SlideShare a Scribd company logo
RFIC Design
Lecture 5:
Passive devices
RFIC Design
5: Passive devices Slide 2
Inductor and Capacitor
RFIC Design
5: Passive devices Slide 3
Inductors
 Different geometry of the spiral inductors
RFIC Design
5: Passive devices Slide 4
Inductance
 Inductance :
– Foundry model
– Simulated by EM
– Empirical equation
RFIC Design
5: Passive devices Slide 5
Monolithic Inductor
 General consideration for monolithic inductors
– Q factor
– Resonant frequency
– In band loss
– Inductance
– Area
– Modeling accuracy
RFIC Design
5: Passive devices Slide 6
Inductor Physical Model
 Physical model
– Metal loss
– Substrate loss
Cp
Ls Rs
Cox1 Cox2
Csub1
Rsub1
Rsub2
Csub2
RFIC Design
5: Passive devices Slide 7
Q factor enhancement
 The power loss degrades Q
 Reducing Metal loss increases Q
– Bond wire
– Thick metal
– High conductivity metal (Cu)
 However, reducing metal loss only help in low
frequency ( ~ <2GHz)
– Skin effect
– Substrate loss dominates at high frequency
7
0 2 2
ln 0.75 2 10 ln 0.75
2
u l l l
L
r r


   
     
    
   
   
 
   
     
RFIC Design
5: Passive devices Slide 8
Skin effect
m = permeability (4 * 10-7 H/m),
 = pi
ds = skin depth (m)
r = resistivity (W*m)
w = radian frequency = 2*f (Hz)
Copper at 10GHz
RFIC Design
5: Passive devices Slide 9
Q factor enhancement
 Reducing substrate loss increases Q
– Pattern ground shield
– Silicon bulk micromachined inductor
– Substrate thinning
RFIC Design
5: Passive devices Slide 10
High Q Inductor
 Reduce substrate loss -> enhance Q at high
frequency
 Reduce metal loss -> enhance Q at low frequency
 Overall Q enhancement -> combine two approaches
•Electroplated thik
copper
•Micromaching
RFIC Design
5: Passive devices Slide 11
all-copper solenoid inductor
 solenoid inductor by MEMS techniques
RFIC Design
5: Passive devices Slide 12
Stack inductor
 High inductance approach
– Increase N
– Stacked inductor
– 3D inductor
RFIC Design
5: Passive devices Slide 13
Varactor
RFIC Design
5: Passive devices Slide 14
Junction Varactor
 Capacitance :
 (i) When the junction is forward biased
P-sub
P N
N+
P+
T
D
T
diff
V
I
C 

junc
diff
total C
C
C 

m
R
jD
R
junc
V
A
C
V
C










1
)
(
D
A
D
A
o
r
jD
N
N
N
N
q
C




2


0.0 0.5 1.0 1.5 2.0 2.5
-0.5 3.0
4
5
6
7
8
3
9
Vdc (V)
Cs
(pH)
RFIC Design
5: Passive devices Slide 15
Accumulation-mode Varactor
s
s
c
cap
s
C
R
Q



w
,
,
1
Depletion mode
accumulation mode
RFIC Design
5: Passive devices Slide 16
Q and tuning range vs bias
-3 -2 -1 0 1 2 3
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Capacitance
(
pF
)
Vgs
20
40
60
80
100
120
140
160
Gate length: 0.18mm
capacitance
Q factor
Q
factor
RFIC Design
5: Passive devices Slide 17
Q factor vs Gate Length
0 1 2 3 4 5 6
-50
0
50
100
150
200
250
300
350
400
450
Vgs=0
Gate Length: 0.18mm
Gate Length: 0.5mm
Gate Length: 1mm
Q
factor
frequency ( GHz )
RFIC Design
5: Passive devices Slide 18
Capacitor
RFIC Design
5: Passive devices Slide 19
Structure
 MiM Capacitor
RFIC Design
5: Passive devices Slide 20
Layout & Model
 MiM Capacitor
RFIC Design
Common Centroid
5: Passive devices Slide 21
RFIC Design
Matching of passive devices
5: Passive devices Slide 22
RFIC Design
5: Passive devices Slide 23
Resistor
RFIC Design
5: Passive devices Slide 24
Resistor catalog
 N+ diffused resistor w/o salicide
 P+ diffused resistor w/o salicide
 N+ diffused resistor w/i salicide
 P+ diffused resistor w/i salicide
 N-Well resistor
 N+ Poly resistor w/salicide
 P+ Poly resistor w/salicide
 N+ Poly resistor w/o salicide
 P+ Poly resistor w/o salicide
 P- Poly HRI resistor w/o salicide
 Metal 1 resistor
 Metal 2 resistor
 Metal 3 resistor
 Metal 4 resistor
 Metal 5 resistor
 Top metal resistor
RFIC Design
5: Passive devices Slide 25
Resistance
 r = resistivity (W*m)
 R = sheet resistance (W/)
–  is a dimensionless unit(!)
 Count number of squares
– R = R * (# of squares)
l
w
t
1RectangularBlock
R = R (L/W) W
4RectangularBlocks
R =R (2L/2W) W
= R (L/W) W
t
l
w w
l
l l
R R
t w w
r
 
RFIC Design
5: Passive devices Slide 26
Well Resistor
 Well Resistor
• Well Resistor
• Large Rsh without extra
mask
• Rsh : 450 or 900
• Positive TC
• Large TC
• Large variation
RFIC Design
5: Passive devices Slide 27
Diffusion Resistor
 P+/N+ Diffused resistor w/o and w/i salicide
• w/o and w/i salicide
• Rsh : 2~10W/□
•Negative TC
• Large variation
• rarely used
RFIC Design
5: Passive devices Slide 28
Poly Resistor
 P+/N+ Poly resistor w/o and w/i salicide
• w/o & w/i salicide
• Rsh : ~ 300 & ~ 8
• Positive TC
• Smaller variation
• Smaller parasitic -> RF
RFIC Design
5: Passive devices Slide 29
HRI Resistor
 P- Poly HRI resistor w/o salicide
• w/o salicide
• Rsh : > 1000
• Positive TC
• High resistance
• Smaller parasitic -> RF
RFIC Design
5: Passive devices Slide 30
R L C network
RFIC Design
5: Passive devices Slide 31
Passive device
 R-L and R-C network
RFIC Design
5: Passive devices Slide 32
Definition of Q
For an inductor :
Cycle
n
Oscillatio
one
in
Loss
Energy
Energy
Capacitive
Stored
Maxium
-
Energy
Magnetic
Stored
Maximum
Q 
 π
2
For a capacitor :
Cycle
n
Oscillatio
one
in
Loss
Energy
Energy
Magnetic
Stored
Maxium
-
Energy
Capactive
Stored
Maximum
Q 
 π
2
For a LC Tank :
Cycle
n
Oscillatio
one
in
Loss
Energy
Energy
Magnetic
Stored
average
Energy
Capactive
Stored
average
Q


 π
2
RFIC Design
5: Passive devices Slide 33
Series R & L
 Series R & L
 Physical inductor model
Ls
Rl,s
Ip
P
P
ind L
I
E
2
max
,
2
1


f
R
I
T
R
I
E s
l
p
s
l
p
R
dis
1
2
1
2
1
,
2
,
2
, 







s
l
s
s
l
p
s
P
R
dis
ind
ind
s
R
L
f
R
I
L
I
E
E
Q
,
,
2
2
,
max
,
,
1
2
1
2
1
2
2










w


RFIC Design
5: Passive devices Slide 34
Parallel R & L
 Parallel R & L
 Tank in the VCO
LP
Ip
Rl,p
Vp
P
P
ind L
I
E
2
max
,
2
1


f
R
L
I
T
R
V
E
p
l
P
P
p
l
p
R
dis
1
)
(
2
1
2
1
,
2
,
2
, 







w
P
p
l
p
l
P
P
P
P
R
dis
ind
ind
p
L
R
f
R
L
I
L
I
E
E
Q











w
w


,
,
2
2
,
max
,
,
1
)
(
2
1
2
1
2
2
RFIC Design
5: Passive devices Slide 35
Series and parallel transformation
 Series LR to parallel transformation
 
 
 
2 2
0 0
0 0 2
2
0
( ) || P P P
S S P P
P P
L j L R
j L R j L R
R L
w w
w w
w

  

Ls
Rl,s
Ip
LP
Ip
Rl,p
Vp
0
0
S
P
P S
L
R
Q
L R
w
w
  2
( 1)
P S
R R Q
 
2
2
1
P S
Q
L L
Q
 

  
 
RFIC Design
5: Passive devices Slide 36
Capacitor network
 Parallel R & C
 Series R & C
CP
Vp
Rc,p
Cs
Rc,s
Vp
s
s
c
cap
s
C
R
Q



w
,
,
1
P
p
c
cap
p C
R
Q 

 w
,
,
RFIC Design
5: Passive devices Slide 37
Series and parallel transformation
 Series RC to parallel transformation
 
2
2
2
1
1
P S
P S
R R Q
Q
C C
Q
 
 
  

 
CP
Vp
Rc,p
Vp
CP
Vp
,p
Cs
Rc,s
Vp
 
2
2
2
1
1
P S
P S
R R Q
Q
X X
Q
 
 

  
 
RFIC Design
5: Passive devices Slide 38
Parallel RLC tank
 Parallel RLC tank Impedance
– Inductive admittance at low frequency
– Capacitive admittance at high frequency
i(t) R C L V
+
-
RFIC Design
5: Passive devices Slide 39
Parallel RLC tank
 The Q factor or quality factor is a measure of the
"quality" of a resonant system.
 General Definition : For resonant system
 Hence :
 
2
2
1
2
1
2
tot pk
avg pk
E C I R
P I R


energy stored
average power dissipated
Q w

 
2
0
2
1
1 2
1 /
2
pk
tot
avg
pk
C I R
E R
Q
P LC L C
I R
w
  
RFIC Design
5: Passive devices Slide 40
 The impedance looking into RLC resonator can be
derived as follows:
where
 Normalize the impedance response to its peak value:
 According to this equation, it can be obtained that
Q=w0/Dw , where Dw means the 3dB bandwidth. It
indicates that the higher Q is, the narrower
bandwidth the filter has.
Impedance response
2
0
0
2
/
w
w



Q
s
s
C
s
Z
LC
1
0 
w RC
L
C
R
Q 0
w














w
w
w
w
w
0
0
1
1
)
(
Q
j
j
H
RFIC Design
Impedance response with various Q
5: Passive devices Slide 41
Q=3
Q=1.5
Q=1
Q=0.5
Q=3
Q=6
Q=12
RFIC Design
5: Passive devices Slide 42
Parallel Q
 How to calculate the Q of the parallel devices?
i(t)
C L
Rc,s RL,s
i(t)
C L
Rc,p RL,p
S
C
c
P
C R
Q
R ,
2
, 
 S
L
L
p
L R
Q
R ,
2
, 

S
L
L
S
C
C
Tank R
Q
R
Q
R ,
2
,
2
//

L
C
R
Q
R
Q
Q S
L
L
S
C
C
Tank 
 )
//
( ,
2
,
2
L
C
L
C
L
C
Q
Q
Q
Q
Q
Q
//




RFIC Design
5: Passive devices Slide 43
Series RLC tank
 Series RLC tank
 At resonance, the voltage across either the inductor
or capacitor is Q times as great as that across the
resistor.
 Ex. If a series RLC with a Q of 1000 is driven with a
1V at resonance, then 1000V will appear across L &
C.
/
L C
Q
R

RFIC Design
5: Passive devices Slide 44
Impedance transformation
 Why need to transform impedance?
 RLC network can be used to perform impedance
transformation.
 To draw a maximum power form source Vs with Zs,
ZL must to match Zs :
 Prove it:
   
2 2
2 2
R L s
L L S L S
V R V
R R R X X

  
RFIC Design
5: Passive devices Slide 45
Impedance transformation
 Upwards impedance transformer
 Downwards impedance transformer
0
2 2 2
2 0 S
S
P S S
S S
L
L
R R Q R
R R
w
w
 
  
 
 
RFIC Design
5: Passive devices Slide 46
Capacitive Divider
 Impedance transformation by means of capacitive
divider.
 Rtotal is boosted by the factor of
2
RFIC Design
5: Passive devices Slide 47
Inductive divider
 Impedance transformation by means of Inductive
divider.
RFIC Design
5: Passive devices Slide 48
S parameter
RFIC Design
5: Passive devices Slide 49
Reflection coefficient
 RF engineering
 Reflect coefficient
 Real & Imaging parts
 For High Z
 Easy Γ & Z transformation
RFIC Design
5: Passive devices Slide 50
Smith Chart
 Bilinear transformation : From Real & Imaginary to
Magnitude & Phase .
 Z & Y smith charts
RFIC Design
5: Passive devices Slide 51
Smith Chart
RFIC Design
5: Passive devices Slide 52
Smith Chart
S-L
S-C
P-C
P-L
 Matching
RFIC Design
5: Passive devices Slide 53
Two ports network
 Impedance network
RFIC Design
5: Passive devices Slide 54
S parameter network
 S -> scattering
 Generally, Z0 = 50W
 Most popular for RF
measurement system.
1 11 1 12 2
2 21 1 22 2
b s a s a
b s a s a
 
 
1 1
11 1
1 1
2 2
21
1 1
r
i
r
i
b E
s
a E
b E
s
a E
   
 
RFIC Design
5: Passive devices Slide 55
RF measurement and
device modeling
RFIC Design
5: Passive devices Slide 56
RF probes
 RF probes
RFIC Design
5: Passive devices Slide 57
Probe station
 RF measurement equipments
RFIC Design
5: Passive devices Slide 58
Agilent 8510
 Agilent 8510 for s-parameter measurement
RFIC Design
5: Passive devices Slide 59
RF device measurement
 The calibration setup is very important for RF
measurement.
RFIC Design
5: Passive devices Slide 60
Deembed & Calibration
 Calibration for testing and deembed pad effect.
 Deemebedding and calibration procedure is very
important for the RF measurement and modeling.
 Four patterns for testing calibration procedures.
– Open , short , thru1, thru2.
RFIC Design
5: Passive devices Slide 61
Inductor model
Cp
Ls Rs
Cox1 Cox2
Csub1
Rsub1
Rsub2
Csub2
Port1 Port2
ZA
ZB
ZC
 Step 0 : prepare S or Y parameter
 Step 1 : Ignore Cp first
RFIC Design
5: Passive devices Slide 62
Inductance extraction
 Step 2 : Calculate Y21
Ls Rs
Cox1 Cox2
Csub1
Rsub1
Rsub2
Csub2
0
2
1
2
21 
 v
v
i
Y
)
1
(
21
Y
real
Rs 

)
2
1
(
21
Y
freq
imag
Ls





Ls Rs
RFIC Design
5: Passive devices Slide 63
Extracted Rs & Ls
0 5 10 15 20
0
5
10
15
20
25
R
S
(
W
)
Frequency ( GHz )
0.1 1 10
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
Inductance
(
nH
)
Frequency ( GHz )
with Cp
Cp-10f
Skin effect Because of Cp
 Step 2 : Extracted Rs & Ls
RFIC Design
5: Passive devices Slide 64
Inductor model
 Extraction of the Substrate
Network
Cox
Csub
Rsub
1
1
11
v
i
Y 
1
)
( 1
21
1
1
1
11
v
i
Y
v
i
i
Y b
b
a





21
11
2
1
_
1
1
Y
Y
v
i
v
i
Y b
In
sub 




Ls Rs
C1 R1
V1
i1
i1a
i1b
i2
Cox1
21
11
2
1
_
1
1
Y
Y
v
i
v
i
Y b
In
sub 




RFIC Design
5: Passive devices Slide 65
Substrate network
Cox
Csub
Rsub
C1
R1
C1'
R1'
2
2
2
2
2
2
1
2
)
1
1
(
2
1
1
Cox
Rsub
Csub
Cox
Rsub
R

 

 2
2
2
2
2
1
)
1
1
(
1
)
1
1
(
1
1
1
1
1
Rsub
Csub
Cox
Csub
Cox
Csub
Rsub
Cox
C








 Substrate network transformation
 When the frequency (w) approaches zero, C1 is equal to Cox1
approximately.
 When the frequency (w) is high enough, C1 would be equal to
the series combination of Cox1 and Csub1
RFIC Design
5: Passive devices Slide 66
Extracted Cox
 Step 3 : Extracted Cox
freq
Y
Y
imag
Cox




2
)
12
11
(
1 when freq  0
0 5 10 15 20
10
15
20
25
30
35
40
45
50
55
C1(fH)
Frequency ( GHz )
Cox
Csub
Rsub
RFIC Design
5: Passive devices Slide 67
Extracted Csub & Rsub
 Extracted Csub & Rsub
1
2
1
)
1
(
1
1
12
11 Cox
freq
j
Y
Y
Ysub







)
(
1
1
1
Sub
Sub
Y
real
R  when freq  High (4.31)
)
2
(
1
1
1
Sub
Sub
Y
freq
imag
C




when freq  High (4.32)
0 5 10 15 20
-40
-20
0
20
40
60
80
Csub'(fH)
Frequency ( GHz )
0 5 10 15 20
-2000
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
Frequency ( GHz )
Rsub1'
(ohms)
RFIC Design
5: Passive devices Slide 68
Comparison
f req (100.0MHz to 20.00GHz)
S(1,1)
model..S(1,1)
f req (100.0MHz to 20.00GHz)
S(2,2)
model..S(2,2)
2 4 6 8 10 12 14 16 18
0 20
-10
-8
-6
-4
-2
-12
0
f req, GHz
dB(S(2,1))
dB(model..S(2,1))
2 4 6 8 10 12 14 16 18
0 20
-10
-8
-6
-4
-2
-12
0
f req, GHz
dB(S(1,2))
dB(model..S(1,2))
2,1)
2)
RFIC Design
5: Passive devices Slide 69
Dimension Definition
of Square Inductor
D
D+W+S
s
W
M5
M4
RFIC Design
5: Passive devices Slide 70
Extracted Ls vs D,N,W
60 80 100 120 140
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
Indutance
(nH)
3.5 turns Metal W
idth:15mm
Metal W
idth:10mm
inner diameter (mm)
Metal Width from 10mm to 15mm
1.5 2.0 2.5 3.0 3.5
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
Inductance
(
nH
)
turn numbers
D : 60mm
D : 70mm
D : 80mm
D : 90mm
D : 100mm
D : 110mm
D : 120mm
D : 130mm
L=(0.21074+0.00409*W)*0.608(N-1.5)+0.09+0.03*(W-10)/5
 Inductor Library
RFIC Design
5: Passive devices Slide 71
Q factor vs turns & D
0 2 4 6 8 10
0
2
4
6
8
10
12
14
Q
factor
Frequency ( GHz )
60mm
70mm
80mm
90mm
100mm
110mm
120mm
130mm
140mm
1.5 turns
Increasing D
0 2 4 6 8 10
0
2
4
6
8
10
12
Q
factor
Frequency ( GHz )
3.5 turns
120mm
130mm
140mm
60mm
70mm
80mm
100mm
110mm
Increasing D
 Inductor Library
RFIC Design
5: Passive devices Slide 72
References
 B. Razavi, “RF Microelectronics,” Upper Saddle
River: Prentice-Hall,1998.
 T. H. Lee, “The Design of CMOS Radio-Frequency
Integrated Circuits,” Cambridge: Cambridge
University Press, 1998.

More Related Content

What's hot

RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
Simen Li
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptx
ssuserccb0ae
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
Simen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
Simen Li
 
Equalization in digital communication
Equalization in digital communicationEqualization in digital communication
Equalization in digital communication
Pei-Che Chang
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
ssuserb4d806
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
Rohde & Schwarz North America
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
Simen Li
 
Hfss user guide
Hfss user guideHfss user guide
Hfss user guide
Hillner de Paiva
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
Lee Rather
 
Interconnect timing model
Interconnect  timing modelInterconnect  timing model
Interconnect timing model
Prachi Pandey
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
Simen Li
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
slpinjare
 
Silicon on Insulator (SOI) Technology
Silicon on Insulator (SOI) TechnologySilicon on Insulator (SOI) Technology
Silicon on Insulator (SOI) Technology
Sudhanshu Janwadkar
 
Interconnects in Reconfigurable Architectures
Interconnects in Reconfigurable ArchitecturesInterconnects in Reconfigurable Architectures
Interconnects in Reconfigurable Architectures
Sudhanshu Janwadkar
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
Abhishek Kadam
 
Threshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationThreshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length Modulation
Bulbul Brahma
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
Forward2025
 

What's hot (20)

RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptx
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Equalization in digital communication
Equalization in digital communicationEqualization in digital communication
Equalization in digital communication
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Hfss user guide
Hfss user guideHfss user guide
Hfss user guide
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
 
Interconnect timing model
Interconnect  timing modelInterconnect  timing model
Interconnect timing model
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
 
Silicon on Insulator (SOI) Technology
Silicon on Insulator (SOI) TechnologySilicon on Insulator (SOI) Technology
Silicon on Insulator (SOI) Technology
 
Interconnects in Reconfigurable Architectures
Interconnects in Reconfigurable ArchitecturesInterconnects in Reconfigurable Architectures
Interconnects in Reconfigurable Architectures
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
 
Threshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length ModulationThreshold Voltage & Channel Length Modulation
Threshold Voltage & Channel Length Modulation
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
Measuring Jitter Using Phase Noise Techniques
Measuring Jitter Using Phase Noise TechniquesMeasuring Jitter Using Phase Noise Techniques
Measuring Jitter Using Phase Noise Techniques
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
 

Similar to lecture5.ppt

Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroDavid Cripe
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
LingalaSowjanya
 
unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
dhanamalathieee
 
LC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdfLC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdf
VQuangKhi
 
Aec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTUAec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTU
Gopal Krishna Murthy C R
 
The wire
The wireThe wire
The wire
sdpable
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
Gopinath.B.L Naidu
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
Pdc lab manualnew
Pdc lab manualnewPdc lab manualnew
Pdc lab manualnew
ACE ENGINEERING COLLEGE
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
sebden
 
Chapter 02.pdf
Chapter 02.pdfChapter 02.pdf
Chapter 02.pdf
SalmanHameed26
 
Cyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverterCyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverter
cuashok07
 
Oscillators
OscillatorsOscillators
Oscillators
12nitin
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
ssuser39bdb9
 
Lecture-7-PA.pdf
Lecture-7-PA.pdfLecture-7-PA.pdf
Lecture-7-PA.pdf
KareemAhmed177136
 
Clippers and clampers
Clippers and clampersClippers and clampers
Clippers and clampers
taranjeet10
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
PonnalaguRN1
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
Simen Li
 

Similar to lecture5.ppt (20)

Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qro
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
 
unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
LC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdfLC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdf
 
Aec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTUAec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTU
 
The wire
The wireThe wire
The wire
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Pdc lab manualnew
Pdc lab manualnewPdc lab manualnew
Pdc lab manualnew
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
 
Chapter 02.pdf
Chapter 02.pdfChapter 02.pdf
Chapter 02.pdf
 
Cyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverterCyclo converter design for hf applications using h-bridge inverter
Cyclo converter design for hf applications using h-bridge inverter
 
Oscillators
OscillatorsOscillators
Oscillators
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
 
Lecture-7-PA.pdf
Lecture-7-PA.pdfLecture-7-PA.pdf
Lecture-7-PA.pdf
 
Clippers and clampers
Clippers and clampersClippers and clampers
Clippers and clampers
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
 
Pdc manual
Pdc manualPdc manual
Pdc manual
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 

More from ssuserb4d806

Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
ssuserb4d806
 
Analog_chap_01.ppt
Analog_chap_01.pptAnalog_chap_01.ppt
Analog_chap_01.ppt
ssuserb4d806
 
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
ssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
ssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
ssuserb4d806
 
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
ssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
ssuserb4d806
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
ssuserb4d806
 
RFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.pptRFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.ppt
ssuserb4d806
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
ssuserb4d806
 
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdfAIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
ssuserb4d806
 
Lecture 1 System View.pptx - 已修復.pdf
Lecture 1 System View.pptx  -  已修復.pdfLecture 1 System View.pptx  -  已修復.pdf
Lecture 1 System View.pptx - 已修復.pdf
ssuserb4d806
 
Labs_20210809.pdf
Labs_20210809.pdfLabs_20210809.pdf
Labs_20210809.pdf
ssuserb4d806
 
Training L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptxTraining L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptx
ssuserb4d806
 
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdfLecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
ssuserb4d806
 
Lecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdfLecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdf
ssuserb4d806
 
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdfLecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
ssuserb4d806
 

More from ssuserb4d806 (20)

5.pdf
5.pdf5.pdf
5.pdf
 
4.pdf
4.pdf4.pdf
4.pdf
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
Analog_chap_01.ppt
Analog_chap_01.pptAnalog_chap_01.ppt
Analog_chap_01.ppt
 
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf1-Introduction and Crystal Structure of Solids-已解鎖.pdf
1-Introduction and Crystal Structure of Solids-已解鎖.pdf
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
 
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
Assessment_of_Fetal_and_Maternal_Well-Being_During_Pregnancy_Using_Passive_We...
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_2.pptx
 
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
台北科技大學電子所_可穿戴式系統設計_期末報告 1_賴紀廷_109368501_20230106_1.pptx
 
RFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.pptRFIC_LNA_Simulation.ppt
RFIC_LNA_Simulation.ppt
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
 
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdfAIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
AIML4 CNN lab 5-1 BreastCancer ML course student report 2022 spring (111-1).pdf
 
virtuoso
virtuosovirtuoso
virtuoso
 
Lecture 1 System View.pptx - 已修復.pdf
Lecture 1 System View.pptx  -  已修復.pdfLecture 1 System View.pptx  -  已修復.pdf
Lecture 1 System View.pptx - 已修復.pdf
 
Labs_20210809.pdf
Labs_20210809.pdfLabs_20210809.pdf
Labs_20210809.pdf
 
Training L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptxTraining L1 Thinking 2022702.pptx.pptx
Training L1 Thinking 2022702.pptx.pptx
 
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdfLecture08-Arithmetic Code-4-Int Imp-P2.pdf
Lecture08-Arithmetic Code-4-Int Imp-P2.pdf
 
Lecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdfLecture09-SQ-P2.pdf
Lecture09-SQ-P2.pdf
 
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdfLecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
Lecture06-Arithmetic Code-2-Algorithm Implementation-P2.pdf
 

Recently uploaded

block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 

Recently uploaded (20)

block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 

lecture5.ppt

  • 2. RFIC Design 5: Passive devices Slide 2 Inductor and Capacitor
  • 3. RFIC Design 5: Passive devices Slide 3 Inductors  Different geometry of the spiral inductors
  • 4. RFIC Design 5: Passive devices Slide 4 Inductance  Inductance : – Foundry model – Simulated by EM – Empirical equation
  • 5. RFIC Design 5: Passive devices Slide 5 Monolithic Inductor  General consideration for monolithic inductors – Q factor – Resonant frequency – In band loss – Inductance – Area – Modeling accuracy
  • 6. RFIC Design 5: Passive devices Slide 6 Inductor Physical Model  Physical model – Metal loss – Substrate loss Cp Ls Rs Cox1 Cox2 Csub1 Rsub1 Rsub2 Csub2
  • 7. RFIC Design 5: Passive devices Slide 7 Q factor enhancement  The power loss degrades Q  Reducing Metal loss increases Q – Bond wire – Thick metal – High conductivity metal (Cu)  However, reducing metal loss only help in low frequency ( ~ <2GHz) – Skin effect – Substrate loss dominates at high frequency 7 0 2 2 ln 0.75 2 10 ln 0.75 2 u l l l L r r                                     
  • 8. RFIC Design 5: Passive devices Slide 8 Skin effect m = permeability (4 * 10-7 H/m),  = pi ds = skin depth (m) r = resistivity (W*m) w = radian frequency = 2*f (Hz) Copper at 10GHz
  • 9. RFIC Design 5: Passive devices Slide 9 Q factor enhancement  Reducing substrate loss increases Q – Pattern ground shield – Silicon bulk micromachined inductor – Substrate thinning
  • 10. RFIC Design 5: Passive devices Slide 10 High Q Inductor  Reduce substrate loss -> enhance Q at high frequency  Reduce metal loss -> enhance Q at low frequency  Overall Q enhancement -> combine two approaches •Electroplated thik copper •Micromaching
  • 11. RFIC Design 5: Passive devices Slide 11 all-copper solenoid inductor  solenoid inductor by MEMS techniques
  • 12. RFIC Design 5: Passive devices Slide 12 Stack inductor  High inductance approach – Increase N – Stacked inductor – 3D inductor
  • 13. RFIC Design 5: Passive devices Slide 13 Varactor
  • 14. RFIC Design 5: Passive devices Slide 14 Junction Varactor  Capacitance :  (i) When the junction is forward biased P-sub P N N+ P+ T D T diff V I C   junc diff total C C C   m R jD R junc V A C V C           1 ) ( D A D A o r jD N N N N q C     2   0.0 0.5 1.0 1.5 2.0 2.5 -0.5 3.0 4 5 6 7 8 3 9 Vdc (V) Cs (pH)
  • 15. RFIC Design 5: Passive devices Slide 15 Accumulation-mode Varactor s s c cap s C R Q    w , , 1 Depletion mode accumulation mode
  • 16. RFIC Design 5: Passive devices Slide 16 Q and tuning range vs bias -3 -2 -1 0 1 2 3 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Capacitance ( pF ) Vgs 20 40 60 80 100 120 140 160 Gate length: 0.18mm capacitance Q factor Q factor
  • 17. RFIC Design 5: Passive devices Slide 17 Q factor vs Gate Length 0 1 2 3 4 5 6 -50 0 50 100 150 200 250 300 350 400 450 Vgs=0 Gate Length: 0.18mm Gate Length: 0.5mm Gate Length: 1mm Q factor frequency ( GHz )
  • 18. RFIC Design 5: Passive devices Slide 18 Capacitor
  • 19. RFIC Design 5: Passive devices Slide 19 Structure  MiM Capacitor
  • 20. RFIC Design 5: Passive devices Slide 20 Layout & Model  MiM Capacitor
  • 21. RFIC Design Common Centroid 5: Passive devices Slide 21
  • 22. RFIC Design Matching of passive devices 5: Passive devices Slide 22
  • 23. RFIC Design 5: Passive devices Slide 23 Resistor
  • 24. RFIC Design 5: Passive devices Slide 24 Resistor catalog  N+ diffused resistor w/o salicide  P+ diffused resistor w/o salicide  N+ diffused resistor w/i salicide  P+ diffused resistor w/i salicide  N-Well resistor  N+ Poly resistor w/salicide  P+ Poly resistor w/salicide  N+ Poly resistor w/o salicide  P+ Poly resistor w/o salicide  P- Poly HRI resistor w/o salicide  Metal 1 resistor  Metal 2 resistor  Metal 3 resistor  Metal 4 resistor  Metal 5 resistor  Top metal resistor
  • 25. RFIC Design 5: Passive devices Slide 25 Resistance  r = resistivity (W*m)  R = sheet resistance (W/) –  is a dimensionless unit(!)  Count number of squares – R = R * (# of squares) l w t 1RectangularBlock R = R (L/W) W 4RectangularBlocks R =R (2L/2W) W = R (L/W) W t l w w l l l R R t w w r  
  • 26. RFIC Design 5: Passive devices Slide 26 Well Resistor  Well Resistor • Well Resistor • Large Rsh without extra mask • Rsh : 450 or 900 • Positive TC • Large TC • Large variation
  • 27. RFIC Design 5: Passive devices Slide 27 Diffusion Resistor  P+/N+ Diffused resistor w/o and w/i salicide • w/o and w/i salicide • Rsh : 2~10W/□ •Negative TC • Large variation • rarely used
  • 28. RFIC Design 5: Passive devices Slide 28 Poly Resistor  P+/N+ Poly resistor w/o and w/i salicide • w/o & w/i salicide • Rsh : ~ 300 & ~ 8 • Positive TC • Smaller variation • Smaller parasitic -> RF
  • 29. RFIC Design 5: Passive devices Slide 29 HRI Resistor  P- Poly HRI resistor w/o salicide • w/o salicide • Rsh : > 1000 • Positive TC • High resistance • Smaller parasitic -> RF
  • 30. RFIC Design 5: Passive devices Slide 30 R L C network
  • 31. RFIC Design 5: Passive devices Slide 31 Passive device  R-L and R-C network
  • 32. RFIC Design 5: Passive devices Slide 32 Definition of Q For an inductor : Cycle n Oscillatio one in Loss Energy Energy Capacitive Stored Maxium - Energy Magnetic Stored Maximum Q   π 2 For a capacitor : Cycle n Oscillatio one in Loss Energy Energy Magnetic Stored Maxium - Energy Capactive Stored Maximum Q   π 2 For a LC Tank : Cycle n Oscillatio one in Loss Energy Energy Magnetic Stored average Energy Capactive Stored average Q    π 2
  • 33. RFIC Design 5: Passive devices Slide 33 Series R & L  Series R & L  Physical inductor model Ls Rl,s Ip P P ind L I E 2 max , 2 1   f R I T R I E s l p s l p R dis 1 2 1 2 1 , 2 , 2 ,         s l s s l p s P R dis ind ind s R L f R I L I E E Q , , 2 2 , max , , 1 2 1 2 1 2 2           w  
  • 34. RFIC Design 5: Passive devices Slide 34 Parallel R & L  Parallel R & L  Tank in the VCO LP Ip Rl,p Vp P P ind L I E 2 max , 2 1   f R L I T R V E p l P P p l p R dis 1 ) ( 2 1 2 1 , 2 , 2 ,         w P p l p l P P P P R dis ind ind p L R f R L I L I E E Q            w w   , , 2 2 , max , , 1 ) ( 2 1 2 1 2 2
  • 35. RFIC Design 5: Passive devices Slide 35 Series and parallel transformation  Series LR to parallel transformation       2 2 0 0 0 0 2 2 0 ( ) || P P P S S P P P P L j L R j L R j L R R L w w w w w      Ls Rl,s Ip LP Ip Rl,p Vp 0 0 S P P S L R Q L R w w   2 ( 1) P S R R Q   2 2 1 P S Q L L Q        
  • 36. RFIC Design 5: Passive devices Slide 36 Capacitor network  Parallel R & C  Series R & C CP Vp Rc,p Cs Rc,s Vp s s c cap s C R Q    w , , 1 P p c cap p C R Q    w , ,
  • 37. RFIC Design 5: Passive devices Slide 37 Series and parallel transformation  Series RC to parallel transformation   2 2 2 1 1 P S P S R R Q Q C C Q           CP Vp Rc,p Vp CP Vp ,p Cs Rc,s Vp   2 2 2 1 1 P S P S R R Q Q X X Q          
  • 38. RFIC Design 5: Passive devices Slide 38 Parallel RLC tank  Parallel RLC tank Impedance – Inductive admittance at low frequency – Capacitive admittance at high frequency i(t) R C L V + -
  • 39. RFIC Design 5: Passive devices Slide 39 Parallel RLC tank  The Q factor or quality factor is a measure of the "quality" of a resonant system.  General Definition : For resonant system  Hence :   2 2 1 2 1 2 tot pk avg pk E C I R P I R   energy stored average power dissipated Q w    2 0 2 1 1 2 1 / 2 pk tot avg pk C I R E R Q P LC L C I R w   
  • 40. RFIC Design 5: Passive devices Slide 40  The impedance looking into RLC resonator can be derived as follows: where  Normalize the impedance response to its peak value:  According to this equation, it can be obtained that Q=w0/Dw , where Dw means the 3dB bandwidth. It indicates that the higher Q is, the narrower bandwidth the filter has. Impedance response 2 0 0 2 / w w    Q s s C s Z LC 1 0  w RC L C R Q 0 w               w w w w w 0 0 1 1 ) ( Q j j H
  • 41. RFIC Design Impedance response with various Q 5: Passive devices Slide 41 Q=3 Q=1.5 Q=1 Q=0.5 Q=3 Q=6 Q=12
  • 42. RFIC Design 5: Passive devices Slide 42 Parallel Q  How to calculate the Q of the parallel devices? i(t) C L Rc,s RL,s i(t) C L Rc,p RL,p S C c P C R Q R , 2 ,   S L L p L R Q R , 2 ,   S L L S C C Tank R Q R Q R , 2 , 2 //  L C R Q R Q Q S L L S C C Tank   ) // ( , 2 , 2 L C L C L C Q Q Q Q Q Q //    
  • 43. RFIC Design 5: Passive devices Slide 43 Series RLC tank  Series RLC tank  At resonance, the voltage across either the inductor or capacitor is Q times as great as that across the resistor.  Ex. If a series RLC with a Q of 1000 is driven with a 1V at resonance, then 1000V will appear across L & C. / L C Q R 
  • 44. RFIC Design 5: Passive devices Slide 44 Impedance transformation  Why need to transform impedance?  RLC network can be used to perform impedance transformation.  To draw a maximum power form source Vs with Zs, ZL must to match Zs :  Prove it:     2 2 2 2 R L s L L S L S V R V R R R X X    
  • 45. RFIC Design 5: Passive devices Slide 45 Impedance transformation  Upwards impedance transformer  Downwards impedance transformer 0 2 2 2 2 0 S S P S S S S L L R R Q R R R w w         
  • 46. RFIC Design 5: Passive devices Slide 46 Capacitive Divider  Impedance transformation by means of capacitive divider.  Rtotal is boosted by the factor of 2
  • 47. RFIC Design 5: Passive devices Slide 47 Inductive divider  Impedance transformation by means of Inductive divider.
  • 48. RFIC Design 5: Passive devices Slide 48 S parameter
  • 49. RFIC Design 5: Passive devices Slide 49 Reflection coefficient  RF engineering  Reflect coefficient  Real & Imaging parts  For High Z  Easy Γ & Z transformation
  • 50. RFIC Design 5: Passive devices Slide 50 Smith Chart  Bilinear transformation : From Real & Imaginary to Magnitude & Phase .  Z & Y smith charts
  • 51. RFIC Design 5: Passive devices Slide 51 Smith Chart
  • 52. RFIC Design 5: Passive devices Slide 52 Smith Chart S-L S-C P-C P-L  Matching
  • 53. RFIC Design 5: Passive devices Slide 53 Two ports network  Impedance network
  • 54. RFIC Design 5: Passive devices Slide 54 S parameter network  S -> scattering  Generally, Z0 = 50W  Most popular for RF measurement system. 1 11 1 12 2 2 21 1 22 2 b s a s a b s a s a     1 1 11 1 1 1 2 2 21 1 1 r i r i b E s a E b E s a E      
  • 55. RFIC Design 5: Passive devices Slide 55 RF measurement and device modeling
  • 56. RFIC Design 5: Passive devices Slide 56 RF probes  RF probes
  • 57. RFIC Design 5: Passive devices Slide 57 Probe station  RF measurement equipments
  • 58. RFIC Design 5: Passive devices Slide 58 Agilent 8510  Agilent 8510 for s-parameter measurement
  • 59. RFIC Design 5: Passive devices Slide 59 RF device measurement  The calibration setup is very important for RF measurement.
  • 60. RFIC Design 5: Passive devices Slide 60 Deembed & Calibration  Calibration for testing and deembed pad effect.  Deemebedding and calibration procedure is very important for the RF measurement and modeling.  Four patterns for testing calibration procedures. – Open , short , thru1, thru2.
  • 61. RFIC Design 5: Passive devices Slide 61 Inductor model Cp Ls Rs Cox1 Cox2 Csub1 Rsub1 Rsub2 Csub2 Port1 Port2 ZA ZB ZC  Step 0 : prepare S or Y parameter  Step 1 : Ignore Cp first
  • 62. RFIC Design 5: Passive devices Slide 62 Inductance extraction  Step 2 : Calculate Y21 Ls Rs Cox1 Cox2 Csub1 Rsub1 Rsub2 Csub2 0 2 1 2 21   v v i Y ) 1 ( 21 Y real Rs   ) 2 1 ( 21 Y freq imag Ls      Ls Rs
  • 63. RFIC Design 5: Passive devices Slide 63 Extracted Rs & Ls 0 5 10 15 20 0 5 10 15 20 25 R S ( W ) Frequency ( GHz ) 0.1 1 10 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Inductance ( nH ) Frequency ( GHz ) with Cp Cp-10f Skin effect Because of Cp  Step 2 : Extracted Rs & Ls
  • 64. RFIC Design 5: Passive devices Slide 64 Inductor model  Extraction of the Substrate Network Cox Csub Rsub 1 1 11 v i Y  1 ) ( 1 21 1 1 1 11 v i Y v i i Y b b a      21 11 2 1 _ 1 1 Y Y v i v i Y b In sub      Ls Rs C1 R1 V1 i1 i1a i1b i2 Cox1 21 11 2 1 _ 1 1 Y Y v i v i Y b In sub     
  • 65. RFIC Design 5: Passive devices Slide 65 Substrate network Cox Csub Rsub C1 R1 C1' R1' 2 2 2 2 2 2 1 2 ) 1 1 ( 2 1 1 Cox Rsub Csub Cox Rsub R      2 2 2 2 2 1 ) 1 1 ( 1 ) 1 1 ( 1 1 1 1 1 Rsub Csub Cox Csub Cox Csub Rsub Cox C          Substrate network transformation  When the frequency (w) approaches zero, C1 is equal to Cox1 approximately.  When the frequency (w) is high enough, C1 would be equal to the series combination of Cox1 and Csub1
  • 66. RFIC Design 5: Passive devices Slide 66 Extracted Cox  Step 3 : Extracted Cox freq Y Y imag Cox     2 ) 12 11 ( 1 when freq  0 0 5 10 15 20 10 15 20 25 30 35 40 45 50 55 C1(fH) Frequency ( GHz ) Cox Csub Rsub
  • 67. RFIC Design 5: Passive devices Slide 67 Extracted Csub & Rsub  Extracted Csub & Rsub 1 2 1 ) 1 ( 1 1 12 11 Cox freq j Y Y Ysub        ) ( 1 1 1 Sub Sub Y real R  when freq  High (4.31) ) 2 ( 1 1 1 Sub Sub Y freq imag C     when freq  High (4.32) 0 5 10 15 20 -40 -20 0 20 40 60 80 Csub'(fH) Frequency ( GHz ) 0 5 10 15 20 -2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Frequency ( GHz ) Rsub1' (ohms)
  • 68. RFIC Design 5: Passive devices Slide 68 Comparison f req (100.0MHz to 20.00GHz) S(1,1) model..S(1,1) f req (100.0MHz to 20.00GHz) S(2,2) model..S(2,2) 2 4 6 8 10 12 14 16 18 0 20 -10 -8 -6 -4 -2 -12 0 f req, GHz dB(S(2,1)) dB(model..S(2,1)) 2 4 6 8 10 12 14 16 18 0 20 -10 -8 -6 -4 -2 -12 0 f req, GHz dB(S(1,2)) dB(model..S(1,2)) 2,1) 2)
  • 69. RFIC Design 5: Passive devices Slide 69 Dimension Definition of Square Inductor D D+W+S s W M5 M4
  • 70. RFIC Design 5: Passive devices Slide 70 Extracted Ls vs D,N,W 60 80 100 120 140 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Indutance (nH) 3.5 turns Metal W idth:15mm Metal W idth:10mm inner diameter (mm) Metal Width from 10mm to 15mm 1.5 2.0 2.5 3.0 3.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Inductance ( nH ) turn numbers D : 60mm D : 70mm D : 80mm D : 90mm D : 100mm D : 110mm D : 120mm D : 130mm L=(0.21074+0.00409*W)*0.608(N-1.5)+0.09+0.03*(W-10)/5  Inductor Library
  • 71. RFIC Design 5: Passive devices Slide 71 Q factor vs turns & D 0 2 4 6 8 10 0 2 4 6 8 10 12 14 Q factor Frequency ( GHz ) 60mm 70mm 80mm 90mm 100mm 110mm 120mm 130mm 140mm 1.5 turns Increasing D 0 2 4 6 8 10 0 2 4 6 8 10 12 Q factor Frequency ( GHz ) 3.5 turns 120mm 130mm 140mm 60mm 70mm 80mm 100mm 110mm Increasing D  Inductor Library
  • 72. RFIC Design 5: Passive devices Slide 72 References  B. Razavi, “RF Microelectronics,” Upper Saddle River: Prentice-Hall,1998.  T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge: Cambridge University Press, 1998.