SlideShare a Scribd company logo
K L University 1
A
Project Based Lab Report
On
FREQUENCY MODULATION AND DEMODULATION
Submitted in partial fulfilment of the
Requirements for the award of the Degree of
Bachelor of Technology IN
ELECTRONICS &COMMUNICATION ENGINEERING
By
M.YASWANT SAI 150040994
Under the guidance of
Mrs.S.Vara kumari
Asst.professor, Dept. of ECE
Dept. of Electronics and Communication Engineering, K.L.
UNIVERSITY
Green fields,Vaddeswaram-522502, Guntur
Dist.
2016-17
K L University 2
K L UNIVERSITY
DEPARTMENT OF ELECTRONICS AND ENGINEERING
CERTIFICATE
This is to certify that this project based lab report entitled “FREQUENCY
MODULATION AND DEMODULATION” is the bonafide work carried out by
Yaswant Sai Mamidiapaka (150040994) I.Penchala Sai (15004007)
P.DurgaKalyani (150060069) in partial fulfilment of the requirement for the
award of degree in Bachelor of Technology in Electronics and
Communication Engineering during the academic year 2016-2017.
Signature of the Project Guide Signature of Course Co ordinator
Head Dep. Of E.C.E
K L University 3
ACKNOWLEDGMENT
My sincere thanks to Mrs. S.Vara Kumari in the Lab for their outstanding support
throughout the project for the successful completion of the work.
We express our gratitude to Dr. A.S.C.S. Sastry, HOD, for providing us with adequate
facilities, ways and means by which we are able to complete this project based work.
We would like to place on record the deep sense of gratitude to the honourable Vice Chancellor,
K L University for providing the necessary facilities to carry the concluded project based work
.Last but not the least, we thank all Teaching and Non-Teaching Staff of our department and
especially my classmates and my friends for their support in the completion of our project based
work.
S. No Name of the Student
1 Yaswant Sai Mamidipaka (150040994)
2 I.Penchala Sai (150041007)
3 P.Durga Kalyani (150060069)
K L University 4
CONTENTS
1. Abstract
2. Chapter 1: Introduction
3. Chapter 2: Tasks and Their Simulation Results:
4. Task 1 : Generation of sinusoidal signals with given conditions and
plotting signals and their spectrums using given single tone modulating signal.
5. Task 2 : Generation of sinusoidal signals with given conditions and
plotting signals and their spectrums using given multi tone modulating
signal.
6. Task 3 : obtaining demodulating graph using given modulating signals.
7. Task 4: Generation of sinusoidal signals with given conditions and
plotting signals and their spectrums using given multi tone modulating signal.
8. Task 5: Repeat above tasks for real speech signals
9. Conclusions and Future Scope
10. References
ABSTRACT
Project Goals:
To generate frequency modulation (FM) signal.
K L University 5
Demodulation and reception of Frequency Modulation signals. Exposure
to simulation on modulation/demodulation systems for FM using MATLAB for
synthetic & real signals (such as speech).
A base band signal m(t) is used to generate Narrow Band Frequency Modulated signal
explore the theoretical concepts of FM signal by modeling and simulation using
Matlab and Simulink.
Task1: Consider a single tone modulating signalm(t) =1.2cos500 t , carrier
signal c(t) =2cos104 t and frequency deviation is 1.2 KHz.
1. Determine the expression for FM signal in both time domain and frequency domain.
2. Sketch the modulating signal m(t) and its spectrum.
3. Sketch the carrier signal c(t) and its spectrum.
4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their spectra.
5. Identify the side frequencies from the spectrum. 6. Determine the approximate
minimum bandwidth using Carson’s rule.
7. Determine the minimum bandwidth from the Bessel function table.
8. Sketch the output frequency spectrum from the Bessel approximation.
9. If the modulating signal voltage is now increased to 2.4 Volts, what is the new
deviation? Find the modulation index in this case.
10.If the modulating signal voltage is increased to 4 Volts, while its frequency is
decreased to 200 Hz, what is the new deviation? Find the modulation index in this
case.
11.Determine the power of modulated signal in all the above cases. Task2: Now
consider a multi tone modulating signalm(t) =2cos1000 t sin1500 t + 1.5cos2000 t
and repeat the steps (1) to (8) above from the Task1 . Task 3: Assume that the
demodulation process is synchronous detection as shown in Fig.1. The objective is to
study the demodulation / reception of Frequency Modulated signal.
Task4: Repeat above tasks for multi tone modulating signal m(t)
=1.4cos200pit -0.8sin300pit +cos400pit .
Task5: Repeat above tasks for real speech signals.
INTRODUCTION
Modulation and Demodulation is to prevent the unwanted signals which are not
in the particular band of frequency and retrieve the original signal (message signal)
K L University 6
.In this project the modulation and demodulation of the single tone message signal
, multi tone message signals,recored voice,music signals ,female and male voice
are performed with the carrine wave of sine for modulation and carrier wave of
cosine for demodulation and after performing this operations the demodulated
signal is passed through the low pass filter in order to get the desired out put i..e
the signal in the particular range of frequency
Carrier wave
Need of modulation
The frequency range audible to human beigns known as audible range is between
20 Hz to 20kHz .The frequency of human voice and music signals lies between
200 Hz to 4000Hz.Signals in the audible range audible range are not transmitted
directly for the following reason
MODULATION
K L University 7
1)The wave length of audible signals is very long .To transmit such signals signals
the size of antena must be atleast one tenth of signal wave length.
For example: consider a 1500Hz signal .The wavelength of the signal is(3*10^8)/1500
The height of anteena should be atleast 0.2*10^5 meters which is not possible practically
2) The signals in the audible range are not transmitted directly for the following reasons.
3) The audio signals attenuate rapidly in the atmosphere.
4) The interference will occur if two are more audio signals are transmitted
simultaneously.
Because of the above reasons the audio signals signals are modulated before
modulation.Not only for audio signals it is also used for signals to be transmited
for longer distances.
Types of modulation
Modulation is of three types they are:
1)Amplitude
2)Frequency
3)Phase
Frequency modulation
In telecommunications and signal processing, frequency modulation (FM) is the
encoding of information in a carrier wave by varying the instantaneous frequency
of the wave. This contrasts with amplitude modulation, in which the amplitude of
the carrier wave varies, while the frequency remains constant.
In analog frequency modulation, such as FM radio broadcasting of an audio signal
representing voice or music, the instantaneous frequency deviation, the difference
between the frequency of the carrier and its centre frequency, is proportional to the
modulating signal.
Digital data can be encoded and transmitted via FM by shifting the carrier's
frequency among a predefined set of frequencies representing digits - for example
one frequency can represent a binary 1 and a second can represent binary 0. This
modulation technique is known as frequency-shift keying (FSK). FSK is widely
used in modems and fax modems, and can also be used to send Morse code. Radio
teletype also uses FSK.[2]
Frequency modulation is widely used for FM radio broadcasting. It is also used in
telemetry, radar, seismic prospecting, and monitoring new borns for seizures via
K L University 8
EEG, two-way radio systems, music synthesis, magnetic tape-recording systems
and some video-transmission systems. In radio transmission, an advantage of
frequency modulation is that it has a larger signal-to-noise ratio and therefore
rejects radio frequency interference better than an equal power amplitude
modulation (AM) signal. For this reason, most music is broadcast over FM radio.
Frequency modulation has a close relationship with phase modulation; phase
modulation is often used as an intermediate step to achieve frequency modulation.
Mathematically both of these are considered a special case of quadrature amplitude
modulation (QAM).
Tasks and Their Simulation Results
Task1:
Consider a single tone modulating signalm(t) =1.2cos500pit , carrier
signalc(t) =2cos10pit and frequency deviation is 1.2 KHz.
Description:-
1. Determine the expression for FM signal in both time domain and frequency domain.
2. Sketch the modulating signal m(t) and its spectrum.
3. Sketch the carrier signal c(t) and its spectrum.
K L University 9
4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their spectra.
5. Identify the side frequencies from the spectrum. 6. Determine the approximate
minimum bandwidth using Carson’s rule.
7. Determine the minimum bandwidth from the Bessel function table.
8. Sketch the output frequency spectrum from the Bessel approximation.
9. If the modulating signal voltage is now increased to 2.4 Volts, what is the new
deviation? Find the modulation index in this case.
10. If the modulating signal voltage is increased to 4 Volts, while its frequency is
decreased to 200 Hz, what is the new deviation? Find the modulation index in this
case.
11. Determine the power of modulated signal in all the above cases.
MATHLAB CODES:-
close all; clear all;
fs=100000; N=200;
Ts=1/fs; fm=250;
fc=5000; ac=2;
Kf=1200;
t=(0:Ts:(N*Ts)-Ts);
m=1.2*cos(2*pi*fm*t);
figure() plot(t,m)
title('Message signal');
axis([0 0.002 -1.5 1.5])
figure()
c=2*cos(2*pi*fc*t);
plot(t,c); title('Carrier
signal');
axis([0 0.002 -2 2])
[w b]=T2F(c,t);
%figure()
%plot(w/max(w),angle(b))
%title('Phase spectrum of carrie signal in frequency domain')
figure() plot(w,abs(b))
title('Magnitude spectrum of carrier signal in frequency domain') axis([-50
50 0 0.002]);
[u d]=T2F(m,t);
%figure();
%plot(u,angle(d))
%title('Phase spectrum of message signal in frequency domain')
figure(); plot(u,abs(d))
K L University 10
title('Magnitude spectrum of message signal in frequency domain'); axis([-50
50 0 0.0013]) %0.0012
fd=1200; mi=fd/fm;
fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t)));
figure(); plot(t,fms) title('Frequency
Modulated signal');
axis([0 0.002 -2.1 2.1]) % 2
% Frequency Domain -----
%fms=2*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t)));
[v a]=T2F(fms,t)
%figure();
%plot(v,angle(a))
%title('Modulated signal Phase spectrum in frequency domain');
figure(); plot(v,abs(a))
title('Modulated signal Magnitude spectrum in frequency domain');
axis([-50 50 0 0.002]) %0.001934 %approximate band witdth
using carson's rule
cn=2*(Kf+fm);
fprintf('The approximate band width using carsons rule is (hz)=%.4fn',cn)
%minimum bandwidth using bessel approximation
bapp=2*8*fm;
fprintf('The approximate band width using bessel appoximation is
(hz)=%.4fn',bapp)
%%
figure()
fprintf('As modulation index %.4f we have 8 sidebands',mi);
X = 0:0.1:20; J
= zeros(5,201);
for i = 0:8
J(i+1,:) = besselj(i,X);
end
plot(X,J,'LineWidth',1.5)
axis([0 20 -.5 1.1]) grid
on
legend('J_0','J_1','J_2','J_3','J_4','J_5','J_6','J_7','J_8','Location','bestoutside')
title('Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8') xlabel('X')
ylabel('J_v(X)')
n=0:1:8; f=n*fm;;
G=zeros(length(n),1); for
(i=1:1:length(n))
G(i)=(ac/2)*besselj(n(i),mi);
K L University 11
end
figure(); for
j=1:1:2
plot(((-1)^j)*fc+f,abs(G),'o'); hold
on;
plot(((-1)^j)*fc-f,abs(G),'o'); end
axis([-fc-9*fm fc+9*fm 0 0.45])
for(i=1:1:length(n))
for j=1:1:2
line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]);
hold on
line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]);
end end;
title('Spectrum of FM using Bessel approximation');
%%
am1=2.4; kf=1000;
fm=250;
mi1=(kf*am1)/(fm);
fd1=kf*am1;
fprintf('If modulating signal voltage is increased to 2.4 then deviation is %.4f and
modulation index %.4fn',fd1,mi1)
%%
am2=4; fm1=200;
kf=1000;
fd2=kf*am2;
mi2=(kf*am2)/(fm1);
fprintf('If modulating signal voltage is increased to 4 and frequency decreased to
200 Hz then deviation is %.4f and modulation index %.4fn',fd2,mi2)
%%
%case 1
p1=(((1.2)^2)/50)*(((((-0.18)^2))/2)+((-
0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+((
0.02)^2)) fprintf('Power is %.4fn',p1);
%case 2
p2=(((2.4)^2)/50)*(((((-0.18)^2))/2)+((-
0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+((
0.02)^2)) fprintf('Power is %.4fn',p1);
%case 3
p3=(((4)^2)/50)*(((((-0.18)^2))/2)+((-
0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+((
0.02)^2)) fprintf('Power is %.4fn',p1);
The approximate band width using carsons rule is (hz)=2900.0000
The approximate band width using bessel appoximation is (hz)=4000.0000
K L University 12
As modulation index 4.8000 we have 8 sidebands
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-1.5
-1
-0.5
0
0.5
1
1.5
Message signal
K L University 13
Carrier signal
-3 Magnitude spectrum of message signal in frequency domain
x 10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
K L University 14
x 10
-3 Modulated signal Magnitude spectrum in frequency domain
x 10
-3 Magnitude spectrum of carrier signal in frequency domain
x 10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Frequency Modulated signal
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
K L University 15
Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8
Spectrum of FM using Bessel approximation
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
K L University 16
Task2:
Now consider a multi tone modulating signal m(t) =2cos1000pit -sin1500pit
+ 1.5cos2000pit and repeat the steps (1) to (8) above from the Task1 .
2. Sketch the modulating signal m(t) and its spectrum.
3. Sketch the carrier signal c(t) and its spectrum.
4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their
spectra.
5. Identify the side frequencies from the spectrum.
6. Determine the approximate minimum bandwidth using Carson’s rule.
7. Determine the minimum bandwidth from the Bessel function table.
8. Sketch the output frequency spectrum from the Bessel approximation.
MATLAB CODE:
clear all; close all;
fs=100000; N=200;
Ts=1/fs; fm=1000;
fc=5000; ac=2;
Kf=1200;
t=(0:Ts:(N*Ts)-
Ts);
m=2*cos(fm*pi*t)-
sin(1500*pi*t)+1.5*cos(2000*pi*t); figure() plot(t,m)
title('Message signal'); axis([0 0.002 -2.5 4])
K L University 17
figure()
c=2*cos(2*pi*fc*t);
plot(t,c); title('Carrier
signal');
axis([0 0.002 -2 2])
[w b]=T2F(c,t);
figure() plot(w,abs(b))
title('Magnitude spectrum of carrier signal in frequency domain')
axis([-50 50 0 0.002]); [u d]=T2F(m,t); figure(); plot(u,abs(d))
title('Magnitude spectrum of message signal in frequency domain'); axis([-
50 50 0 0.0035]) %0.003432
fd=1200; mi=fd/fm;
fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t)));
figure(); plot(t,fms) title('Frequency
Modulated signal'); axis([0 0.002 -2.1 2.1])
% 2
[v a]=T2F(fms,t)
figure(); plot(v,abs(a))
title('Modulated signal Magnitude spectrum in frequency domain'); axis([-50
50 0 0.0019]) %0.001841
%approximate minimum band width using carson's rule
cn=2*(Kf+fm);
%minimum bandwidth using bessel approximation bapp=2*4*fm;
fprintf('The approximate band width using bessel appoximation is
(hz)=%.4fn',bapp)
fprintf('The minimum band width using carsons rule is (hz)=%.4fn',cn)
figure();
fprintf('As modulation index %.4f we have 4 sidebands',mi); % 1.5 4
X = 0:0.1:20; J
= zeros(5,201);
for i = 0:4
J(i+1,:) = besselj(i,X);
end
plot(X,J,'LineWidth',1.5)
axis([0 20 -.5 1.1]) grid
on
legend('J_0','J_1','J_2','J
_3','J_4','Location','besto
utside') title('Bessel
Functions of the First
Kind for v = 0,1,2,3,4')
xlabel('X')
K L University 18
ylabel('J_v(X)')
n=0:1:4; f=n*fm;;
G=zeros(length(n),1); for
(i=1:1:length(n))
G(i)=(ac/2)*besselj(n(i),mi);
end
figure(); for
j=1:1:2
plot(((-1)^j)*fc+f,abs(G),'o'); hold
on;
plot(((-1)^j)*fc-f,abs(G),'o'); end
axis([-fc-5*fm fc+5*fm 0 0.75])
for(i=1:1:length(n))
for j=1:1:2
line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]);
hold on
line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]);
end end;
title('Spectrum of FM using Bessel approximation');
The minimum band width using carsons rule is
(hz)=4400.0000
The approximate band width using bessel appoximation is
(hz)=8000.0000
As modulation index 1.2000 we have 4 sidebands
Carrier signal
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
K L University 19
x 10
x 10-3 Magnitude spectrum of message signal in frequency domain
-3 Modulated signal Magnitude spectrum in frequency domain
x 10
-3 Magnitude spectrum of carrier signal in frequency domain
x 10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3
-2
-1
0
1
2
3
4
Message signal
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.5
1
1.5
2
2.5
3
3.5
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
K L University 20
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Frequency Modulated signal
0 5 10 15 20
-0.5
0
0.5
1
X
Bessel Functions of the First Kind for v = 0,1,2,3,4
J0
J1
J2
J3
J4
K L University 21
Task3:-
Assume that the demodulation process is synchronous detection as shown in
Fig.1. The objective is to study the demodulation / reception of Frequency
Modulated
Math lab code:
% DEMODULATION ----------------------
fc=5000; fs=50000; fd=1000; N=1000;
ts=1/fs; t=(0:ts:(N*ts)-ts);
c=2*cos(10000*pi*t);
m=1.2*cos(500*pi*t);
y=fmmod(m,fc,fs,fd);
z=fmdemod(y,fc,fs,fd);
plot(t,m)
title('Original message signal') axis([0.00005
0.012 -1.5 1.5])
figure()
plot(t,z)
title('Demodulated message signal') axis([0.00005
0.012 -1.5 1.5])
figure(); plot(t,m,'c',t,z,'b--');
axis([0.00005 0.012 -1.5 1.5])
xlabel('Time (s)')
ylabel('Amplitude')
K L University 22
legend('Original Signal','Demodulated Signal')
[w a]=T2F(t,m) [u
b]=T2F(t,z) figure()
plot(w,abs(a)); axis([-1000
1000 0 0.012])
title('Magnitude spectrum of original signal in frequency domain')
figure(); plot(u,abs(b)); axis([-1000 1000 0 0.012])
title('Magnitude spectrum of demodulated signal in frequency domain')
figure(); plot(w,abs(a),'c',u,abs(b),'b--'); axis([-1000 1000 0 0.012])
xlabel('Frequency (in Hz) ---->') ylabel('Amplitude')
legend('Original Signal','Demodulated Signal','location','bestoutside')
Demodulated message signal
x 10
2 4 6 8 10 12
x 10
-3
-1.5
-1
-0.5
0
0.5
1
1.5
2 4 6 8 10 12
-3
-1.5
-1
-0.5
0
0.5
1
1.5
Original message signal
K L University 23
Magnitude spectrum of original signal in frequency domain
2 4 6 8 10 12
x 10
-3
-1.5
-1
-0.5
0
0.5
1
1.5
Time (s)
Original Signal
Demodulated Signal
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
0
0.002
0.004
0.006
0.008
0.01
0.012
K L University 24
Magnitude spectrum of demodulated signal in frequency domain
Task 4: Repeat above tasks for multi tone modulating signal m(t)
=1.4cos200pit -0.8sin300pit +cos400pit .
MATLAB CODE :-
clear all; close all;
fs=100000; N=200;
Ts=1/fs; fm=200;
fc=5000; ac=2;
-1000 -500 0 500 1000
0
0.002
0.004
0.006
0.008
0.01
0.012
Frequency (in Hz) ---->
Original Signal
Demodulated Signal
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
0
0.002
0.004
0.006
0.008
0.01
0.012
K L University 25
Kf=1200;
t=(0:Ts:(N*Ts)-Ts);
m=1.4*cos(200*pi*t)-(0.8)*sin(300*pi*t)+cos(400*pi*t);
figure() plot(t,m) title('Message signal');
axis([0 0.002 -1.5 3])
figure()
c=2*cos(2*pi*fc*t);
plot(t,c); title('Carrier
signal');
axis([0 0.002 -2 2])
[w b]=T2F(c,t);
figure() plot(w,abs(b))
title('Magnitude spectrum of carrier signal in frequency domain')
axis([-50 50 0 0.002]);
[u d]=T2F(m,t);
figure(); plot(u,abs(d))
title('Magnitude spectrum of message signal in frequency domain'); axis([-
50 50 0 0.0012])
fd=1200; mi=fd/fm;
fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t)));
figure(); plot(t,fms) title('Frequency
Modulated signal');
axis([0 0.002 -2.1 2.1]) % 2
% Frequency Domain -----
%fms=2*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t)));
[v a]=T2F(fms,t)
%figure();
%plot(v,angle(a))
%title('Modulated signal Phase spectrum in frequency domain');
figure(); plot(v,abs(a))
title('Modulated signal Magnitude spectrum in frequency domain'); axis([-50
50 0 0.0020]) %0.002
%approximate minimum band witdth using carson's rule
cn=2*(Kf+fm);
fprintf('The minimum band width using carsons rule is (hz)=%.4fn',cn)
%minimum bandwidth using bessel approximation bapp=2*9*fm;
fprintf('The approximate band width using bessel appoximation is
(hz)=%.4fn',bapp)
figure();
fprintf('As modulation index %.4f we have 9 sidebands',mi); % 1.5 4
K L University 26
X = 0:0.1:20; J
= zeros(5,201);
for i = 0:9
J(i+1,:) = besselj(i,X);
end
plot(X,J,'LineWidth',1.5)
axis([0 20 -.5 1.1]) grid
on
legend('J_0','J_1','J_2','J_3','J_4','J_5','J_6','J_7','J_8','J_9','Location','bestoutside')
title('Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8,9') xlabel('X')
ylabel('J_v(X)')
n=0:1:9; f=n*fm;;
G=zeros(length(n),1); for
(i=1:1:length(n))
G(i)=(ac/2)*besselj(n(i),mi);
end figure(); for j=1:1:2
plot(((-1)^j)*fc+f,abs(G),'o');
hold on; plot(((-1)^j)*fc-
f,abs(G),'o'); end
axis([-fc-10*fm fc+10*fm 0 0.75])
for(i=1:1:length(n)) for j=1:1:2
line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]);
hold on
line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]);
end end;
title('Spectrum of FM using Bessel approximation');
%%
fc=5000;
fs=50000;
fd=1000; N=1000;
ts=1/fs;
t=(0:ts:(N*ts)-ts); c=2*cos(10000*pi*t);
m=1.4*cos(200*pi*t)-(0.8)*sin(300*pi*t)+cos(400*pi*t);
y=fmmod(m,fc,fs,fd); z=fmdemod(y,fc,fs,fd); plot(t,m)
title('Original message signal')
axis([0.00005 0.012 -2 3])
figure();
plot(t,z)
title('Demodulated message signal')
axis([0.00005 0.012 -2 3]) figure();
plot(t,m,'c',t,z,'b--'); axis([0.00005
0.012 -2 3]) xlabel('Time (s)')
ylabel('Amplitude')
K L University 27
legend('Original Signal','Demodulated Signal')
%% ----- optional ------
[w a]=T2F(t,m) [u
b]=T2F(t,z) figure()
plot(w,abs(a)); axis([-
400 400 0 0.014])
title('Magnitude spectrum of original signal in frequency domain')
figure(); plot(u,abs(b));
axis([-400 400 0 0.014])
title('Magnitude spectrum of demodulated signal in frequency domain')
figure(); plot(w,abs(a),'c',u,abs(b),'b--'); axis([-400 400 0 0.014])
xlabel('Frequency (in Hz) ---->') ylabel('Amplitude')
legend('Original Signal','Demodulated Signal','location','bestoutside')
The minimum band width using carsons rule is (hz)=2800.0000
The approximate band width using bessel appoximation is
(hz)=3600.0000
As modulation index 6.0000 we have 9 sidebands
x 10
-3
Magnitude spectrum of carrier signal in frequency domain
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
Message signal
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Carrier signal
K L University 28
-3 Magnitude spectrum of message signal in frequency domain
x 10
x 10-3 Modulated signal Magnitude spectrum in frequency domain
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Frequency Modulated signal
K L University 29
Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8,9
-50 -40 -30 -20 -10 0 10 20 30 40 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2 4 6 8 10 12
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
Original message signal
K L University 30
2 4 6 8 10 12
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
Time (s)
Original Signal
Demodulated Signal
2 4 6 8 10 12
x 10
-3
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
Demodulated message signal
K L University 31
Magnitude spectrum of original signal in frequency domain
TASK5:- Repeat above tasks for real speech signals.
clear all;close all;clc;
% Record your voice for 5 seconds
recObj = audiorecorder disp('Start
speaking.'); recordblocking(recObj,5);
% 5 seconds disp('End of
Recording.'); y=getaudiodata(recObj);
a=y(35001:40000) k=length(a) a=a';
-400 -200 0 200 400
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
Frequency (in Hz) ---->
Original Signal
Demodulated Signal
-400 -300 -200 -100 0 100 200 300 400
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
K L University 32
t=0:k-1; b=(sin(2*pi*(400/pi)*t));
m=a.*b; z=m.*(sin((400/pi)*2*pi*t));
[v,A]=T2F(t,a);
[w,Z]=T2F(t,z); [f,M]=T2F(t,m);
subplot(3,3,1);
plot(t,a/max(a),'black','Linewidth',1.5);
title(' x(t),msg signal'); subplot(3,3,2);
plot(v,abs(A),'r','Linewidth',2);
title('|X(jw)| msg signal');
subplot(3,3,3);
plot(t,m/max(m),'black','Linewidth',1.5);
title('y(t),modulated signal');
subplot(3,3,4);
plot(f,abs(M),'r','Linewidth',2);
title('|y(jw)| modulated signal');
subplot(3,3,5);
plot(t,z/max(z),'black','Linewidth',1.5);
title('demodulated signal c(t)');
subplot(3,3,6);
plot(w,abs(Z),'r','Linewidth',2);
title('|c(jw)|,demodulated'); fs=1600;
fc=400;
[g,h] = butter(5,fc*2/fs); % Filter coefficients
so = filtfilt(g,h,z); subplot(3,3,7)
plot(t,so)% Reconstruction signal title('Reconstucted
signal');
[fo So ]= T2F(t,so); % Spectrum of the reconstructed signal subplot(3,3,9)
K L University 33
plot(fo,abs(So),'r','Linewidth',2); title('Spectrum
of reconstructed signal'); figure();
plot(t,a,'black','Linewidth',1.5);hold on
title('compare()'); plot(t,so);
K L University 34
3. Conclusions and Future Scope
This project concludes that frequency modulation and demodulation that has been
utilised by the broadcasting industry is the reduction in noise. it does not suffer
audio amplitude variations as the signal level varies.
Mainly in frequency modulation amplitude remins constant
In frequency modulation, the carrier amplitude is constant, on the other hand,
the value of the carrier frequency varies depending on the frequency of the
modulating signal. The envelope of the modulated signal is the same shape as the
modulating signal. Modulation index is the ratio of the frequency deviation to
meassage signal frequency/.
From the modulated carrier displayed on an oscilloscope, the percent modulation
can be measured through the maximum and the minimum values of the
modulating signal, The voltage of each side frequency depends on carrier voltage
and the modulation index. Thebandwidth is twice the modulating frequency. A
square wave which is a complex modulating signal consists of many side
frequencies generated.
The above mentioned modulation techniques will be used for new generation
communication technology. The SDR mostly used in portable devices such as
PDAs, smart phones, laptops and so on. The cellular technologies like GSM,
WCDMA, and LTE etc. are more supportable with SDR. It can support the different
services like location based service (GPS), World Wide Web (www), video calling,
video broadcasting, e-commerce

REFERENCES
1.Jump up^ Stan Gibilisco (2002). Teach yourself electricity and electronics.
McGraw-Hill Professional. p. 477. ISBN 978-0-07-137730-0.
2. Jump up^ B. Boashash, editor, "Time-Frequency Signal Analysis and
Processing – A Comprehensive Reference", Elsevier Science, Oxford, 2003;
ISBN 0-08-044335-4
3. John G. Proakis and Dimitris G. Manalakis, ‘Digital Signal Processing,
principles,algorithms and applications’, Pearson Prentice Hall, 2011.
4.Wikipedia
K L University 35
5. Vinay K. Ingle and John G. Proakis, Essentials of Digital Signal Processing
Using MATLAB®,Third Edition 2012, Cengage Learning.

More Related Content

What's hot

Analog modulation
Analog modulationAnalog modulation
Analog modulation
Akash Soni
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
Lokesh Parihar
 
AM diode envelope demodulator
AM diode envelope demodulatorAM diode envelope demodulator
AM diode envelope demodulator
mpsrekha83
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
Akanksha_Seth
 
Fm demodulation using zero crossing detector
Fm demodulation using zero crossing detectorFm demodulation using zero crossing detector
Fm demodulation using zero crossing detector
mpsrekha83
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
sagarjaiswal0407
 
Phase modulation
Phase modulationPhase modulation
Phase modulationavocado1111
 
Generation of fm
Generation of fmGeneration of fm
Generation of fm
kaavyabalachandran
 
Analog communication
Analog communicationAnalog communication
Analog communicationPreston King
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulation
Hattori Sidek
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
gopi789
 
Am transmitter
Am transmitterAm transmitter
Am transmitter
AJAL A J
 
Amplitude modulation & demodulation
Amplitude modulation & demodulation Amplitude modulation & demodulation
Amplitude modulation & demodulation
Bikz013
 
NOISE IN Analog Communication Part-1.ppt
NOISE IN Analog Communication  Part-1.pptNOISE IN Analog Communication  Part-1.ppt
NOISE IN Analog Communication Part-1.ppt
AshishChandrakar12
 
Introduction to modulation and demodulation
Introduction to modulation and demodulationIntroduction to modulation and demodulation
Introduction to modulation and demodulation
Mahmut Yildiz
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parameters
Manish Arora
 
filters
filtersfilters
filters
Anand kumar
 
Fm
FmFm
Angle modulation
Angle modulationAngle modulation
Angle modulation
Diksha Prakash
 

What's hot (20)

Analog modulation
Analog modulationAnalog modulation
Analog modulation
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
 
AM diode envelope demodulator
AM diode envelope demodulatorAM diode envelope demodulator
AM diode envelope demodulator
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Fm demodulation using zero crossing detector
Fm demodulation using zero crossing detectorFm demodulation using zero crossing detector
Fm demodulation using zero crossing detector
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Phase modulation
Phase modulationPhase modulation
Phase modulation
 
Generation of fm
Generation of fmGeneration of fm
Generation of fm
 
Analog communication
Analog communicationAnalog communication
Analog communication
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulation
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Am transmitter
Am transmitterAm transmitter
Am transmitter
 
Amplitude modulation & demodulation
Amplitude modulation & demodulation Amplitude modulation & demodulation
Amplitude modulation & demodulation
 
NOISE IN Analog Communication Part-1.ppt
NOISE IN Analog Communication  Part-1.pptNOISE IN Analog Communication  Part-1.ppt
NOISE IN Analog Communication Part-1.ppt
 
Introduction to modulation and demodulation
Introduction to modulation and demodulationIntroduction to modulation and demodulation
Introduction to modulation and demodulation
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parameters
 
filters
filtersfilters
filters
 
Fm
FmFm
Fm
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 

Viewers also liked

Lab manual uoh_ee370
Lab manual uoh_ee370Lab manual uoh_ee370
Lab manual uoh_ee370slatano
 
Demodulation (communication engineering)
Demodulation (communication engineering)Demodulation (communication engineering)
Demodulation (communication engineering)
Sadman-al-farabe Nirzor
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
Syed Zaid Irshad
 
Amplitude Modulation ppt
Amplitude Modulation pptAmplitude Modulation ppt
Amplitude Modulation ppt
Priyanka Mathur
 
Phase locked loop techniques for fm demodulation and modulation
Phase locked loop techniques for fm demodulation and modulationPhase locked loop techniques for fm demodulation and modulation
Phase locked loop techniques for fm demodulation and modulationHarshal Ladhe
 
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
Chirag vasava
 
Comunication project
Comunication projectComunication project
Comunication project
Mahmut Yildiz
 
Analog comm lab manual
Analog comm lab manualAnalog comm lab manual
Analog comm lab manual
Padmavathi Takkellapati
 
Project gr4 sec_d
Project gr4 sec_dProject gr4 sec_d
Project gr4 sec_d
Istiak Mahmood
 
Amplitude modulation sanjay
Amplitude modulation sanjayAmplitude modulation sanjay
Amplitude modulation sanjay
Sanjay Jangra
 
Radio recivers
Radio reciversRadio recivers
Radio recivers
Dr. Andrew Wallace PhD
 
ITP UNS SEMESTER 2 Kromatografi gc dan hplc
ITP UNS SEMESTER 2 Kromatografi gc dan hplcITP UNS SEMESTER 2 Kromatografi gc dan hplc
ITP UNS SEMESTER 2 Kromatografi gc dan hplcFransiska Puteri
 
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...Akshay Sharma
 
Generation of SSB and DSB_SC Modulation
Generation of SSB and DSB_SC ModulationGeneration of SSB and DSB_SC Modulation
Generation of SSB and DSB_SC ModulationJoy Debnath
 
EEP306: Frequency modulation
EEP306: Frequency modulationEEP306: Frequency modulation
EEP306: Frequency modulation
Umang Gupta
 
Single side band and double side band modulation
Single side band and double side band modulationSingle side band and double side band modulation
Single side band and double side band modulation
Md. Hasan Al Roktim
 
Pulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulationPulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulationVishal kakade
 
311 angle modulation
311 angle modulation311 angle modulation
311 angle modulation
Mohammad Bappy
 

Viewers also liked (20)

Lab manual uoh_ee370
Lab manual uoh_ee370Lab manual uoh_ee370
Lab manual uoh_ee370
 
Demodulation (communication engineering)
Demodulation (communication engineering)Demodulation (communication engineering)
Demodulation (communication engineering)
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Amplitude Modulation ppt
Amplitude Modulation pptAmplitude Modulation ppt
Amplitude Modulation ppt
 
Phase locked loop techniques for fm demodulation and modulation
Phase locked loop techniques for fm demodulation and modulationPhase locked loop techniques for fm demodulation and modulation
Phase locked loop techniques for fm demodulation and modulation
 
Matlab project
Matlab projectMatlab project
Matlab project
 
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
 
Comunication project
Comunication projectComunication project
Comunication project
 
Analog comm lab manual
Analog comm lab manualAnalog comm lab manual
Analog comm lab manual
 
Project gr4 sec_d
Project gr4 sec_dProject gr4 sec_d
Project gr4 sec_d
 
Amplitude modulation sanjay
Amplitude modulation sanjayAmplitude modulation sanjay
Amplitude modulation sanjay
 
Radio recivers
Radio reciversRadio recivers
Radio recivers
 
ITP UNS SEMESTER 2 Kromatografi gc dan hplc
ITP UNS SEMESTER 2 Kromatografi gc dan hplcITP UNS SEMESTER 2 Kromatografi gc dan hplc
ITP UNS SEMESTER 2 Kromatografi gc dan hplc
 
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...
Double Side Band – Suppressed Carrier (DSB-SC) Modulation Demodulation using ...
 
Generation of SSB and DSB_SC Modulation
Generation of SSB and DSB_SC ModulationGeneration of SSB and DSB_SC Modulation
Generation of SSB and DSB_SC Modulation
 
EEP306: Frequency modulation
EEP306: Frequency modulationEEP306: Frequency modulation
EEP306: Frequency modulation
 
Single side band and double side band modulation
Single side band and double side band modulationSingle side band and double side band modulation
Single side band and double side band modulation
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Pulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulationPulse amplitude modulation & demodulation
Pulse amplitude modulation & demodulation
 
311 angle modulation
311 angle modulation311 angle modulation
311 angle modulation
 

Similar to Frequency Modulation and Demodulation

Amplitude Modulation using Multipliers and Envelope Detector
Amplitude Modulation using Multipliers and Envelope DetectorAmplitude Modulation using Multipliers and Envelope Detector
Amplitude Modulation using Multipliers and Envelope Detector
j naga sai
 
Communication Theory-1 Project || Single Side Band Modulation using Filtering...
Communication Theory-1 Project || Single Side Band Modulation using Filtering...Communication Theory-1 Project || Single Side Band Modulation using Filtering...
Communication Theory-1 Project || Single Side Band Modulation using Filtering...
rameshreddybattini
 
Unit- 2 Angle Modulation.ppt
Unit- 2  Angle Modulation.pptUnit- 2  Angle Modulation.ppt
Unit- 2 Angle Modulation.ppt
MATRUSRI ENGINEERING COLLEGE
 
Design and implementation of test bench for frequency modulation and demodula...
Design and implementation of test bench for frequency modulation and demodula...Design and implementation of test bench for frequency modulation and demodula...
Design and implementation of test bench for frequency modulation and demodula...
Karrar Abd Alhadi
 
Project 10
Project 10Project 10
Unit- 3 Transmitters and Recivers.ppt
Unit- 3  Transmitters and Recivers.pptUnit- 3  Transmitters and Recivers.ppt
Unit- 3 Transmitters and Recivers.ppt
MATRUSRI ENGINEERING COLLEGE
 
EC 6651 Communication Engineering
EC 6651 Communication EngineeringEC 6651 Communication Engineering
EC 6651 Communication Engineering
rmkceteee
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)Sarah Krystelle
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)Sarah Krystelle
 
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptxELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
zainal968005
 
ADC Unit 1.pdf
ADC Unit 1.pdfADC Unit 1.pdf
ADC Unit 1.pdf
BunnyYadav7
 
Modulation Basics
Modulation BasicsModulation Basics
Modulation Basics
dena567
 
Basic Electronics - PPT Frequency Modulation.pdf
Basic Electronics - PPT Frequency Modulation.pdfBasic Electronics - PPT Frequency Modulation.pdf
Basic Electronics - PPT Frequency Modulation.pdf
happycocoman
 
Unit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.pptUnit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.ppt
MATRUSRI ENGINEERING COLLEGE
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2Sarah Krystelle
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)Sarah Krystelle
 
Solution_Book_4th.pdf.pdf
Solution_Book_4th.pdf.pdfSolution_Book_4th.pdf.pdf
Solution_Book_4th.pdf.pdf
rizaamores1
 
Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...
issac32342
 
Ch4 linear modulation pg 111
Ch4 linear modulation pg 111Ch4 linear modulation pg 111
Ch4 linear modulation pg 111
Prateek Omer
 
Exp amplitude modulation (1)
Exp amplitude modulation (1)Exp amplitude modulation (1)
Exp amplitude modulation (1)Sarah Krystelle
 

Similar to Frequency Modulation and Demodulation (20)

Amplitude Modulation using Multipliers and Envelope Detector
Amplitude Modulation using Multipliers and Envelope DetectorAmplitude Modulation using Multipliers and Envelope Detector
Amplitude Modulation using Multipliers and Envelope Detector
 
Communication Theory-1 Project || Single Side Band Modulation using Filtering...
Communication Theory-1 Project || Single Side Band Modulation using Filtering...Communication Theory-1 Project || Single Side Band Modulation using Filtering...
Communication Theory-1 Project || Single Side Band Modulation using Filtering...
 
Unit- 2 Angle Modulation.ppt
Unit- 2  Angle Modulation.pptUnit- 2  Angle Modulation.ppt
Unit- 2 Angle Modulation.ppt
 
Design and implementation of test bench for frequency modulation and demodula...
Design and implementation of test bench for frequency modulation and demodula...Design and implementation of test bench for frequency modulation and demodula...
Design and implementation of test bench for frequency modulation and demodula...
 
Project 10
Project 10Project 10
Project 10
 
Unit- 3 Transmitters and Recivers.ppt
Unit- 3  Transmitters and Recivers.pptUnit- 3  Transmitters and Recivers.ppt
Unit- 3 Transmitters and Recivers.ppt
 
EC 6651 Communication Engineering
EC 6651 Communication EngineeringEC 6651 Communication Engineering
EC 6651 Communication Engineering
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)
 
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptxELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
 
ADC Unit 1.pdf
ADC Unit 1.pdfADC Unit 1.pdf
ADC Unit 1.pdf
 
Modulation Basics
Modulation BasicsModulation Basics
Modulation Basics
 
Basic Electronics - PPT Frequency Modulation.pdf
Basic Electronics - PPT Frequency Modulation.pdfBasic Electronics - PPT Frequency Modulation.pdf
Basic Electronics - PPT Frequency Modulation.pdf
 
Unit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.pptUnit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.ppt
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)
 
Solution_Book_4th.pdf.pdf
Solution_Book_4th.pdf.pdfSolution_Book_4th.pdf.pdf
Solution_Book_4th.pdf.pdf
 
Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...
 
Ch4 linear modulation pg 111
Ch4 linear modulation pg 111Ch4 linear modulation pg 111
Ch4 linear modulation pg 111
 
Exp amplitude modulation (1)
Exp amplitude modulation (1)Exp amplitude modulation (1)
Exp amplitude modulation (1)
 

Recently uploaded

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 

Recently uploaded (20)

Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 

Frequency Modulation and Demodulation

  • 1. K L University 1 A Project Based Lab Report On FREQUENCY MODULATION AND DEMODULATION Submitted in partial fulfilment of the Requirements for the award of the Degree of Bachelor of Technology IN ELECTRONICS &COMMUNICATION ENGINEERING By M.YASWANT SAI 150040994 Under the guidance of Mrs.S.Vara kumari Asst.professor, Dept. of ECE Dept. of Electronics and Communication Engineering, K.L. UNIVERSITY Green fields,Vaddeswaram-522502, Guntur Dist. 2016-17
  • 2. K L University 2 K L UNIVERSITY DEPARTMENT OF ELECTRONICS AND ENGINEERING CERTIFICATE This is to certify that this project based lab report entitled “FREQUENCY MODULATION AND DEMODULATION” is the bonafide work carried out by Yaswant Sai Mamidiapaka (150040994) I.Penchala Sai (15004007) P.DurgaKalyani (150060069) in partial fulfilment of the requirement for the award of degree in Bachelor of Technology in Electronics and Communication Engineering during the academic year 2016-2017. Signature of the Project Guide Signature of Course Co ordinator Head Dep. Of E.C.E
  • 3. K L University 3 ACKNOWLEDGMENT My sincere thanks to Mrs. S.Vara Kumari in the Lab for their outstanding support throughout the project for the successful completion of the work. We express our gratitude to Dr. A.S.C.S. Sastry, HOD, for providing us with adequate facilities, ways and means by which we are able to complete this project based work. We would like to place on record the deep sense of gratitude to the honourable Vice Chancellor, K L University for providing the necessary facilities to carry the concluded project based work .Last but not the least, we thank all Teaching and Non-Teaching Staff of our department and especially my classmates and my friends for their support in the completion of our project based work. S. No Name of the Student 1 Yaswant Sai Mamidipaka (150040994) 2 I.Penchala Sai (150041007) 3 P.Durga Kalyani (150060069)
  • 4. K L University 4 CONTENTS 1. Abstract 2. Chapter 1: Introduction 3. Chapter 2: Tasks and Their Simulation Results: 4. Task 1 : Generation of sinusoidal signals with given conditions and plotting signals and their spectrums using given single tone modulating signal. 5. Task 2 : Generation of sinusoidal signals with given conditions and plotting signals and their spectrums using given multi tone modulating signal. 6. Task 3 : obtaining demodulating graph using given modulating signals. 7. Task 4: Generation of sinusoidal signals with given conditions and plotting signals and their spectrums using given multi tone modulating signal. 8. Task 5: Repeat above tasks for real speech signals 9. Conclusions and Future Scope 10. References ABSTRACT Project Goals: To generate frequency modulation (FM) signal.
  • 5. K L University 5 Demodulation and reception of Frequency Modulation signals. Exposure to simulation on modulation/demodulation systems for FM using MATLAB for synthetic & real signals (such as speech). A base band signal m(t) is used to generate Narrow Band Frequency Modulated signal explore the theoretical concepts of FM signal by modeling and simulation using Matlab and Simulink. Task1: Consider a single tone modulating signalm(t) =1.2cos500 t , carrier signal c(t) =2cos104 t and frequency deviation is 1.2 KHz. 1. Determine the expression for FM signal in both time domain and frequency domain. 2. Sketch the modulating signal m(t) and its spectrum. 3. Sketch the carrier signal c(t) and its spectrum. 4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their spectra. 5. Identify the side frequencies from the spectrum. 6. Determine the approximate minimum bandwidth using Carson’s rule. 7. Determine the minimum bandwidth from the Bessel function table. 8. Sketch the output frequency spectrum from the Bessel approximation. 9. If the modulating signal voltage is now increased to 2.4 Volts, what is the new deviation? Find the modulation index in this case. 10.If the modulating signal voltage is increased to 4 Volts, while its frequency is decreased to 200 Hz, what is the new deviation? Find the modulation index in this case. 11.Determine the power of modulated signal in all the above cases. Task2: Now consider a multi tone modulating signalm(t) =2cos1000 t sin1500 t + 1.5cos2000 t and repeat the steps (1) to (8) above from the Task1 . Task 3: Assume that the demodulation process is synchronous detection as shown in Fig.1. The objective is to study the demodulation / reception of Frequency Modulated signal. Task4: Repeat above tasks for multi tone modulating signal m(t) =1.4cos200pit -0.8sin300pit +cos400pit . Task5: Repeat above tasks for real speech signals. INTRODUCTION Modulation and Demodulation is to prevent the unwanted signals which are not in the particular band of frequency and retrieve the original signal (message signal)
  • 6. K L University 6 .In this project the modulation and demodulation of the single tone message signal , multi tone message signals,recored voice,music signals ,female and male voice are performed with the carrine wave of sine for modulation and carrier wave of cosine for demodulation and after performing this operations the demodulated signal is passed through the low pass filter in order to get the desired out put i..e the signal in the particular range of frequency Carrier wave Need of modulation The frequency range audible to human beigns known as audible range is between 20 Hz to 20kHz .The frequency of human voice and music signals lies between 200 Hz to 4000Hz.Signals in the audible range audible range are not transmitted directly for the following reason MODULATION
  • 7. K L University 7 1)The wave length of audible signals is very long .To transmit such signals signals the size of antena must be atleast one tenth of signal wave length. For example: consider a 1500Hz signal .The wavelength of the signal is(3*10^8)/1500 The height of anteena should be atleast 0.2*10^5 meters which is not possible practically 2) The signals in the audible range are not transmitted directly for the following reasons. 3) The audio signals attenuate rapidly in the atmosphere. 4) The interference will occur if two are more audio signals are transmitted simultaneously. Because of the above reasons the audio signals signals are modulated before modulation.Not only for audio signals it is also used for signals to be transmited for longer distances. Types of modulation Modulation is of three types they are: 1)Amplitude 2)Frequency 3)Phase Frequency modulation In telecommunications and signal processing, frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. This contrasts with amplitude modulation, in which the amplitude of the carrier wave varies, while the frequency remains constant. In analog frequency modulation, such as FM radio broadcasting of an audio signal representing voice or music, the instantaneous frequency deviation, the difference between the frequency of the carrier and its centre frequency, is proportional to the modulating signal. Digital data can be encoded and transmitted via FM by shifting the carrier's frequency among a predefined set of frequencies representing digits - for example one frequency can represent a binary 1 and a second can represent binary 0. This modulation technique is known as frequency-shift keying (FSK). FSK is widely used in modems and fax modems, and can also be used to send Morse code. Radio teletype also uses FSK.[2] Frequency modulation is widely used for FM radio broadcasting. It is also used in telemetry, radar, seismic prospecting, and monitoring new borns for seizures via
  • 8. K L University 8 EEG, two-way radio systems, music synthesis, magnetic tape-recording systems and some video-transmission systems. In radio transmission, an advantage of frequency modulation is that it has a larger signal-to-noise ratio and therefore rejects radio frequency interference better than an equal power amplitude modulation (AM) signal. For this reason, most music is broadcast over FM radio. Frequency modulation has a close relationship with phase modulation; phase modulation is often used as an intermediate step to achieve frequency modulation. Mathematically both of these are considered a special case of quadrature amplitude modulation (QAM). Tasks and Their Simulation Results Task1: Consider a single tone modulating signalm(t) =1.2cos500pit , carrier signalc(t) =2cos10pit and frequency deviation is 1.2 KHz. Description:- 1. Determine the expression for FM signal in both time domain and frequency domain. 2. Sketch the modulating signal m(t) and its spectrum. 3. Sketch the carrier signal c(t) and its spectrum.
  • 9. K L University 9 4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their spectra. 5. Identify the side frequencies from the spectrum. 6. Determine the approximate minimum bandwidth using Carson’s rule. 7. Determine the minimum bandwidth from the Bessel function table. 8. Sketch the output frequency spectrum from the Bessel approximation. 9. If the modulating signal voltage is now increased to 2.4 Volts, what is the new deviation? Find the modulation index in this case. 10. If the modulating signal voltage is increased to 4 Volts, while its frequency is decreased to 200 Hz, what is the new deviation? Find the modulation index in this case. 11. Determine the power of modulated signal in all the above cases. MATHLAB CODES:- close all; clear all; fs=100000; N=200; Ts=1/fs; fm=250; fc=5000; ac=2; Kf=1200; t=(0:Ts:(N*Ts)-Ts); m=1.2*cos(2*pi*fm*t); figure() plot(t,m) title('Message signal'); axis([0 0.002 -1.5 1.5]) figure() c=2*cos(2*pi*fc*t); plot(t,c); title('Carrier signal'); axis([0 0.002 -2 2]) [w b]=T2F(c,t); %figure() %plot(w/max(w),angle(b)) %title('Phase spectrum of carrie signal in frequency domain') figure() plot(w,abs(b)) title('Magnitude spectrum of carrier signal in frequency domain') axis([-50 50 0 0.002]); [u d]=T2F(m,t); %figure(); %plot(u,angle(d)) %title('Phase spectrum of message signal in frequency domain') figure(); plot(u,abs(d))
  • 10. K L University 10 title('Magnitude spectrum of message signal in frequency domain'); axis([-50 50 0 0.0013]) %0.0012 fd=1200; mi=fd/fm; fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t))); figure(); plot(t,fms) title('Frequency Modulated signal'); axis([0 0.002 -2.1 2.1]) % 2 % Frequency Domain ----- %fms=2*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t))); [v a]=T2F(fms,t) %figure(); %plot(v,angle(a)) %title('Modulated signal Phase spectrum in frequency domain'); figure(); plot(v,abs(a)) title('Modulated signal Magnitude spectrum in frequency domain'); axis([-50 50 0 0.002]) %0.001934 %approximate band witdth using carson's rule cn=2*(Kf+fm); fprintf('The approximate band width using carsons rule is (hz)=%.4fn',cn) %minimum bandwidth using bessel approximation bapp=2*8*fm; fprintf('The approximate band width using bessel appoximation is (hz)=%.4fn',bapp) %% figure() fprintf('As modulation index %.4f we have 8 sidebands',mi); X = 0:0.1:20; J = zeros(5,201); for i = 0:8 J(i+1,:) = besselj(i,X); end plot(X,J,'LineWidth',1.5) axis([0 20 -.5 1.1]) grid on legend('J_0','J_1','J_2','J_3','J_4','J_5','J_6','J_7','J_8','Location','bestoutside') title('Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8') xlabel('X') ylabel('J_v(X)') n=0:1:8; f=n*fm;; G=zeros(length(n),1); for (i=1:1:length(n)) G(i)=(ac/2)*besselj(n(i),mi);
  • 11. K L University 11 end figure(); for j=1:1:2 plot(((-1)^j)*fc+f,abs(G),'o'); hold on; plot(((-1)^j)*fc-f,abs(G),'o'); end axis([-fc-9*fm fc+9*fm 0 0.45]) for(i=1:1:length(n)) for j=1:1:2 line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]); hold on line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]); end end; title('Spectrum of FM using Bessel approximation'); %% am1=2.4; kf=1000; fm=250; mi1=(kf*am1)/(fm); fd1=kf*am1; fprintf('If modulating signal voltage is increased to 2.4 then deviation is %.4f and modulation index %.4fn',fd1,mi1) %% am2=4; fm1=200; kf=1000; fd2=kf*am2; mi2=(kf*am2)/(fm1); fprintf('If modulating signal voltage is increased to 4 and frequency decreased to 200 Hz then deviation is %.4f and modulation index %.4fn',fd2,mi2) %% %case 1 p1=(((1.2)^2)/50)*(((((-0.18)^2))/2)+((- 0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+(( 0.02)^2)) fprintf('Power is %.4fn',p1); %case 2 p2=(((2.4)^2)/50)*(((((-0.18)^2))/2)+((- 0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+(( 0.02)^2)) fprintf('Power is %.4fn',p1); %case 3 p3=(((4)^2)/50)*(((((-0.18)^2))/2)+((- 0.13)^2)+((0.05)^2)+((0.36)^2)+((0.39)^2)+((0.26)^2)+((0.13)^2)+((0.05)^2)+(( 0.02)^2)) fprintf('Power is %.4fn',p1); The approximate band width using carsons rule is (hz)=2900.0000 The approximate band width using bessel appoximation is (hz)=4000.0000
  • 12. K L University 12 As modulation index 4.8000 we have 8 sidebands 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -1.5 -1 -0.5 0 0.5 1 1.5 Message signal
  • 13. K L University 13 Carrier signal -3 Magnitude spectrum of message signal in frequency domain x 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2
  • 14. K L University 14 x 10 -3 Modulated signal Magnitude spectrum in frequency domain x 10 -3 Magnitude spectrum of carrier signal in frequency domain x 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Frequency Modulated signal -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
  • 15. K L University 15 Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8 Spectrum of FM using Bessel approximation -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
  • 16. K L University 16 Task2: Now consider a multi tone modulating signal m(t) =2cos1000pit -sin1500pit + 1.5cos2000pit and repeat the steps (1) to (8) above from the Task1 . 2. Sketch the modulating signal m(t) and its spectrum. 3. Sketch the carrier signal c(t) and its spectrum. 4. Sketch the Narrow Band Frequency Modulated signal FM (t) and their spectra. 5. Identify the side frequencies from the spectrum. 6. Determine the approximate minimum bandwidth using Carson’s rule. 7. Determine the minimum bandwidth from the Bessel function table. 8. Sketch the output frequency spectrum from the Bessel approximation. MATLAB CODE: clear all; close all; fs=100000; N=200; Ts=1/fs; fm=1000; fc=5000; ac=2; Kf=1200; t=(0:Ts:(N*Ts)- Ts); m=2*cos(fm*pi*t)- sin(1500*pi*t)+1.5*cos(2000*pi*t); figure() plot(t,m) title('Message signal'); axis([0 0.002 -2.5 4])
  • 17. K L University 17 figure() c=2*cos(2*pi*fc*t); plot(t,c); title('Carrier signal'); axis([0 0.002 -2 2]) [w b]=T2F(c,t); figure() plot(w,abs(b)) title('Magnitude spectrum of carrier signal in frequency domain') axis([-50 50 0 0.002]); [u d]=T2F(m,t); figure(); plot(u,abs(d)) title('Magnitude spectrum of message signal in frequency domain'); axis([- 50 50 0 0.0035]) %0.003432 fd=1200; mi=fd/fm; fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t))); figure(); plot(t,fms) title('Frequency Modulated signal'); axis([0 0.002 -2.1 2.1]) % 2 [v a]=T2F(fms,t) figure(); plot(v,abs(a)) title('Modulated signal Magnitude spectrum in frequency domain'); axis([-50 50 0 0.0019]) %0.001841 %approximate minimum band width using carson's rule cn=2*(Kf+fm); %minimum bandwidth using bessel approximation bapp=2*4*fm; fprintf('The approximate band width using bessel appoximation is (hz)=%.4fn',bapp) fprintf('The minimum band width using carsons rule is (hz)=%.4fn',cn) figure(); fprintf('As modulation index %.4f we have 4 sidebands',mi); % 1.5 4 X = 0:0.1:20; J = zeros(5,201); for i = 0:4 J(i+1,:) = besselj(i,X); end plot(X,J,'LineWidth',1.5) axis([0 20 -.5 1.1]) grid on legend('J_0','J_1','J_2','J _3','J_4','Location','besto utside') title('Bessel Functions of the First Kind for v = 0,1,2,3,4') xlabel('X')
  • 18. K L University 18 ylabel('J_v(X)') n=0:1:4; f=n*fm;; G=zeros(length(n),1); for (i=1:1:length(n)) G(i)=(ac/2)*besselj(n(i),mi); end figure(); for j=1:1:2 plot(((-1)^j)*fc+f,abs(G),'o'); hold on; plot(((-1)^j)*fc-f,abs(G),'o'); end axis([-fc-5*fm fc+5*fm 0 0.75]) for(i=1:1:length(n)) for j=1:1:2 line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]); hold on line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]); end end; title('Spectrum of FM using Bessel approximation'); The minimum band width using carsons rule is (hz)=4400.0000 The approximate band width using bessel appoximation is (hz)=8000.0000 As modulation index 1.2000 we have 4 sidebands Carrier signal 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
  • 19. K L University 19 x 10 x 10-3 Magnitude spectrum of message signal in frequency domain -3 Modulated signal Magnitude spectrum in frequency domain x 10 -3 Magnitude spectrum of carrier signal in frequency domain x 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -3 -2 -1 0 1 2 3 4 Message signal -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.5 1 1.5 2 2.5 3 3.5 -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
  • 20. K L University 20 -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Frequency Modulated signal 0 5 10 15 20 -0.5 0 0.5 1 X Bessel Functions of the First Kind for v = 0,1,2,3,4 J0 J1 J2 J3 J4
  • 21. K L University 21 Task3:- Assume that the demodulation process is synchronous detection as shown in Fig.1. The objective is to study the demodulation / reception of Frequency Modulated Math lab code: % DEMODULATION ---------------------- fc=5000; fs=50000; fd=1000; N=1000; ts=1/fs; t=(0:ts:(N*ts)-ts); c=2*cos(10000*pi*t); m=1.2*cos(500*pi*t); y=fmmod(m,fc,fs,fd); z=fmdemod(y,fc,fs,fd); plot(t,m) title('Original message signal') axis([0.00005 0.012 -1.5 1.5]) figure() plot(t,z) title('Demodulated message signal') axis([0.00005 0.012 -1.5 1.5]) figure(); plot(t,m,'c',t,z,'b--'); axis([0.00005 0.012 -1.5 1.5]) xlabel('Time (s)') ylabel('Amplitude')
  • 22. K L University 22 legend('Original Signal','Demodulated Signal') [w a]=T2F(t,m) [u b]=T2F(t,z) figure() plot(w,abs(a)); axis([-1000 1000 0 0.012]) title('Magnitude spectrum of original signal in frequency domain') figure(); plot(u,abs(b)); axis([-1000 1000 0 0.012]) title('Magnitude spectrum of demodulated signal in frequency domain') figure(); plot(w,abs(a),'c',u,abs(b),'b--'); axis([-1000 1000 0 0.012]) xlabel('Frequency (in Hz) ---->') ylabel('Amplitude') legend('Original Signal','Demodulated Signal','location','bestoutside') Demodulated message signal x 10 2 4 6 8 10 12 x 10 -3 -1.5 -1 -0.5 0 0.5 1 1.5 2 4 6 8 10 12 -3 -1.5 -1 -0.5 0 0.5 1 1.5 Original message signal
  • 23. K L University 23 Magnitude spectrum of original signal in frequency domain 2 4 6 8 10 12 x 10 -3 -1.5 -1 -0.5 0 0.5 1 1.5 Time (s) Original Signal Demodulated Signal -1000 -800 -600 -400 -200 0 200 400 600 800 1000 0 0.002 0.004 0.006 0.008 0.01 0.012
  • 24. K L University 24 Magnitude spectrum of demodulated signal in frequency domain Task 4: Repeat above tasks for multi tone modulating signal m(t) =1.4cos200pit -0.8sin300pit +cos400pit . MATLAB CODE :- clear all; close all; fs=100000; N=200; Ts=1/fs; fm=200; fc=5000; ac=2; -1000 -500 0 500 1000 0 0.002 0.004 0.006 0.008 0.01 0.012 Frequency (in Hz) ----> Original Signal Demodulated Signal -1000 -800 -600 -400 -200 0 200 400 600 800 1000 0 0.002 0.004 0.006 0.008 0.01 0.012
  • 25. K L University 25 Kf=1200; t=(0:Ts:(N*Ts)-Ts); m=1.4*cos(200*pi*t)-(0.8)*sin(300*pi*t)+cos(400*pi*t); figure() plot(t,m) title('Message signal'); axis([0 0.002 -1.5 3]) figure() c=2*cos(2*pi*fc*t); plot(t,c); title('Carrier signal'); axis([0 0.002 -2 2]) [w b]=T2F(c,t); figure() plot(w,abs(b)) title('Magnitude spectrum of carrier signal in frequency domain') axis([-50 50 0 0.002]); [u d]=T2F(m,t); figure(); plot(u,abs(d)) title('Magnitude spectrum of message signal in frequency domain'); axis([- 50 50 0 0.0012]) fd=1200; mi=fd/fm; fms=ac*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t))); figure(); plot(t,fms) title('Frequency Modulated signal'); axis([0 0.002 -2.1 2.1]) % 2 % Frequency Domain ----- %fms=2*(cos(2*fc*pi*t+mi.*sin(2*pi*fm*t))); [v a]=T2F(fms,t) %figure(); %plot(v,angle(a)) %title('Modulated signal Phase spectrum in frequency domain'); figure(); plot(v,abs(a)) title('Modulated signal Magnitude spectrum in frequency domain'); axis([-50 50 0 0.0020]) %0.002 %approximate minimum band witdth using carson's rule cn=2*(Kf+fm); fprintf('The minimum band width using carsons rule is (hz)=%.4fn',cn) %minimum bandwidth using bessel approximation bapp=2*9*fm; fprintf('The approximate band width using bessel appoximation is (hz)=%.4fn',bapp) figure(); fprintf('As modulation index %.4f we have 9 sidebands',mi); % 1.5 4
  • 26. K L University 26 X = 0:0.1:20; J = zeros(5,201); for i = 0:9 J(i+1,:) = besselj(i,X); end plot(X,J,'LineWidth',1.5) axis([0 20 -.5 1.1]) grid on legend('J_0','J_1','J_2','J_3','J_4','J_5','J_6','J_7','J_8','J_9','Location','bestoutside') title('Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8,9') xlabel('X') ylabel('J_v(X)') n=0:1:9; f=n*fm;; G=zeros(length(n),1); for (i=1:1:length(n)) G(i)=(ac/2)*besselj(n(i),mi); end figure(); for j=1:1:2 plot(((-1)^j)*fc+f,abs(G),'o'); hold on; plot(((-1)^j)*fc- f,abs(G),'o'); end axis([-fc-10*fm fc+10*fm 0 0.75]) for(i=1:1:length(n)) for j=1:1:2 line([((-1)^j)*fc+f(i) ((-1)^j)*fc+f(i)],[0 abs(G(i))]); hold on line([((-1)^j)*fc-f(i) ((-1)^j)*fc-f(i)],[0 abs(G(i))]); end end; title('Spectrum of FM using Bessel approximation'); %% fc=5000; fs=50000; fd=1000; N=1000; ts=1/fs; t=(0:ts:(N*ts)-ts); c=2*cos(10000*pi*t); m=1.4*cos(200*pi*t)-(0.8)*sin(300*pi*t)+cos(400*pi*t); y=fmmod(m,fc,fs,fd); z=fmdemod(y,fc,fs,fd); plot(t,m) title('Original message signal') axis([0.00005 0.012 -2 3]) figure(); plot(t,z) title('Demodulated message signal') axis([0.00005 0.012 -2 3]) figure(); plot(t,m,'c',t,z,'b--'); axis([0.00005 0.012 -2 3]) xlabel('Time (s)') ylabel('Amplitude')
  • 27. K L University 27 legend('Original Signal','Demodulated Signal') %% ----- optional ------ [w a]=T2F(t,m) [u b]=T2F(t,z) figure() plot(w,abs(a)); axis([- 400 400 0 0.014]) title('Magnitude spectrum of original signal in frequency domain') figure(); plot(u,abs(b)); axis([-400 400 0 0.014]) title('Magnitude spectrum of demodulated signal in frequency domain') figure(); plot(w,abs(a),'c',u,abs(b),'b--'); axis([-400 400 0 0.014]) xlabel('Frequency (in Hz) ---->') ylabel('Amplitude') legend('Original Signal','Demodulated Signal','location','bestoutside') The minimum band width using carsons rule is (hz)=2800.0000 The approximate band width using bessel appoximation is (hz)=3600.0000 As modulation index 6.0000 we have 9 sidebands x 10 -3 Magnitude spectrum of carrier signal in frequency domain 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Message signal 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Carrier signal
  • 28. K L University 28 -3 Magnitude spectrum of message signal in frequency domain x 10 x 10-3 Modulated signal Magnitude spectrum in frequency domain -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Frequency Modulated signal
  • 29. K L University 29 Bessel Functions of the First Kind for v = 0,1,2,3,4,5,6,7,8,9 -50 -40 -30 -20 -10 0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2 4 6 8 10 12 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Original message signal
  • 30. K L University 30 2 4 6 8 10 12 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Time (s) Original Signal Demodulated Signal 2 4 6 8 10 12 x 10 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Demodulated message signal
  • 31. K L University 31 Magnitude spectrum of original signal in frequency domain TASK5:- Repeat above tasks for real speech signals. clear all;close all;clc; % Record your voice for 5 seconds recObj = audiorecorder disp('Start speaking.'); recordblocking(recObj,5); % 5 seconds disp('End of Recording.'); y=getaudiodata(recObj); a=y(35001:40000) k=length(a) a=a'; -400 -200 0 200 400 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 Frequency (in Hz) ----> Original Signal Demodulated Signal -400 -300 -200 -100 0 100 200 300 400 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
  • 32. K L University 32 t=0:k-1; b=(sin(2*pi*(400/pi)*t)); m=a.*b; z=m.*(sin((400/pi)*2*pi*t)); [v,A]=T2F(t,a); [w,Z]=T2F(t,z); [f,M]=T2F(t,m); subplot(3,3,1); plot(t,a/max(a),'black','Linewidth',1.5); title(' x(t),msg signal'); subplot(3,3,2); plot(v,abs(A),'r','Linewidth',2); title('|X(jw)| msg signal'); subplot(3,3,3); plot(t,m/max(m),'black','Linewidth',1.5); title('y(t),modulated signal'); subplot(3,3,4); plot(f,abs(M),'r','Linewidth',2); title('|y(jw)| modulated signal'); subplot(3,3,5); plot(t,z/max(z),'black','Linewidth',1.5); title('demodulated signal c(t)'); subplot(3,3,6); plot(w,abs(Z),'r','Linewidth',2); title('|c(jw)|,demodulated'); fs=1600; fc=400; [g,h] = butter(5,fc*2/fs); % Filter coefficients so = filtfilt(g,h,z); subplot(3,3,7) plot(t,so)% Reconstruction signal title('Reconstucted signal'); [fo So ]= T2F(t,so); % Spectrum of the reconstructed signal subplot(3,3,9)
  • 33. K L University 33 plot(fo,abs(So),'r','Linewidth',2); title('Spectrum of reconstructed signal'); figure(); plot(t,a,'black','Linewidth',1.5);hold on title('compare()'); plot(t,so);
  • 34. K L University 34 3. Conclusions and Future Scope This project concludes that frequency modulation and demodulation that has been utilised by the broadcasting industry is the reduction in noise. it does not suffer audio amplitude variations as the signal level varies. Mainly in frequency modulation amplitude remins constant In frequency modulation, the carrier amplitude is constant, on the other hand, the value of the carrier frequency varies depending on the frequency of the modulating signal. The envelope of the modulated signal is the same shape as the modulating signal. Modulation index is the ratio of the frequency deviation to meassage signal frequency/. From the modulated carrier displayed on an oscilloscope, the percent modulation can be measured through the maximum and the minimum values of the modulating signal, The voltage of each side frequency depends on carrier voltage and the modulation index. Thebandwidth is twice the modulating frequency. A square wave which is a complex modulating signal consists of many side frequencies generated. The above mentioned modulation techniques will be used for new generation communication technology. The SDR mostly used in portable devices such as PDAs, smart phones, laptops and so on. The cellular technologies like GSM, WCDMA, and LTE etc. are more supportable with SDR. It can support the different services like location based service (GPS), World Wide Web (www), video calling, video broadcasting, e-commerce REFERENCES 1.Jump up^ Stan Gibilisco (2002). Teach yourself electricity and electronics. McGraw-Hill Professional. p. 477. ISBN 978-0-07-137730-0. 2. Jump up^ B. Boashash, editor, "Time-Frequency Signal Analysis and Processing – A Comprehensive Reference", Elsevier Science, Oxford, 2003; ISBN 0-08-044335-4 3. John G. Proakis and Dimitris G. Manalakis, ‘Digital Signal Processing, principles,algorithms and applications’, Pearson Prentice Hall, 2011. 4.Wikipedia
  • 35. K L University 35 5. Vinay K. Ingle and John G. Proakis, Essentials of Digital Signal Processing Using MATLAB®,Third Edition 2012, Cengage Learning.