This document provides an overview of estimation and hypothesis testing. It defines key statistical concepts like population and sample, parameters and estimates, and introduces the two main methods in inferential statistics - estimation and hypothesis testing.
It explains that hypothesis testing involves setting a null hypothesis (H0) and an alternative hypothesis (Ha), calculating a test statistic, determining a p-value, and making a decision to accept or reject the null hypothesis based on the p-value and significance level. The four main steps of hypothesis testing are outlined as setting hypotheses, calculating a test statistic, determining the p-value, and making a conclusion.
Examples are provided to demonstrate left-tailed, right-tailed, and two-tailed hypothesis tests