INTEGRAL CALCULUS
I B.Sc Mathematics
18UMTC21
Mrs. P. Kalai Selvi ,M.Sc., M.Phil.,
Ms. M. Indira Devi, M.Sc., M.Phil.,
Anti-derivative
If f(x) is a continuous function and F(x) is the function
whose derivative is f(x), i.e.: 𝑭′
(x) = f(x) .
then:
𝒇 𝒙 𝒅𝒙 = F(x) + c;
where c is any arbitrary constant.
Notation:
Indefinite and Definite Integrals
Indefinite
Definite
( )f x dx
2
1
( )
x
x
f x dx
For example, to integrate 4x, we will write it as
follows:
4𝑥 𝒅𝒙 = 2x2
+ c , c ∈ ℝ.
Integral
sign
This term is called
the integrand
There must always be
a term of the form dx
Constant of
integration
0
sinI xdx

 

 
00
sin cos
cos cos0
( 1) ( 1) 2
I xdx x
 

 
   
     

Another example with limit value:
( )f x( ) ( )F x f x dx ( )af x( )aF x( ) ( )u x v x( ) ( )u x dx v x dx 
aax  1n
x n  1
1
n
x
n


ax
eax
e
a
1
x
ln xsin ax1
cosax
a

cosax1
sin ax
a
2
sin ax1 1
sin 2
2 4
x ax
a

TABLE OF INTEGRATION FORMULAS
1
1
1. ( 1) 2. ln | |
1
3. 4.
ln

  

 
 
 
n
n
x
x x x
x
x dx n dx x
n x
a
e dx e a dx
a
2 2
5. sin cos 6. cos sin
7. sec tan 8. csc cot
9. sec tan sec 10. csc cot csc
11. sec ln sec tan 12. csc ln csc cot
x dx x x dx x
x dx x x dx x
x x dx x x x dx x
x dx x x x dx x x
  
  
  
   
 
 
 
 
1 1
2 2 2 2
13. tan ln sec 14. cot ln sin
15. sinh cosh 16. cosh sinh
1
17. tan 18. sin
x dx x x dx x
x dx x x dx x
dx x dx x
x a a a aa x
 
 
 
   
    
    
 
 
 
Integration by parts
Let dv be the most complicated part of the
original integrand that fits a basic integration
Rule (including dx). Then u will be the remaining
factors.
(OR)
Let u be a portion of the integrand whose
derivative is a function simpler than u. Then dv
will be the remaining factors (including dx).
x
xe dxFor example:
x x x
xe dx xe e dx  
x x x
xe dx xe e C  
u = x dv= exdx
du = dx v = ex
2
sinx xdx
u = x2 dv = sin x dx
du = 2x dx v = -cos x
2 2
sin cos 2 cosx xdx x x xdx   
u = 2x dv = cos x dx
du = 2dx v = sin x
2 2
sin cos 2 sin 2sinx xdx x x x x xdx    
2 2
sin cos 2 sin 2cosx xdx x x x x x C    
For example :
Thank you…

Integral calculus

  • 1.
    INTEGRAL CALCULUS I B.ScMathematics 18UMTC21 Mrs. P. Kalai Selvi ,M.Sc., M.Phil., Ms. M. Indira Devi, M.Sc., M.Phil.,
  • 2.
    Anti-derivative If f(x) isa continuous function and F(x) is the function whose derivative is f(x), i.e.: 𝑭′ (x) = f(x) . then: 𝒇 𝒙 𝒅𝒙 = F(x) + c; where c is any arbitrary constant.
  • 3.
  • 4.
    Indefinite and DefiniteIntegrals Indefinite Definite ( )f x dx 2 1 ( ) x x f x dx
  • 5.
    For example, tointegrate 4x, we will write it as follows: 4𝑥 𝒅𝒙 = 2x2 + c , c ∈ ℝ. Integral sign This term is called the integrand There must always be a term of the form dx Constant of integration
  • 6.
    0 sinI xdx      00 sin cos cos cos0 ( 1) ( 1) 2 I xdx x                 Another example with limit value: ( )f x( ) ( )F x f x dx ( )af x( )aF x( ) ( )u x v x( ) ( )u x dx v x dx  aax  1n x n  1 1 n x n   ax eax e a 1 x ln xsin ax1 cosax a  cosax1 sin ax a 2 sin ax1 1 sin 2 2 4 x ax a 
  • 7.
    TABLE OF INTEGRATIONFORMULAS 1 1 1. ( 1) 2. ln | | 1 3. 4. ln            n n x x x x x x dx n dx x n x a e dx e a dx a
  • 8.
    2 2 5. sincos 6. cos sin 7. sec tan 8. csc cot 9. sec tan sec 10. csc cot csc 11. sec ln sec tan 12. csc ln csc cot x dx x x dx x x dx x x dx x x x dx x x x dx x x dx x x x dx x x                     
  • 9.
    1 1 2 22 2 13. tan ln sec 14. cot ln sin 15. sinh cosh 16. cosh sinh 1 17. tan 18. sin x dx x x dx x x dx x x dx x dx x dx x x a a a aa x                          
  • 10.
  • 11.
    Let dv bethe most complicated part of the original integrand that fits a basic integration Rule (including dx). Then u will be the remaining factors. (OR) Let u be a portion of the integrand whose derivative is a function simpler than u. Then dv will be the remaining factors (including dx).
  • 12.
    x xe dxFor example: xx x xe dx xe e dx   x x x xe dx xe e C   u = x dv= exdx du = dx v = ex
  • 13.
    2 sinx xdx u =x2 dv = sin x dx du = 2x dx v = -cos x 2 2 sin cos 2 cosx xdx x x xdx    u = 2x dv = cos x dx du = 2dx v = sin x 2 2 sin cos 2 sin 2sinx xdx x x x x xdx     2 2 sin cos 2 sin 2cosx xdx x x x x x C     For example :
  • 14.