Find
dy
dx
of the given functions
1. y = x
n + 2
, where n is constant
2. y = x
3
3. y = x
–n
, where n is constant
4. y = x
–4
5.
1
n
y = x , where n is constant and n 0
z
6.
1
2
y = x
7.
2
3
y = x
"
8. y = ax
3
, where a is a constant
9.
1
4
1
y = x
2
Lakshya Educare
 Differentiate with respect to x
a x2
b x4
c x d x9
e x−3
f x−1
g 4x2
h 7x i 2x5
j 3 k 8x−2
l 11x−4
11 (x7/2
)
dx
d
is equal to
(1) x−5/ 2
2
7
(2) x5/2
2
7
−
2
(3)
7
x5/2
(4) x5/2
7
2
12 ⎟
⎠
⎜
⎝ x3
1
dx
d ⎛ ⎞
is equal to
(1)
x4
−3
(2)
3
x2
(3)
3
x2
− (4) 3x2
1
dx
d
(x3/2
) is :
(1)
2
3
x1/2
(2)
2
3
x5/2
(3)
2
3
x7/2
(4)
2
3
x9/2
14 ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
x
1
dx
d
(1)
x
2
1
(2) x (3) –
2x3/2
1
(4)
2x3/2
1
15 The value of
dy
for y = 5x will be -
dx
(A) 5 (B)
2
5x2
(C) zero (D) 10x2
16
dx
d
(πx2
) is equal to
(1) 2πx (2) πx (3) 2x (4)
2
πx
3
PHYSICS
Turtle Tutorials - BM 1
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
1. If y = x
3
+ 2x
2
+ 7x + 8 then
dx
dy
will be -
(A) 3x2
+ 2x + 15 (B) 3x2
+ 4x + 7 (C) x
3
+ 2x
2
+ 15 (D) x
3
+ 4x + 7
2. If y = x2
sin x , then
dx
dy will be -
(A) x2
cos x + 2x sin x (B) 2x sin x (C) x
2
cos x (D) 2 x cos x
3. If y = ex
. cot x then
dx
dy will be
(A) ex
cot x – cosec2
x (B) e
x
cosec2
x (C) e
x
[cot x – cosec2
x]
(D) e
x
cot x
dx
dy
will be
4. If y = x nx then
(A) nx + x (B) 1 + n x (C) nx (D) 1
dx
dy
5. y = 4 + 5x + 7x3
. Find
(A) 5 - 21x
2
(B) 5 + 21x2
(C) 9 + 7x
2
(D) 5 + 21x
x3
1
x
1
Find
dx
dy
6. y = x +x
2
. +
(A)1 + 2x –
x4
2
3
x
1
(B) 1 + 2x – 4
2
x
(C) 1 – 2x – 4
3
x
(D) 1 + 2x – 3
3
x
7. If f(x) =
x 2
x 2
The value f (–1) is
(A)
3
1
(B)
3
1
(C) 3 (D) –3
8. y = x2
+
x
1
2
.Find
dx
dy
(A) 2x –
x3
2
(B) 2x – 4
2
x
(C) 2x +
x3
2
(D) None of these
2
x
1
2
x
1
2
x
1
Lakshya Educare
PHYSICS
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
)
x
(tan
dx
d
is equal to
(1) sec2
x (2) cotx
(3) – sec2
x (4) – cot x
1
dx
d
(x3
+ 4x2
+ 1) is equal to
(1) c
x
x
3
4
4
x 3
4
+
+
+ (2) 3x2
+ 8x
(3)
4
x4
+ 8x (4) 3x2
+
4
x4
x3
11 ⎟
⎠
⎞
⎜
⎝
⎛
+
+
+ x
tan
x
log
x
1
x
dx
d
(1) 1 –
2
x
1
+ sec2
x
(2) 1 +
x
1
+ sec2
x
(3) 1 +
2
x
1
+
x
1
+ sec2
x
(4) 1 –
2
x
1
+
x
1
+ sec2
x
1
2
x
1
x
dx
d
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+ is equal to
(1)
2
x
1
1+ (2)
2
x
1
1+
−
(3)
2
x
1
1− (4) x2
– 1
1
d
(x4 – 2 sin x + 3 cos x)
dx
(A) 4x3 – 2 cos x + 3 sin x
(B) 3x2 + 2 cosx + 3 sin x
(C) 4x3 + 2 cosx – 3 sin x
(D) 4x3 – 2 cos x – 3 sin x
dy
at x = 1 is -
dx
If
14. y = x3
+ 2x + 1 then
(A) 6 (B) 7
(C) 8 (D) 5
dy
is -
dx
y
15. = secx + tanx , value of
(A) sec2
x + tan x (B) tan2
x + sec x
(C) secx (tanx + secx) (D) sec x (1 + sec x)
dx
d
x 1
(x2
+1)
+
(A) 2
2
(x +1)
x + 2x −1
(B) 2
(x +1)
x2
− 2x +1
(C)
x +1
x2
+ 2x −1
(D) 2
2
(x +1)
x + 2x +1
dx
d
⎟
⎠
⎜
⎝
⎛
+
1+
x3
2
1
x
1 ⎞
(A) x +
x
1
2
+
x3
1
(B)
x 4
3
(C) x –
x
1
2
–
x3
3
(D)
–2
–
x3
–2
–
x x 2
3
16
17.
Lakshya Educare
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
Q.1
dx
d
x
2
sin
(A) (sin 2x)–1/2 (B) cos 2x (sin 2x)–1/2 (C) 2 cos 2x (sin 2x)–1/2 (D) cos 2x (sin 2x)1/2
Q.2
dx
d
x
tan
(A) 2 sec2x (tan x)–1/2 (B)
2
1
sec2x (tan x)–1 (C)
2
1
(tan x)–1/2 (D) 2 (tan x)–1/2
Q.3
dx
d
sin (log x)
(A) cos (log x) (B) log (cos x) (C) x cos (log x) (D)
x
)
x
cos(log
Q.4
dx
d
1
x
2 2
+
(A) 2x (2x2 + 1)1/2 (B) 2x (2x2 + 1)–1/2 (C) (2x2 + 1)1/2 (D) (2x2 + 1)–1/2
Q.5
dx
d x
2
e
(A)
x
2
e x
2
(B) x
2 x
2
e (C) x
2
e (D)
2
/
1
)
x
2
(
e
−
Q.6
dx
d
sin2
(x2
)
(A) 2x sin2
x2
cos x2
(B) 4x sin x2
cos x (C) 2x sin 2x2
(D) 4x sin x cos x2
Q.7 y = cos2
x is given, then
dx
dy
is -
(A) –2 sinx cos x (B) 2 sin x cos x (C) sin2
x (D) none of these
Q.8 If y = log (tanx), then
dx
dy
is -
(A)
x
tan
x
cos2
(B)
x
tan
1
(C)
x
tan
x
sec2
(D) log(sec2
x)
Q.9 If y = sin(2x2
), then
dx
dy
is -
(A) 4x cos (2x2
) (B) 2 cos (2x2
)(C) 4 cos (2x2
) (D) – 4 cos (2x2
)
5
PHYSICS
Lakshya Educare
Turtle Tutorials - BM 3
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
Q.10 If y = sin2
x – 2 tan2
x , then
dx
dy
at x =
4
π
is -
(A) – 11 (B) – 7 (C) – 13 (D) – 15
Q.11 If y = x3
+ 2x + 1 then
dx
dy
at x = 1 is -
(A) 6 (B) 7 (C) 8 (D) 5)
Q.12
dx
d
[log(cosx)] is :
(1) –tan x (2) tan x (3) cot x (4) –cot x
Q.13
dy
d
(y + 2)2
is equal to
(1) 2y + 4 (2) 2y – 4 (3) 4 + y2
(4) 2(y + 1)
14. Slope of graph y = tanx drawn between y and x, at x = is :
4
(A) 0 (B) 1 (C) 2 (D)
2
1
15. Equation of straight line is 2x + 3y = 5. Slope of the straight line is :
(B) 2/3 (C) –2/3 (D) –3/2
(A) 3/2
dt
dy
16. y = 5sin (3 t + )
where and are constant
Find
(A) 15 cos (3 t + )
(C) 15 cos (3 t + )
(B) 15 cos (3 t)
(D) 5 cos (3 t + )
dt
17. If y = e
kt
then
dy
will be
(A) ekt
(B) ekt
/ k (C) tekt
(D) ke
kt
ss
18. Differentiation of sin(x
2
) w.r.t. x is -
(A) cos (x
2
) (B) 2x cos(x
2
) (C) x
2
cos(x
2
) (D) – cos (2x)
19. Double differentiation of displacement w.r.t. time is :
(A) acceleration (B) velocity (C) force (D) none
2
dx
2
If y = x3
then
d y is -
20.
(A) 6x
2
(B) 6x (C) 3x
2
(D) 3x
dx2
d2
y
will be :
21. If y = sinx, then
(A) cos x (B) sin x (C) – sin x (D) sin x + C
Lakshya Educare
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
BM solutions 1,2,3
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th

differentiation assignment.pdf for class 11th

  • 1.
    Find dy dx of the givenfunctions 1. y = x n + 2 , where n is constant 2. y = x 3 3. y = x –n , where n is constant 4. y = x –4 5. 1 n y = x , where n is constant and n 0 z 6. 1 2 y = x 7. 2 3 y = x " 8. y = ax 3 , where a is a constant 9. 1 4 1 y = x 2 Lakshya Educare Differentiate with respect to x a x2 b x4 c x d x9 e x−3 f x−1 g 4x2 h 7x i 2x5 j 3 k 8x−2 l 11x−4 11 (x7/2 ) dx d is equal to (1) x−5/ 2 2 7 (2) x5/2 2 7 − 2 (3) 7 x5/2 (4) x5/2 7 2 12 ⎟ ⎠ ⎜ ⎝ x3 1 dx d ⎛ ⎞ is equal to (1) x4 −3 (2) 3 x2 (3) 3 x2 − (4) 3x2 1 dx d (x3/2 ) is : (1) 2 3 x1/2 (2) 2 3 x5/2 (3) 2 3 x7/2 (4) 2 3 x9/2 14 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ x 1 dx d (1) x 2 1 (2) x (3) – 2x3/2 1 (4) 2x3/2 1 15 The value of dy for y = 5x will be - dx (A) 5 (B) 2 5x2 (C) zero (D) 10x2 16 dx d (πx2 ) is equal to (1) 2πx (2) πx (3) 2x (4) 2 πx 3 PHYSICS Turtle Tutorials - BM 1 Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
  • 2.
    1. If y= x 3 + 2x 2 + 7x + 8 then dx dy will be - (A) 3x2 + 2x + 15 (B) 3x2 + 4x + 7 (C) x 3 + 2x 2 + 15 (D) x 3 + 4x + 7 2. If y = x2 sin x , then dx dy will be - (A) x2 cos x + 2x sin x (B) 2x sin x (C) x 2 cos x (D) 2 x cos x 3. If y = ex . cot x then dx dy will be (A) ex cot x – cosec2 x (B) e x cosec2 x (C) e x [cot x – cosec2 x] (D) e x cot x dx dy will be 4. If y = x nx then (A) nx + x (B) 1 + n x (C) nx (D) 1 dx dy 5. y = 4 + 5x + 7x3 . Find (A) 5 - 21x 2 (B) 5 + 21x2 (C) 9 + 7x 2 (D) 5 + 21x x3 1 x 1 Find dx dy 6. y = x +x 2 . + (A)1 + 2x – x4 2 3 x 1 (B) 1 + 2x – 4 2 x (C) 1 – 2x – 4 3 x (D) 1 + 2x – 3 3 x 7. If f(x) = x 2 x 2 The value f (–1) is (A) 3 1 (B) 3 1 (C) 3 (D) –3 8. y = x2 + x 1 2 .Find dx dy (A) 2x – x3 2 (B) 2x – 4 2 x (C) 2x + x3 2 (D) None of these 2 x 1 2 x 1 2 x 1 Lakshya Educare PHYSICS Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
  • 3.
    ) x (tan dx d is equal to (1)sec2 x (2) cotx (3) – sec2 x (4) – cot x 1 dx d (x3 + 4x2 + 1) is equal to (1) c x x 3 4 4 x 3 4 + + + (2) 3x2 + 8x (3) 4 x4 + 8x (4) 3x2 + 4 x4 x3 11 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + + x tan x log x 1 x dx d (1) 1 – 2 x 1 + sec2 x (2) 1 + x 1 + sec2 x (3) 1 + 2 x 1 + x 1 + sec2 x (4) 1 – 2 x 1 + x 1 + sec2 x 1 2 x 1 x dx d ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + is equal to (1) 2 x 1 1+ (2) 2 x 1 1+ − (3) 2 x 1 1− (4) x2 – 1 1 d (x4 – 2 sin x + 3 cos x) dx (A) 4x3 – 2 cos x + 3 sin x (B) 3x2 + 2 cosx + 3 sin x (C) 4x3 + 2 cosx – 3 sin x (D) 4x3 – 2 cos x – 3 sin x dy at x = 1 is - dx If 14. y = x3 + 2x + 1 then (A) 6 (B) 7 (C) 8 (D) 5 dy is - dx y 15. = secx + tanx , value of (A) sec2 x + tan x (B) tan2 x + sec x (C) secx (tanx + secx) (D) sec x (1 + sec x) dx d x 1 (x2 +1) + (A) 2 2 (x +1) x + 2x −1 (B) 2 (x +1) x2 − 2x +1 (C) x +1 x2 + 2x −1 (D) 2 2 (x +1) x + 2x +1 dx d ⎟ ⎠ ⎜ ⎝ ⎛ + 1+ x3 2 1 x 1 ⎞ (A) x + x 1 2 + x3 1 (B) x 4 3 (C) x – x 1 2 – x3 3 (D) –2 – x3 –2 – x x 2 3 16 17. Lakshya Educare Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
  • 4.
    Q.1 dx d x 2 sin (A) (sin 2x)–1/2(B) cos 2x (sin 2x)–1/2 (C) 2 cos 2x (sin 2x)–1/2 (D) cos 2x (sin 2x)1/2 Q.2 dx d x tan (A) 2 sec2x (tan x)–1/2 (B) 2 1 sec2x (tan x)–1 (C) 2 1 (tan x)–1/2 (D) 2 (tan x)–1/2 Q.3 dx d sin (log x) (A) cos (log x) (B) log (cos x) (C) x cos (log x) (D) x ) x cos(log Q.4 dx d 1 x 2 2 + (A) 2x (2x2 + 1)1/2 (B) 2x (2x2 + 1)–1/2 (C) (2x2 + 1)1/2 (D) (2x2 + 1)–1/2 Q.5 dx d x 2 e (A) x 2 e x 2 (B) x 2 x 2 e (C) x 2 e (D) 2 / 1 ) x 2 ( e − Q.6 dx d sin2 (x2 ) (A) 2x sin2 x2 cos x2 (B) 4x sin x2 cos x (C) 2x sin 2x2 (D) 4x sin x cos x2 Q.7 y = cos2 x is given, then dx dy is - (A) –2 sinx cos x (B) 2 sin x cos x (C) sin2 x (D) none of these Q.8 If y = log (tanx), then dx dy is - (A) x tan x cos2 (B) x tan 1 (C) x tan x sec2 (D) log(sec2 x) Q.9 If y = sin(2x2 ), then dx dy is - (A) 4x cos (2x2 ) (B) 2 cos (2x2 )(C) 4 cos (2x2 ) (D) – 4 cos (2x2 ) 5 PHYSICS Lakshya Educare Turtle Tutorials - BM 3 Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
  • 5.
    Q.10 If y= sin2 x – 2 tan2 x , then dx dy at x = 4 π is - (A) – 11 (B) – 7 (C) – 13 (D) – 15 Q.11 If y = x3 + 2x + 1 then dx dy at x = 1 is - (A) 6 (B) 7 (C) 8 (D) 5) Q.12 dx d [log(cosx)] is : (1) –tan x (2) tan x (3) cot x (4) –cot x Q.13 dy d (y + 2)2 is equal to (1) 2y + 4 (2) 2y – 4 (3) 4 + y2 (4) 2(y + 1) 14. Slope of graph y = tanx drawn between y and x, at x = is : 4 (A) 0 (B) 1 (C) 2 (D) 2 1 15. Equation of straight line is 2x + 3y = 5. Slope of the straight line is : (B) 2/3 (C) –2/3 (D) –3/2 (A) 3/2 dt dy 16. y = 5sin (3 t + ) where and are constant Find (A) 15 cos (3 t + ) (C) 15 cos (3 t + ) (B) 15 cos (3 t) (D) 5 cos (3 t + ) dt 17. If y = e kt then dy will be (A) ekt (B) ekt / k (C) tekt (D) ke kt ss 18. Differentiation of sin(x 2 ) w.r.t. x is - (A) cos (x 2 ) (B) 2x cos(x 2 ) (C) x 2 cos(x 2 ) (D) – cos (2x) 19. Double differentiation of displacement w.r.t. time is : (A) acceleration (B) velocity (C) force (D) none 2 dx 2 If y = x3 then d y is - 20. (A) 6x 2 (B) 6x (C) 3x 2 (D) 3x dx2 d2 y will be : 21. If y = sinx, then (A) cos x (B) sin x (C) – sin x (D) sin x + C Lakshya Educare Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com
  • 6.