The Iron–Carbon Phase Diagram
Iron–Carbon Phase Diagram
• In their simplest form, steels are alloys of Iron
(Fe) and Carbon (C). The Fe-C phase diagram is
a fairly complex one, but we will only consider
the steel and cast iron part of the diagram, up
to 6.67% Carbon.
Fe – C Equilibrium Diagram
Phases in Fe–C Phase Diagram
• α-ferrite - solid solution of C in BCC Fe
• Stable form of iron at room temperature.
• The maximum solubility of C is 0.025 % at eutectoid temperature
• Transforms to FCC γ-austenite at 910°C
• γ-austenite - solid solution of C in FCC Fe
• The maximum solubility of C is 2.14 % at eutectic temperature
• Transforms to BCC δ-ferrite at 1395 °C
• Is not stable below the eutectoid temperature(727 ° C) unless
cooled rapidly
• δ-ferrite solid solution of C in BCC Fe
• The same structure as α-ferrite
• Stable only at high Temp., above 1394 °C
• Melts at 1538 °C
Phases in Fe–C Phase Diagram
• Fe3C (iron carbide or cementite)
It is an intermetallic compound between iron
and carbon. It contains 6.67 % carbon and is
hard and brittle.
This intermetallic compound is a
metastablephase and it remains as a
compound indefinitely at room temperature.
A few comments on Fe–C system
• Carbon occupies interstitial positions in Fe. It
forms a solid solution with α, γ, δ phases of
iron
• Maximum solubility in BCC α-ferrite is limited
(max. 0.025 % at 727 °C) - BCC has relatively
small interstitial positions
• Maximum solubility in FCC austenite is 2.14 %
at 1147 °C - FCC has larger interstitial positions
A few comments on Fe–C system
• Mechanical properties
– Cementite is very hard and brittle - can strengthen
steels.
– Mechanical properties depend on the
microstructure, that is, how ferrite and cementite
are distributed.

• Magnetic properties: α -ferrite is magnetic
below 768 °C, austenite is non-magnetic
Classification
• Three types of ferrous alloy
• Iron: less than 0.008% C in α−ferrite at room
temp.
• Steels: 0.008 - 2.14% C (usually < 1%) αferrite + Fe3C at room temp.
• Cast iron: 2.14 - 6.7% (usually < 4.5%)
Eutectic and eutectoid reactions in
Fe–C

Eutectic: 4.30 wt% C, 1147 °C
L (4.30% C) ↔ γ (2.14% C) + Fe3C

Eutectoid: 0.76 wt%C, 727 °C
γ(0.76% C) ↔ α (0.022% C) + Fe3C
• Eutectic and eutectoid reactions are very
important in heat treatment of steels
Development of Microstructure in
Iron - Carbon alloys
• Microstructure depends on composition
(carbon content) and heat treatment. In the
discussion below we consider slow cooling in
which equilibrium is maintained.
Iron-Carbon (Fe-C) Phase Diagram
T(°C)
1600

- Eutectic (A):

L

Adapted from Fig. 10.28,
Callister & Rethwisch 3e.

L

1400

+ Fe3C

- Eutectoid (B):

+ Fe3C

1200

+L

AA

(austenite)

1000
800

+Fe3C
B

727°C = T eutectoid

600

120 m

Result: Pearlite is
alternating layers of

400
0
(Fe)

L+Fe3C

1148°C

Fe3C (cementite)

• 2 points

+Fe3C
1

0.76

and Fe3C phases

2

3

4

4.30

5

6

6.7

C, wt% C

Fe3C (cementite-hard)
(ferrite-soft)
12
Microstructure of eutectoid steel
Microstructure of eutectoid steel
• When alloy of eutectoid composition (0.76 wt % C) is
cooled slowly it forms perlite, a lamellar or layered
structure of two phases: α-ferrite and cementite
(Fe3C).
• The layers of alternating phases in pearlite are formed
for the same reason as layered structure of eutectic
structures: redistribution C atoms between ferrite
(0.022 wt%) and cementite (6.7 wt%) by atomic
diffusion.
• Mechanically, pearlite has properties intermediate to
soft, ductile ferrite and hard, brittle cementite.
Microstructure of eutectoid steel
In the micrograph, the dark areas are
Fe3C layers, the light phase is αferrite
Microstructure of hypoeutectoid steel

Compositions to the left of eutectoid (0.022 0.76 wt % C) is hypoeutectoid (less than
eutectoid -Greek) alloys.
γ → α + γ → α + Fe3C
Hypoeutectoid Steel

T(°C)
1600

Adapted from Figs. 10.28 and 10.33

L

1400

1000

+ Fe3C

800

727°C

600

pearlite

+ Fe3C
1
0.76

400
0
(Fe)C0

L+Fe3C

1148°C

(austenite)

2

3

4

5

6

6.7

C, wt% C
100 m

pearlite

(Fe-C
System)

Fe3C (cementite)

1200

+L

Hypoeutectoid
steel

proeutectoid ferrite
Adapted from Fig. 10.34, Callister & Rethwisch 3e.
17
Hypoeutectoid Steel
T(°C)
1600

L

1400

(austenite)

1000
800
600
pearlite

Wpearlite = W

+ Fe3C
r s

727°C

RS

400
0
(Fe)C0

+ Fe3C
1
0.76

W = s/(r + s)
W =(1 - W )

L+Fe3C

1148°C

W ’ = S/(R + S)
WFe3C
=(1 – W ’)
pearlite

2

3

4

5

6

(Fe-C
System)

Fe3C (cementite)

1200

+L

6.7

C, wt% C
100 m

Hypoeutectoid
steel

proeutectoid ferrite
Adapted from Fig. 10.34, Callister & Rethwisch 3e.
18
Microstructure of hypoeutectoid steel
Hypoeutectoid alloys contain proeutectoid ferrite (formed
above the eutectoid temperature) plus the eutectoid perlite
that contain eutectoid ferrite and cementite.
Microstructure of hypereutectoid
steel

Compositions to the right of eutectoid
(0.76 - 2.14 wt % C) is hypereutectoid
(more than eutectoid -Greek) alloys.
γ → γ + Fe3C → α + Fe3C
Microstructure of hypereutectoid
steel
T(°C)

Hypereutectoid Steel

1600

L

1400

+L

1000

+Fe3C

800
600
400
0
(Fe)
pearlite

+Fe3C
0.76

Fe3C

L+Fe3C

1148°C

(austenite)

1 C0

2

3

4

5

6

Fe3C (cementite)

1200

6.7

C, wt%C
60 mHypereutectoid
steel

pearlite

proeutectoid Fe3C

Adapted from Fig. 10.37, Callister & Rethwisch 3e.
22
T(°C)

Hypereutectoid Steel

1600

L

1400
1200

+L

1000

+Fe3C

W =x/(v + x)

v x

800

600
pearlite
400
0
(Fe)

Wpearlite = W

V

X
+Fe3C
0.76

WFe3C =(1-W )

1 C0

W = X/(V + X)
WFe

3C’

L+Fe3C

1148°C

(austenite)

2

3

4

5

6

Fe3C (cementite)

Fe3C

6.7

C, wt%C
60 mHypereutectoid
steel

=(1 - W )

pearlite

proeutectoid Fe3C

Adapted from Fig. 10.37, Callister & Rethwisch 3e.
23
Relative amounts of proeutectoid
phase (α or Fe3C) and pearlite?
Application of the lever rule with tie
line that extends from the eutectoid
composition (0.76 wt% C) to α – (α +
Fe3C) boundary (0.022 wt% C) for
hypoeutectoid alloys and to (α +
Fe3C) – Fe3C boundary (6.7 wt% C)
for hypereutectoid alloys.
Fraction of α phase is determined
by application of the lever rule
across the entire (α + Fe3C) phase
field.
Example for hypereutectoid alloy with
composition C1
Fraction of pearlite: WP = X / (V+X) = (6.7 – C1) / (6.7 – 0.76)
Fraction of proeutectoid cementite: WFe3C = V / (V+X) = (C1 – 0.76) / (6.7 – 0.76)
Example Problem Steel
For a 99.6 wt% Fe-0.40 wt% C steel at a
temperature just below the
eutectoid, determine the following:
a) The compositions of Fe3C and ferrite ( ).
b) The amount of cementite (in grams) that
forms in 100 g of steel.
c) The amounts of pearlite and proeutectoid
ferrite ( ) in the 100 g.

26
Solution to Problem
a) Use RS tie line just below
Eutectoid

b)

Use lever rule with
the tie line shown

WFe 3C

R
R S

1600

T(°C)

1200

C0 C
CFe 3C C

0.40 0.022
6.70 0.022

L

1400

+L

1000

+ Fe3C

800

727°C

R

0.057

S
+ Fe3C

600
400
0

Amount of Fe3C in 100 g

L+Fe3C

1148°C

(austenite)

Fe3C (cementite)

C = 0.022 wt% C
CFe3C = 6.70 wt% C

C C0

1

2

3

4

C, wt% C

5

6

6.7

CFe

3C

= (100 g)WFe3C
= (100 g)(0.057) = 5.7 g
27
Solution to Problem
c) Using the VX tie line just above the eutectoid
and realizing that

C0 = 0.40 wt% C
C = 0.022 wt% C
Cpearlite = C = 0.76 wt% C
V X

T(°C)

C0 C
C C

0.40 0.022
0.76 0.022

L

1400

1200

+L
L+Fe3C

1148°C

(austenite)

1000

+ Fe3C

0.512
800

727°C

VX

Amount of pearlite in 100 g
= (100 g)Wpearlite
= (100 g)(0.512) = 51.2 g

600
400
0

+ Fe3C
1

C C0 C

2

3

4

5

6

Fe C (cementite)

Wpearlite

V

1600

6.7

C, wt% C

28
Summary
Phase Diagrams and Microstructures
• Phase (T vs c) diagrams are useful to determine:

- the number and types of phases,
- the wt% of each phase,
- and the composition of each phase
for a given T and composition of the system.
• Alloying to produce a solid solution usually

- increases the tensile strength (TS)
- decreases the ductility.
• Binary eutectics and binary eutectoids allow for
a range of microstructures.

- Alloy composition and annealing temperature and time
determine possible microstructure(s). Slow vs. Fast.
- In 2-phase regions, use “lever rule” to get wt% of phases.
- Varying microstructure affects mechanical properties.
29
Alloying Steel With More Elements

Ti

Mo

• Ceutectoid changes:

Si
W
Cr
Mn

Ni

wt. % of alloying elements
Adapted from Fig. 10.38,Callister & Rethwisch 3e.
(Fig. 10.38 from Edgar C. Bain, Functions of the
Alloying Elements in Steel, American Society for
Metals, 1939, p. 127.)

Ceutectoid (wt% C)

T Eutectoid (°C)

• Teutectoid changes:

Ni
Cr
Si
Ti Mo

W

Mn

wt. % of alloying elements
Adapted from Fig. 10.39,Callister & Rethwisch 3e.
(Fig. 10.39 from Edgar C. Bain, Functions of the
Alloying Elements in Steel, American Society for
Metals, 1939, p. 127.)

30
THANKS

fe-c diagram

  • 1.
  • 2.
    Iron–Carbon Phase Diagram •In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the steel and cast iron part of the diagram, up to 6.67% Carbon.
  • 3.
    Fe – CEquilibrium Diagram
  • 4.
    Phases in Fe–CPhase Diagram • α-ferrite - solid solution of C in BCC Fe • Stable form of iron at room temperature. • The maximum solubility of C is 0.025 % at eutectoid temperature • Transforms to FCC γ-austenite at 910°C • γ-austenite - solid solution of C in FCC Fe • The maximum solubility of C is 2.14 % at eutectic temperature • Transforms to BCC δ-ferrite at 1395 °C • Is not stable below the eutectoid temperature(727 ° C) unless cooled rapidly • δ-ferrite solid solution of C in BCC Fe • The same structure as α-ferrite • Stable only at high Temp., above 1394 °C • Melts at 1538 °C
  • 5.
    Phases in Fe–CPhase Diagram • Fe3C (iron carbide or cementite) It is an intermetallic compound between iron and carbon. It contains 6.67 % carbon and is hard and brittle. This intermetallic compound is a metastablephase and it remains as a compound indefinitely at room temperature.
  • 6.
    A few commentson Fe–C system • Carbon occupies interstitial positions in Fe. It forms a solid solution with α, γ, δ phases of iron • Maximum solubility in BCC α-ferrite is limited (max. 0.025 % at 727 °C) - BCC has relatively small interstitial positions • Maximum solubility in FCC austenite is 2.14 % at 1147 °C - FCC has larger interstitial positions
  • 7.
    A few commentson Fe–C system • Mechanical properties – Cementite is very hard and brittle - can strengthen steels. – Mechanical properties depend on the microstructure, that is, how ferrite and cementite are distributed. • Magnetic properties: α -ferrite is magnetic below 768 °C, austenite is non-magnetic
  • 8.
    Classification • Three typesof ferrous alloy • Iron: less than 0.008% C in α−ferrite at room temp. • Steels: 0.008 - 2.14% C (usually < 1%) αferrite + Fe3C at room temp. • Cast iron: 2.14 - 6.7% (usually < 4.5%)
  • 9.
    Eutectic and eutectoidreactions in Fe–C Eutectic: 4.30 wt% C, 1147 °C L (4.30% C) ↔ γ (2.14% C) + Fe3C Eutectoid: 0.76 wt%C, 727 °C γ(0.76% C) ↔ α (0.022% C) + Fe3C
  • 10.
    • Eutectic andeutectoid reactions are very important in heat treatment of steels
  • 11.
    Development of Microstructurein Iron - Carbon alloys • Microstructure depends on composition (carbon content) and heat treatment. In the discussion below we consider slow cooling in which equilibrium is maintained.
  • 12.
    Iron-Carbon (Fe-C) PhaseDiagram T(°C) 1600 - Eutectic (A): L Adapted from Fig. 10.28, Callister & Rethwisch 3e. L 1400 + Fe3C - Eutectoid (B): + Fe3C 1200 +L AA (austenite) 1000 800 +Fe3C B 727°C = T eutectoid 600 120 m Result: Pearlite is alternating layers of 400 0 (Fe) L+Fe3C 1148°C Fe3C (cementite) • 2 points +Fe3C 1 0.76 and Fe3C phases 2 3 4 4.30 5 6 6.7 C, wt% C Fe3C (cementite-hard) (ferrite-soft) 12
  • 13.
  • 14.
    Microstructure of eutectoidsteel • When alloy of eutectoid composition (0.76 wt % C) is cooled slowly it forms perlite, a lamellar or layered structure of two phases: α-ferrite and cementite (Fe3C). • The layers of alternating phases in pearlite are formed for the same reason as layered structure of eutectic structures: redistribution C atoms between ferrite (0.022 wt%) and cementite (6.7 wt%) by atomic diffusion. • Mechanically, pearlite has properties intermediate to soft, ductile ferrite and hard, brittle cementite.
  • 15.
    Microstructure of eutectoidsteel In the micrograph, the dark areas are Fe3C layers, the light phase is αferrite
  • 16.
    Microstructure of hypoeutectoidsteel Compositions to the left of eutectoid (0.022 0.76 wt % C) is hypoeutectoid (less than eutectoid -Greek) alloys. γ → α + γ → α + Fe3C
  • 17.
    Hypoeutectoid Steel T(°C) 1600 Adapted fromFigs. 10.28 and 10.33 L 1400 1000 + Fe3C 800 727°C 600 pearlite + Fe3C 1 0.76 400 0 (Fe)C0 L+Fe3C 1148°C (austenite) 2 3 4 5 6 6.7 C, wt% C 100 m pearlite (Fe-C System) Fe3C (cementite) 1200 +L Hypoeutectoid steel proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. 17
  • 18.
    Hypoeutectoid Steel T(°C) 1600 L 1400 (austenite) 1000 800 600 pearlite Wpearlite =W + Fe3C r s 727°C RS 400 0 (Fe)C0 + Fe3C 1 0.76 W = s/(r + s) W =(1 - W ) L+Fe3C 1148°C W ’ = S/(R + S) WFe3C =(1 – W ’) pearlite 2 3 4 5 6 (Fe-C System) Fe3C (cementite) 1200 +L 6.7 C, wt% C 100 m Hypoeutectoid steel proeutectoid ferrite Adapted from Fig. 10.34, Callister & Rethwisch 3e. 18
  • 19.
    Microstructure of hypoeutectoidsteel Hypoeutectoid alloys contain proeutectoid ferrite (formed above the eutectoid temperature) plus the eutectoid perlite that contain eutectoid ferrite and cementite.
  • 20.
    Microstructure of hypereutectoid steel Compositionsto the right of eutectoid (0.76 - 2.14 wt % C) is hypereutectoid (more than eutectoid -Greek) alloys. γ → γ + Fe3C → α + Fe3C
  • 21.
  • 22.
    T(°C) Hypereutectoid Steel 1600 L 1400 +L 1000 +Fe3C 800 600 400 0 (Fe) pearlite +Fe3C 0.76 Fe3C L+Fe3C 1148°C (austenite) 1 C0 2 3 4 5 6 Fe3C(cementite) 1200 6.7 C, wt%C 60 mHypereutectoid steel pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. 22
  • 23.
    T(°C) Hypereutectoid Steel 1600 L 1400 1200 +L 1000 +Fe3C W =x/(v+ x) v x 800 600 pearlite 400 0 (Fe) Wpearlite = W V X +Fe3C 0.76 WFe3C =(1-W ) 1 C0 W = X/(V + X) WFe 3C’ L+Fe3C 1148°C (austenite) 2 3 4 5 6 Fe3C (cementite) Fe3C 6.7 C, wt%C 60 mHypereutectoid steel =(1 - W ) pearlite proeutectoid Fe3C Adapted from Fig. 10.37, Callister & Rethwisch 3e. 23
  • 24.
    Relative amounts ofproeutectoid phase (α or Fe3C) and pearlite? Application of the lever rule with tie line that extends from the eutectoid composition (0.76 wt% C) to α – (α + Fe3C) boundary (0.022 wt% C) for hypoeutectoid alloys and to (α + Fe3C) – Fe3C boundary (6.7 wt% C) for hypereutectoid alloys. Fraction of α phase is determined by application of the lever rule across the entire (α + Fe3C) phase field.
  • 25.
    Example for hypereutectoidalloy with composition C1 Fraction of pearlite: WP = X / (V+X) = (6.7 – C1) / (6.7 – 0.76) Fraction of proeutectoid cementite: WFe3C = V / (V+X) = (C1 – 0.76) / (6.7 – 0.76)
  • 26.
    Example Problem Steel Fora 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: a) The compositions of Fe3C and ferrite ( ). b) The amount of cementite (in grams) that forms in 100 g of steel. c) The amounts of pearlite and proeutectoid ferrite ( ) in the 100 g. 26
  • 27.
    Solution to Problem a)Use RS tie line just below Eutectoid b) Use lever rule with the tie line shown WFe 3C R R S 1600 T(°C) 1200 C0 C CFe 3C C 0.40 0.022 6.70 0.022 L 1400 +L 1000 + Fe3C 800 727°C R 0.057 S + Fe3C 600 400 0 Amount of Fe3C in 100 g L+Fe3C 1148°C (austenite) Fe3C (cementite) C = 0.022 wt% C CFe3C = 6.70 wt% C C C0 1 2 3 4 C, wt% C 5 6 6.7 CFe 3C = (100 g)WFe3C = (100 g)(0.057) = 5.7 g 27
  • 28.
    Solution to Problem c)Using the VX tie line just above the eutectoid and realizing that C0 = 0.40 wt% C C = 0.022 wt% C Cpearlite = C = 0.76 wt% C V X T(°C) C0 C C C 0.40 0.022 0.76 0.022 L 1400 1200 +L L+Fe3C 1148°C (austenite) 1000 + Fe3C 0.512 800 727°C VX Amount of pearlite in 100 g = (100 g)Wpearlite = (100 g)(0.512) = 51.2 g 600 400 0 + Fe3C 1 C C0 C 2 3 4 5 6 Fe C (cementite) Wpearlite V 1600 6.7 C, wt% C 28
  • 29.
    Summary Phase Diagrams andMicrostructures • Phase (T vs c) diagrams are useful to determine: - the number and types of phases, - the wt% of each phase, - and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually - increases the tensile strength (TS) - decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures. - Alloy composition and annealing temperature and time determine possible microstructure(s). Slow vs. Fast. - In 2-phase regions, use “lever rule” to get wt% of phases. - Varying microstructure affects mechanical properties. 29
  • 30.
    Alloying Steel WithMore Elements Ti Mo • Ceutectoid changes: Si W Cr Mn Ni wt. % of alloying elements Adapted from Fig. 10.38,Callister & Rethwisch 3e. (Fig. 10.38 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) Ceutectoid (wt% C) T Eutectoid (°C) • Teutectoid changes: Ni Cr Si Ti Mo W Mn wt. % of alloying elements Adapted from Fig. 10.39,Callister & Rethwisch 3e. (Fig. 10.39 from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) 30
  • 31.