ASSIGNMENT 1
1) If f(x) = x3 − 3x2 + 5, find f(0) + f(3).
Sol:
∴
f(0) = (0)3 − 3(0)2 +
5
by substituting x = 0
⟹ f(0) = 5
Also
,
f(3) = (3)3 − 3(3)2 +
5
by substituting x = 3
⟹ f(3) = 27 − 27 + 5
⟹ f(3) = 5
∴ f(0) + f(3) = 5 + 5
⟹ f(0) + f(3) = 10
2) If f(x) = tan–1 x , find f(1)
4
Sol: Given: f(x) = tan–1 x
 f(1) = tan–1(1) by substituting x =1
⟹ f(1) =
4
4

Sol: Given: f(x) = x3 − 3x + sin x
Consider f(−x) = (−x)3 − 3(−x) + sin(−x)
⟹ f(−x) = − x3 + 3x − sin x
⟹ f(−x) = −{ x3 − 3x + sin x }
⟹ f(−x) = −f(x)
⟹ f(x) is an odd function.
3) State with proof whether the function f(x) = x3 − 3x +sinx
is even or odd
Sol : Given: f(x) = 3x4 + x2 + 5 − 3 cos x + 2sin2x …….. (i)
Consider f(−x) = 3(−x)4 + (−x)2 + 5 − 3 cos(−x) + 2sin2(−x)
= 3x4 + x2 + 5 − 3 cos x + 2sin2x
{sin(−θ) = − sin θ and cos (−θ) = cos θ}
⟹ f(− x) = f(x) from ( i)
4) If f(x) = 3x4 + x2 + 5 − 3 cos x + 2sin2x . Show that f(x) + f(−x) = 2f(x)
5) If f(x) = = log(√1 + x2 + x) , find f(x) + f(− x)
Sol: Given: f(x) = log(√1 + x2 + x)
x
1
f(x) + f(− x) = log √1 + x + x + log(√1 +( - ) + (-x) )
⟹ f(x) + f(− x) = log √1 + + x + log √1 + x − x
⟹ f(x) + f(− x) = log √1 + x + x ∙ √1 + x − x
1 + (− x) + (− x)
𝑥2
⟹ f(x) + f(− x) = log 1 + x − x
⟹ (a + b)(a − b) = a − b
f(x) + f(− x) = log(1)
⟹ log + log
f(x) + f(− x) = 0
6) Differentiate tan–1 x + cot–1 x w. r. t. x
Let y = tan–1 x + cot–1 x
y= 𝜋
2
{ tan–1 x + cot–1 x = }
Diff. w. r. t. x
dy/dx = 0⟹
⟹
𝜋
2
7)Find dy/dx if y = 4 sin x − 8 cos x + tan x – sec x
Sol: Given: y = 4 sin x − 8 cos x + tan x − sec x
Diff. w. r. t. x
⟹ dy/dx = 4 cos x − 8(− sin x) + sec2 x − sec x tan x
⟹ dy/dx = 4 cos x + 8 sin x + sec2 x − sec x tan x
8) Find dy/dx if y = x10 + 10x + ex
Sol : Given: y = 3x3 − 2ex + 4 sec x + 2√x
Diff. w. r. t. x
⟹dy/dx=10∙x
9
+10
x
∙log10+e
x
9) Find dy/dx y = x . tanx
Sol: Given: y = x ∙ tan x
Diff. w. r. t. x
⟹ dy/dx = x ∙ sec2x + tan x ∙ 1
10) Find dy/dx if y = (x + 1). log(x)
Sol : Given: y = (x + 1). log(x)
Diff. w. r. t. x
dy/dx = (x+1) . + log (x)
x
1

Differntiation

  • 1.
  • 2.
    1) If f(x)= x3 − 3x2 + 5, find f(0) + f(3). Sol: ∴ f(0) = (0)3 − 3(0)2 + 5 by substituting x = 0 ⟹ f(0) = 5 Also , f(3) = (3)3 − 3(3)2 + 5 by substituting x = 3 ⟹ f(3) = 27 − 27 + 5 ⟹ f(3) = 5 ∴ f(0) + f(3) = 5 + 5 ⟹ f(0) + f(3) = 10
  • 3.
    2) If f(x)= tan–1 x , find f(1) 4 Sol: Given: f(x) = tan–1 x  f(1) = tan–1(1) by substituting x =1 ⟹ f(1) = 4 4 
  • 4.
    Sol: Given: f(x)= x3 − 3x + sin x Consider f(−x) = (−x)3 − 3(−x) + sin(−x) ⟹ f(−x) = − x3 + 3x − sin x ⟹ f(−x) = −{ x3 − 3x + sin x } ⟹ f(−x) = −f(x) ⟹ f(x) is an odd function. 3) State with proof whether the function f(x) = x3 − 3x +sinx is even or odd
  • 5.
    Sol : Given:f(x) = 3x4 + x2 + 5 − 3 cos x + 2sin2x …….. (i) Consider f(−x) = 3(−x)4 + (−x)2 + 5 − 3 cos(−x) + 2sin2(−x) = 3x4 + x2 + 5 − 3 cos x + 2sin2x {sin(−θ) = − sin θ and cos (−θ) = cos θ} ⟹ f(− x) = f(x) from ( i) 4) If f(x) = 3x4 + x2 + 5 − 3 cos x + 2sin2x . Show that f(x) + f(−x) = 2f(x)
  • 6.
    5) If f(x)= = log(√1 + x2 + x) , find f(x) + f(− x) Sol: Given: f(x) = log(√1 + x2 + x) x 1 f(x) + f(− x) = log √1 + x + x + log(√1 +( - ) + (-x) ) ⟹ f(x) + f(− x) = log √1 + + x + log √1 + x − x ⟹ f(x) + f(− x) = log √1 + x + x ∙ √1 + x − x 1 + (− x) + (− x) 𝑥2 ⟹ f(x) + f(− x) = log 1 + x − x ⟹ (a + b)(a − b) = a − b f(x) + f(− x) = log(1) ⟹ log + log f(x) + f(− x) = 0
  • 7.
    6) Differentiate tan–1x + cot–1 x w. r. t. x Let y = tan–1 x + cot–1 x y= 𝜋 2 { tan–1 x + cot–1 x = } Diff. w. r. t. x dy/dx = 0⟹ ⟹ 𝜋 2
  • 8.
    7)Find dy/dx ify = 4 sin x − 8 cos x + tan x – sec x Sol: Given: y = 4 sin x − 8 cos x + tan x − sec x Diff. w. r. t. x ⟹ dy/dx = 4 cos x − 8(− sin x) + sec2 x − sec x tan x ⟹ dy/dx = 4 cos x + 8 sin x + sec2 x − sec x tan x
  • 9.
    8) Find dy/dxif y = x10 + 10x + ex Sol : Given: y = 3x3 − 2ex + 4 sec x + 2√x Diff. w. r. t. x ⟹dy/dx=10∙x 9 +10 x ∙log10+e x
  • 10.
    9) Find dy/dxy = x . tanx Sol: Given: y = x ∙ tan x Diff. w. r. t. x ⟹ dy/dx = x ∙ sec2x + tan x ∙ 1
  • 11.
    10) Find dy/dxif y = (x + 1). log(x) Sol : Given: y = (x + 1). log(x) Diff. w. r. t. x dy/dx = (x+1) . + log (x) x 1

Editor's Notes