substitute into the original equation to get 2 + (p − 1) + qy = 0. dz dz d2 y dy 27. (a) +2 + 2y = 0, m2 + 2m + 2 = 0; m = −1 ± i so dz 2 dz 1 y = e−z (c1 cos z + c2 sin z) = [c1 cos(ln x) + c2 sin(ln x)]. x d2 y dy √ (b) 2 −2 − 2y = 0, m2 − 2m − 2 = 0; m = 1 ± 3 so dz dz √ √ √ √ y = c1 e(1+ 3)z + c2 e(1−3)z = c1 x1+ 3 + c2 x1−3 28. m2 + pm + q = 0, m = 1 (−p ± p2 − 4q ). If 0 < q < p2 /4 then y = c1 em1 x + c2 em2 x where 2 m1 < 0 and m2 < 0, if q = p2 /4 then y = c1 e−px/2 + c2 xe−px/2 , if q > p2 /4 then y = e−px/2 (c1 cos kx + c2 sin kx) where k = 1 4q − p2 . In all cases lim y(x) = 0. 2 x→+∞ 29. (a) Neither is a constant multiple of the other, since, e.g. if y1 = ky2 then em1 x = kem2 x , e(m1 −m2 )x = k. But the right hand side is constant, and the left hand side is constant only if m1 = m2 , which is false. (b) If y1 = ky2 then emx = kxemx , kx = 1 which is impossible. If y2 = y1 then xemx = kemx , x = k which is impossible. 30. y1 = eax cos bx, y1 = eax (a cos bx − b sin bx), y1 = eax [(a2 − b2 ) cos bx − 2ab sin bx] so y1 + py1 + qy1 = eax [(a2 − b2 + ap + q) cos bx − (2ab + bp) sin bx]. But a = − 1 p and b = 1 4q − p2 2 2 so a2 − b2 + ap + q = 0 and 2ab + bp = 0 thus y1 + py1 + qy1 = 0. Similarly, y2 = eax sin bx is also a solution. Since y1 /y2 = cot bx and y2 /y1 = tan bx it is clear that the two solutions are linearly independent. 31. (a) The general solution is c1 eµx + c2 emx ; let c1 = 1/(µ − m), c2 = −1/(µ − m). eµx − emx (b) lim = lim xeµx = xemx . µ→m µ−m µ→m 32. (a) If λ = 0, then y = 0, y = c1 + c2 x. Use y(0) = 0 and y(π) = 0 to get c1 = c2 = 0. If λ < 0, then let λ = −a2 where a > 0 so y − a2 y = 0, y = c1 eax + c2 e−ax . Use y(0) = 0 and y(π) = 0 to get c1 = c2 = 0. √ √ √ (b) If λ > 0, then m2 + λ = 0, m2 = −λ = λi2 , m = ± λi, y √ c1 cos λ x + c2 sin λ x. If √ = √ y(0) = √ and y(π) = 0, then c1 = 0 and c1 cos π λ + c2 sin π λ = 0 so c2 sin π λ = 0. But 0 √ √ c2 sin π λ = 0 for arbitrary values of c2 if sin π λ = 0, π λ = nπ, λ = n2 for n = 1, 2, 3, . . ., otherwise c2 = 0.
  • 20. January 27, 2005 11:46 L24-ch09 Sheet number 20 Page number 414 black 414 Chapter 9 33. k/M = 0.5/2 = 0.25 (a) From (20), y = 0.4 cos(t/2) (b) T = 2π · 2 = 4π s, f = 1/T = 1/(4π) Hz (c) y (d) y = 0 at the equilibrium position, 0.3 so t/2 = π/2, t = π s. (e) t/2 = 2π at the maximum position below x the equlibrium position, so t = 4π s. o 4c –0.3 √ 34. 64 = w = −M g, M = 2, k/M = 0.25/2 = 1/8, k/M = 1/(2 2) √ (a) From (20), y = cos(t/(2 2)) M √ √ (b) T = 2π = 2π(2 2) = 4π 2 s, k √ f = 1/T = 1/(4π 2) Hz (c) y 1 t 2p 6p 10p –1 √ √ (d) y = 0 at the equilibrium position, so t/(2 2) = π/2, t = π 2 s √ √ (e) t/(2 2) = π, t = 2π 2 s 35. l = 0.05, k/M = g/l = 9.8/0.05 = 196 s−2 (a) From (20), y = −0.12 cos 14t. (b) T = 2π M/k = 2π/14 = π/7 s, f = 7/π Hz y (c) (d) 14t = π/2, t = π/28 s 0.15 (e) 14t = π, t = π/14 s t π 2π 7 7 –0.15 36. l = 2, k/M = g/l = 32/2 = 16, k/M = 4 (a) From (20), y = −2 cos 4t. (b) T = 2π M/k = 2π/4 = π/2 s; f = 1/T = 2/π Hz
  • 21. January 27, 2005 11:46 L24-ch09 Sheet number 21 Page number 415 black Exercise Set 9.4 415 (c) y (d) 4t = π/2, t = π/8 s 2 (e) 4t = π, t = π/4 s t 3 6 –2 37. (a) From the graph it appears that the maximum velocity occurs at the equilibrium position, t = π/8. dv dy dv To show this mathematically, vmax occurs when = 0. But v = = 8 sin 4t, = dt dt dt dv 32 cos 4t, = 0 when 4t = π/2, t = π/8. dt (b) From the graph it appears that the minimum velocity occurs at the equilibrium position as the dv block is falling, i.e. t = 3π/8. Mathematically, = 32 cos 4t = 0 when 4t = π/2, 3π/2, . . .. dt When 4t = 3π/2 the block is falling, so t = 3π/8. M 4π 2 4π 2 w 4π 2 w 4π 2 w + 4 38. (a) T = 2π , k = 2 M = 2 , so k = = , 25w = 9(w + 4), k T T g g 9 g 25 9 4π 2 w 4π 2 1 π2 25w = 9w + 36, w = ,k = = = 4 g 9 32 4 32 9 (b) From Part (a), w = 4 39. By Hooke’s Law, F (t) = −kx(t), since the only force is the restoring force of the spring. Newton’s Second Law gives F (t) = M x (t), so M x (t) + kx(t) = 0, x(0) = x0 , x (0) = 0. k k 40. 0 = v(0) = y (0) = c2 , so c2 = 0; y0 = y(0) = c1 , so y = y0 cos t. M M k M 2πt 41. y = y0 cos t, T = 2π , y = y0 cos M k T 2π 2πt (a) v = y (t) = − y0 sin has maximum magnitude 2π|y0 |/T and occurs when T T 2πt/T = nπ + π/2, y = y0 cos(nπ + π/2) = 0. 4π 2 2πt (b) a = y (t) = − y0 cos has maximum magnitude 4π 2 |y0 |/T 2 and occurs when T2 T 2πt/T = jπ, y = y0 cos jπ = ±y0 . d 1 1 k 42. k[y(t)]2 + M (y (t))2 = ky(t)y (t)+M y (t)y (t) = M y (t)[ y(t)+y (t)] = 0, as required. dt 2 2 M