SlideShare a Scribd company logo
Biological Transport of
Nanoparticles

Submitted to:
Dr S.Kanan
Assistant Professor
Centre for Nanoscience and Technology
Pondicherry University

Submitted by:
Zaahir Salam
Drug Delivery
Drug delivery refers to approaches, formulations, technologies, and
systems for transporting a pharmaceutical compound in the body as
needed to safely achieve its desired therapeutic effect.
Most of the sites are accessible through either microcirculation by
blood capillaries or pores present at various surfaces and membranes.
Most of the apertures, openings, and gates at cellular or subcellular
levels are of nanometer size. Hence, nanoparticles are the most suited to
reach the subcellular level.
 Prime requirements of any delivery system are:
ability to move around freely in available avenues
crossing various barriers that may come in the way.

 Human body, the major passages are the blood vessels through which
materials are transported in the body.
 The blood vessels are not left in any organ as an open outlet of the pipe,
rather they become thinner and thinner and are finally converted to
capillaries through branching and narrowing.
 These capillaries go to the close vicinity of the individual cells. After
reaching their thinnest sizes, the capillaries start merging with each other
to form the veins.
 These veins then take the contents back to the heart for recirculation.
 For any moiety to remain in the vasculature,
its one dimension narrower than the cross-sectional diameter of
the narrowest capillaries, which is about 2000 nm.
 For efficient transport the nanoparticle should be smaller than 300
nm. But, just moving in the vessels does not serve the drug delivery
purpose. The delivery system must reach the site at the destination
level.
 This requires crossing of the blood capillary wall to reach the
extracellular fluid of the tissue and then again crossing of other
cells, if they are in the way, and entering the target cell.
There are two routes for crossing the blood capillaries and other cell
layers,
1.Transcellular
2.Paracellular
Transcellular route, the particulate system has to enter the cell from
one side and exit the cell from the other side to reach the tissue. The
particulate system has to survive the intracellular environment to reach
the target tissue.
Paracellular route. the particulate system is not required to enter the
cell; instead, it moves between the cells
Paracellular route:
Paracellular movement of moieties including ions, larger molecules,
and leukocytes is controlled by the cytoskeletal association of tight
junctions and the adherence junctions called apical junction complex.

 While tight junctions act as a regulated barrier, the adherence
junctions are responsible for the development and stabilization of the
tight junctions.
Different epithelial and endothelial barriers have different permeabilities
mainly because of the differences in the structure and the presence of
tight junctions.

While epithelia and brain capillary endothelium exhibit a high degree of
barrier function, the vascular endothelium in other tissues has greater
permeability. The tight junctions control the paracellular transport.
For example, diffusion of large molecules may not be feasible, but
migration of white cells is allowed.
As the nanoparticle based drug delivery is achieved by particle
transport, it is important to understand the blood flow rates and
volumes of various organs and tissues.
Nanoparticles can have deep access to the human body because of the
particle size and control of surface properties
Experiments by Jani et al. have elegantly demonstrated the size effect.
Polystyrene particles in the size range 50–3000nm were fed to rats daily
for 10 days at a dose of 1.25 mg/kg. The extent of absorption of the 50nm particles was 34% and that of the 100-nm particles was 26%. Of the
total absorption, about 7% (50 nm) and 4% (100 nm) were accounted for
in the liver, spleen, blood, and bone marrow. Particles >100nm did not
reach the bone marrow, and those >300nm were absent from the blood.
Particles were absent in the heart or the lung tissue.
The rapid clearance of circulating particles from the bloodstream
coupled with their high uptake by liver and spleen can be overcome by
reducing the particle size, and by making the particle surface hydrophilic
with coatings, such as poloxamers or poloxamines.
Because of possible differences in particle uptake, gene expression
efficiencies can also be improved with smaller particles.
Doxorubicin Drug Delivery
CONCLUSIONS
• Nanoparticles offer unique properties as compared to micro or macroparticles.
Salient features include the following:
 Small size.
 High surface area.
 Easy to suspend in liquids.
 Deep access to cells and organelles.
 Variable optical and magnetic properties.
 Particles smaller than 200nm can be easily sterilized by
filtration with a 0.22-mm filter.
Drugs, being mostly organic compounds, are more sticky in nature as compared to
inorganic materials, such as silica or metal oxides. Hence, it is harder to make
smaller nanoparticles of drugs compared with hard materials. Drug nanoparticles
can be produced either by milling of macroparticles or by fast precipitation from
solutions.
Biological transport of nanoparticles

More Related Content

What's hot

NANOPARTICULATE DRUG DELIVERY SYSTEM
NANOPARTICULATE DRUG DELIVERY SYSTEMNANOPARTICULATE DRUG DELIVERY SYSTEM
NANOPARTICULATE DRUG DELIVERY SYSTEM
Sagar Savale
 
Nanoparticle
NanoparticleNanoparticle
Nanoparticle
Sagar Savale
 
Applications of nanotechnology in drug delivery and bio medical
Applications of nanotechnology in drug delivery and bio medicalApplications of nanotechnology in drug delivery and bio medical
Applications of nanotechnology in drug delivery and bio medical
Prof. Dr. Basavaraj Nanjwade
 
Nanomaterials and their classification
Nanomaterials and their classificationNanomaterials and their classification
Nanomaterials and their classification
Suleman Hanif
 
Nanocrystals
NanocrystalsNanocrystals
Nanocrystals
Shereen Shehata
 
Nanoparticle use in pharmaceutical analysis
Nanoparticle use in pharmaceutical analysis Nanoparticle use in pharmaceutical analysis
Nanoparticle use in pharmaceutical analysis
Bhaumik Bavishi
 
Application of nanoparticals in drug delivery system
Application of nanoparticals in drug delivery systemApplication of nanoparticals in drug delivery system
Application of nanoparticals in drug delivery system
Malay Jivani
 
Application of Nanoparticles
Application of NanoparticlesApplication of Nanoparticles
Application of Nanoparticles
LAKSHMI NARAYAN
 
Self assembled nanostructures
Self assembled nanostructuresSelf assembled nanostructures
Self assembled nanostructures
Nivrith Gomatam
 
Synthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalSynthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalPriya Nanda
 
An overview of the animal & plant cell reactors used in laboratories
An overview of  the animal & plant cell reactors used in laboratoriesAn overview of  the animal & plant cell reactors used in laboratories
An overview of the animal & plant cell reactors used in laboratories
Erin Davis
 
Metallic nanoparticle
Metallic nanoparticleMetallic nanoparticle
Physicochemical properties of metal nanoparticle by shreya modi
Physicochemical properties of metal nanoparticle by shreya modiPhysicochemical properties of metal nanoparticle by shreya modi
Physicochemical properties of metal nanoparticle by shreya modiShreya Modi
 
Protein based nanostructures for biomedical applications
Protein based nanostructures for biomedical applications Protein based nanostructures for biomedical applications
Protein based nanostructures for biomedical applications
karoline Enoch
 
Synthesis of Nanomaterials
Synthesis of NanomaterialsSynthesis of Nanomaterials
Synthesis of Nanomaterials
Anantha Kumar
 
Properties of nanoparticles
Properties of nanoparticlesProperties of nanoparticles
Properties of nanoparticles
SANEESH KUMAR N
 
Nanopolymer
NanopolymerNanopolymer
Nanopolymer
HHV SOLAR Pvt Ltd
 
Dendrimers and its applications
Dendrimers and its applicationsDendrimers and its applications
Dendrimers and its applications
Samiksha Sawant
 
Drying process
Drying processDrying process

What's hot (20)

NANOPARTICULATE DRUG DELIVERY SYSTEM
NANOPARTICULATE DRUG DELIVERY SYSTEMNANOPARTICULATE DRUG DELIVERY SYSTEM
NANOPARTICULATE DRUG DELIVERY SYSTEM
 
Nanoparticle
NanoparticleNanoparticle
Nanoparticle
 
Applications of nanotechnology in drug delivery and bio medical
Applications of nanotechnology in drug delivery and bio medicalApplications of nanotechnology in drug delivery and bio medical
Applications of nanotechnology in drug delivery and bio medical
 
Nanomaterials and their classification
Nanomaterials and their classificationNanomaterials and their classification
Nanomaterials and their classification
 
Nanocrystals
NanocrystalsNanocrystals
Nanocrystals
 
Nanoparticle use in pharmaceutical analysis
Nanoparticle use in pharmaceutical analysis Nanoparticle use in pharmaceutical analysis
Nanoparticle use in pharmaceutical analysis
 
Application of nanoparticals in drug delivery system
Application of nanoparticals in drug delivery systemApplication of nanoparticals in drug delivery system
Application of nanoparticals in drug delivery system
 
Application of Nanoparticles
Application of NanoparticlesApplication of Nanoparticles
Application of Nanoparticles
 
Self assembled nanostructures
Self assembled nanostructuresSelf assembled nanostructures
Self assembled nanostructures
 
Synthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biologicalSynthesis of nanoparticles- physical,chemical and biological
Synthesis of nanoparticles- physical,chemical and biological
 
An overview of the animal & plant cell reactors used in laboratories
An overview of  the animal & plant cell reactors used in laboratoriesAn overview of  the animal & plant cell reactors used in laboratories
An overview of the animal & plant cell reactors used in laboratories
 
Metallic nanoparticle
Metallic nanoparticleMetallic nanoparticle
Metallic nanoparticle
 
Physicochemical properties of metal nanoparticle by shreya modi
Physicochemical properties of metal nanoparticle by shreya modiPhysicochemical properties of metal nanoparticle by shreya modi
Physicochemical properties of metal nanoparticle by shreya modi
 
Nanoparticle
NanoparticleNanoparticle
Nanoparticle
 
Protein based nanostructures for biomedical applications
Protein based nanostructures for biomedical applications Protein based nanostructures for biomedical applications
Protein based nanostructures for biomedical applications
 
Synthesis of Nanomaterials
Synthesis of NanomaterialsSynthesis of Nanomaterials
Synthesis of Nanomaterials
 
Properties of nanoparticles
Properties of nanoparticlesProperties of nanoparticles
Properties of nanoparticles
 
Nanopolymer
NanopolymerNanopolymer
Nanopolymer
 
Dendrimers and its applications
Dendrimers and its applicationsDendrimers and its applications
Dendrimers and its applications
 
Drying process
Drying processDrying process
Drying process
 

Viewers also liked

Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticleshephz
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
Zaahir Salam
 
Photonic crystals by self assembly
Photonic crystals by self assemblyPhotonic crystals by self assembly
Photonic crystals by self assembly
Zaahir Salam
 
J&K RTI Act 2009
J&K RTI Act 2009 J&K RTI Act 2009
J&K RTI Act 2009
Zaahir Salam
 
Transposons
Transposons  Transposons
Transposons
Karthikeyan Pethusamy
 
Modern cellular communication
Modern cellular communicationModern cellular communication
Modern cellular communication
Zaahir Salam
 
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Tomsk Polytechnic University
 
Nanoparticulate drug delivery sysytem
Nanoparticulate drug delivery sysytem Nanoparticulate drug delivery sysytem
Nanoparticulate drug delivery sysytem
Pravin Chinchole
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Tomsk Polytechnic University
 
Preparation methods of polymeric nanoparticles
Preparation methods of polymeric nanoparticlesPreparation methods of polymeric nanoparticles
Preparation methods of polymeric nanoparticles
Abeer Abd Elrahman
 
Intorduction to cellular communication
Intorduction to cellular communicationIntorduction to cellular communication
Intorduction to cellular communication
Zaahir Salam
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery application
Tomsk Polytechnic University
 
Nanotechnology Based Drug Delivery11
Nanotechnology Based Drug Delivery11Nanotechnology Based Drug Delivery11
Nanotechnology Based Drug Delivery11
Shashikant Malegoankar
 
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugsNovel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
Tomsk Polytechnic University
 
Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)
Zaahir Salam
 
are nanostructured lipid carrier are better then solid lipid nanoparticles
are nanostructured lipid carrier are better then solid lipid nanoparticlesare nanostructured lipid carrier are better then solid lipid nanoparticles
are nanostructured lipid carrier are better then solid lipid nanoparticles
Deven Rana
 
Graphene -Applications in Electronics
Graphene -Applications in ElectronicsGraphene -Applications in Electronics
Graphene -Applications in Electronics
Zaahir Salam
 

Viewers also liked (20)

Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticles
 
Nanoparticle corona study -
Nanoparticle corona study - Nanoparticle corona study -
Nanoparticle corona study -
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
 
Photonic crystals by self assembly
Photonic crystals by self assemblyPhotonic crystals by self assembly
Photonic crystals by self assembly
 
J&K RTI Act 2009
J&K RTI Act 2009 J&K RTI Act 2009
J&K RTI Act 2009
 
Research
ResearchResearch
Research
 
Transposons
Transposons  Transposons
Transposons
 
Modern cellular communication
Modern cellular communicationModern cellular communication
Modern cellular communication
 
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
 
Temozolomide And Doxorubicin Delivery
Temozolomide And Doxorubicin DeliveryTemozolomide And Doxorubicin Delivery
Temozolomide And Doxorubicin Delivery
 
Nanoparticulate drug delivery sysytem
Nanoparticulate drug delivery sysytem Nanoparticulate drug delivery sysytem
Nanoparticulate drug delivery sysytem
 
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
Chitosan grafted carboxy functionalized polylactide nanoparticles for multidr...
 
Preparation methods of polymeric nanoparticles
Preparation methods of polymeric nanoparticlesPreparation methods of polymeric nanoparticles
Preparation methods of polymeric nanoparticles
 
Intorduction to cellular communication
Intorduction to cellular communicationIntorduction to cellular communication
Intorduction to cellular communication
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery application
 
Nanotechnology Based Drug Delivery11
Nanotechnology Based Drug Delivery11Nanotechnology Based Drug Delivery11
Nanotechnology Based Drug Delivery11
 
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugsNovel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
Novel PLA chitosan nanocomplexes for controlled release of DNA alkylating drugs
 
Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)
 
are nanostructured lipid carrier are better then solid lipid nanoparticles
are nanostructured lipid carrier are better then solid lipid nanoparticlesare nanostructured lipid carrier are better then solid lipid nanoparticles
are nanostructured lipid carrier are better then solid lipid nanoparticles
 
Graphene -Applications in Electronics
Graphene -Applications in ElectronicsGraphene -Applications in Electronics
Graphene -Applications in Electronics
 

Similar to Biological transport of nanoparticles

2.CELL AND CELL DIFERRENTIATION class 2011.ppt
2.CELL AND CELL DIFERRENTIATION class 2011.ppt2.CELL AND CELL DIFERRENTIATION class 2011.ppt
2.CELL AND CELL DIFERRENTIATION class 2011.ppt
Chilangu Ben
 
TRANSPORTATION
TRANSPORTATIONTRANSPORTATION
TRANSPORTATION
shahzadebaujiti
 
Cell adhesion and transport
Cell adhesion and transportCell adhesion and transport
Cell adhesion and transport
kcyaadav
 
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptxINTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
prajkatakamble201720
 
Cell membrane
Cell membraneCell membrane
Cell membrane
Saad Al-mohnna
 
CELL MICROBIOLOGY AND MICROSCOPE TYPES
CELL MICROBIOLOGY  AND  MICROSCOPE  TYPESCELL MICROBIOLOGY  AND  MICROSCOPE  TYPES
CELL MICROBIOLOGY AND MICROSCOPE TYPES
Dr.Tamasmita Basu
 
Chapter 4(5 Transport)
Chapter 4(5 Transport)Chapter 4(5 Transport)
Chapter 4(5 Transport)
Meera Indracanti
 
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
yvette230103
 
Nano particles
Nano particlesNano particles
Nano particles
Bikash Singh
 
Transport of substances across Cell membrane
Transport of substances across Cell membraneTransport of substances across Cell membrane
Transport of substances across Cell membrane
Murad Kazi
 
Transport
TransportTransport
Transport
Murad Kazi
 
Cell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell MembranesCell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell Membranes
shaibal chandra
 
Cell recognition and adhesion
Cell recognition and adhesionCell recognition and adhesion
Cell recognition and adhesion
Himanshi Chauhan
 
Biochemistry of Cell Membrane.pptx
Biochemistry of Cell Membrane.pptxBiochemistry of Cell Membrane.pptx
Biochemistry of Cell Membrane.pptx
Rajendra Dev Bhatt
 
Cell structure & organisation
Cell structure & organisationCell structure & organisation
Cell structure & organisationPaula Mills
 
Physiology of cell membranr
Physiology of cell membranrPhysiology of cell membranr
Physiology of cell membranr
jiji jiya
 
Cell structure
Cell structureCell structure
Cell structure
Medical Knowledge
 
Urinary.pptx knowledge about tracts and inauguration of the day
Urinary.pptx knowledge about tracts and inauguration of the dayUrinary.pptx knowledge about tracts and inauguration of the day
Urinary.pptx knowledge about tracts and inauguration of the day
akshayamritanshuru40
 
Lecture 6.pdf
Lecture 6.pdfLecture 6.pdf
Lecture 6.pdf
matiasenockmartin
 

Similar to Biological transport of nanoparticles (20)

2.CELL AND CELL DIFERRENTIATION class 2011.ppt
2.CELL AND CELL DIFERRENTIATION class 2011.ppt2.CELL AND CELL DIFERRENTIATION class 2011.ppt
2.CELL AND CELL DIFERRENTIATION class 2011.ppt
 
TRANSPORTATION
TRANSPORTATIONTRANSPORTATION
TRANSPORTATION
 
Cell adhesion and transport
Cell adhesion and transportCell adhesion and transport
Cell adhesion and transport
 
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptxINTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
 
Cell membrane
Cell membraneCell membrane
Cell membrane
 
CELL MICROBIOLOGY AND MICROSCOPE TYPES
CELL MICROBIOLOGY  AND  MICROSCOPE  TYPESCELL MICROBIOLOGY  AND  MICROSCOPE  TYPES
CELL MICROBIOLOGY AND MICROSCOPE TYPES
 
Chapter 4(5 Transport)
Chapter 4(5 Transport)Chapter 4(5 Transport)
Chapter 4(5 Transport)
 
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
FARINAS-TRANSPORT-ACROSS-MEMBRANES.pptx-
 
Nano particles
Nano particlesNano particles
Nano particles
 
Transport of substances across Cell membrane
Transport of substances across Cell membraneTransport of substances across Cell membrane
Transport of substances across Cell membrane
 
Transport
TransportTransport
Transport
 
Cell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell MembranesCell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell Membranes
 
Cell recognition and adhesion
Cell recognition and adhesionCell recognition and adhesion
Cell recognition and adhesion
 
Biochemistry of Cell Membrane.pptx
Biochemistry of Cell Membrane.pptxBiochemistry of Cell Membrane.pptx
Biochemistry of Cell Membrane.pptx
 
Cell structure & organisation
Cell structure & organisationCell structure & organisation
Cell structure & organisation
 
Physiology of cell membranr
Physiology of cell membranrPhysiology of cell membranr
Physiology of cell membranr
 
Cells
CellsCells
Cells
 
Cell structure
Cell structureCell structure
Cell structure
 
Urinary.pptx knowledge about tracts and inauguration of the day
Urinary.pptx knowledge about tracts and inauguration of the dayUrinary.pptx knowledge about tracts and inauguration of the day
Urinary.pptx knowledge about tracts and inauguration of the day
 
Lecture 6.pdf
Lecture 6.pdfLecture 6.pdf
Lecture 6.pdf
 

More from Zaahir Salam

How to configure a ZTE Router with easy steps.
How to configure a ZTE Router with easy steps.How to configure a ZTE Router with easy steps.
How to configure a ZTE Router with easy steps.
Zaahir Salam
 
Wireless sensor networks
Wireless sensor networksWireless sensor networks
Wireless sensor networks
Zaahir Salam
 
Magnetic field sensing
Magnetic field sensingMagnetic field sensing
Magnetic field sensing
Zaahir Salam
 
Superhard nanocomposites
Superhard nanocompositesSuperhard nanocomposites
Superhard nanocomposites
Zaahir Salam
 
Piezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyPiezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act Globally
Zaahir Salam
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
Zaahir Salam
 
Transposons(jumping genes)
Transposons(jumping genes)Transposons(jumping genes)
Transposons(jumping genes)Zaahir Salam
 
Fortran 95
Fortran 95Fortran 95
Fortran 95
Zaahir Salam
 
Secondary ion mass spectrometry
Secondary ion mass spectrometrySecondary ion mass spectrometry
Secondary ion mass spectrometryZaahir Salam
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
Zaahir Salam
 
Graphene a wonder material
Graphene a wonder materialGraphene a wonder material
Graphene a wonder material
Zaahir Salam
 
D&euv lithography final
D&euv lithography finalD&euv lithography final
D&euv lithography final
Zaahir Salam
 
Nanotechnology in Defence applications
Nanotechnology in Defence applicationsNanotechnology in Defence applications
Nanotechnology in Defence applicationsZaahir Salam
 

More from Zaahir Salam (13)

How to configure a ZTE Router with easy steps.
How to configure a ZTE Router with easy steps.How to configure a ZTE Router with easy steps.
How to configure a ZTE Router with easy steps.
 
Wireless sensor networks
Wireless sensor networksWireless sensor networks
Wireless sensor networks
 
Magnetic field sensing
Magnetic field sensingMagnetic field sensing
Magnetic field sensing
 
Superhard nanocomposites
Superhard nanocompositesSuperhard nanocomposites
Superhard nanocomposites
 
Piezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyPiezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act Globally
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
 
Transposons(jumping genes)
Transposons(jumping genes)Transposons(jumping genes)
Transposons(jumping genes)
 
Fortran 95
Fortran 95Fortran 95
Fortran 95
 
Secondary ion mass spectrometry
Secondary ion mass spectrometrySecondary ion mass spectrometry
Secondary ion mass spectrometry
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
Graphene a wonder material
Graphene a wonder materialGraphene a wonder material
Graphene a wonder material
 
D&euv lithography final
D&euv lithography finalD&euv lithography final
D&euv lithography final
 
Nanotechnology in Defence applications
Nanotechnology in Defence applicationsNanotechnology in Defence applications
Nanotechnology in Defence applications
 

Recently uploaded

When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 

Recently uploaded (20)

When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 

Biological transport of nanoparticles

  • 1. Biological Transport of Nanoparticles Submitted to: Dr S.Kanan Assistant Professor Centre for Nanoscience and Technology Pondicherry University Submitted by: Zaahir Salam
  • 2. Drug Delivery Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. Most of the sites are accessible through either microcirculation by blood capillaries or pores present at various surfaces and membranes. Most of the apertures, openings, and gates at cellular or subcellular levels are of nanometer size. Hence, nanoparticles are the most suited to reach the subcellular level.
  • 3.  Prime requirements of any delivery system are: ability to move around freely in available avenues crossing various barriers that may come in the way.  Human body, the major passages are the blood vessels through which materials are transported in the body.  The blood vessels are not left in any organ as an open outlet of the pipe, rather they become thinner and thinner and are finally converted to capillaries through branching and narrowing.  These capillaries go to the close vicinity of the individual cells. After reaching their thinnest sizes, the capillaries start merging with each other to form the veins.  These veins then take the contents back to the heart for recirculation.
  • 4.  For any moiety to remain in the vasculature, its one dimension narrower than the cross-sectional diameter of the narrowest capillaries, which is about 2000 nm.  For efficient transport the nanoparticle should be smaller than 300 nm. But, just moving in the vessels does not serve the drug delivery purpose. The delivery system must reach the site at the destination level.  This requires crossing of the blood capillary wall to reach the extracellular fluid of the tissue and then again crossing of other cells, if they are in the way, and entering the target cell.
  • 5. There are two routes for crossing the blood capillaries and other cell layers, 1.Transcellular 2.Paracellular Transcellular route, the particulate system has to enter the cell from one side and exit the cell from the other side to reach the tissue. The particulate system has to survive the intracellular environment to reach the target tissue. Paracellular route. the particulate system is not required to enter the cell; instead, it moves between the cells
  • 6. Paracellular route: Paracellular movement of moieties including ions, larger molecules, and leukocytes is controlled by the cytoskeletal association of tight junctions and the adherence junctions called apical junction complex.  While tight junctions act as a regulated barrier, the adherence junctions are responsible for the development and stabilization of the tight junctions.
  • 7. Different epithelial and endothelial barriers have different permeabilities mainly because of the differences in the structure and the presence of tight junctions. While epithelia and brain capillary endothelium exhibit a high degree of barrier function, the vascular endothelium in other tissues has greater permeability. The tight junctions control the paracellular transport. For example, diffusion of large molecules may not be feasible, but migration of white cells is allowed.
  • 8. As the nanoparticle based drug delivery is achieved by particle transport, it is important to understand the blood flow rates and volumes of various organs and tissues.
  • 9. Nanoparticles can have deep access to the human body because of the particle size and control of surface properties Experiments by Jani et al. have elegantly demonstrated the size effect. Polystyrene particles in the size range 50–3000nm were fed to rats daily for 10 days at a dose of 1.25 mg/kg. The extent of absorption of the 50nm particles was 34% and that of the 100-nm particles was 26%. Of the total absorption, about 7% (50 nm) and 4% (100 nm) were accounted for in the liver, spleen, blood, and bone marrow. Particles >100nm did not reach the bone marrow, and those >300nm were absent from the blood. Particles were absent in the heart or the lung tissue. The rapid clearance of circulating particles from the bloodstream coupled with their high uptake by liver and spleen can be overcome by reducing the particle size, and by making the particle surface hydrophilic with coatings, such as poloxamers or poloxamines. Because of possible differences in particle uptake, gene expression efficiencies can also be improved with smaller particles.
  • 11. CONCLUSIONS • Nanoparticles offer unique properties as compared to micro or macroparticles. Salient features include the following:  Small size.  High surface area.  Easy to suspend in liquids.  Deep access to cells and organelles.  Variable optical and magnetic properties.  Particles smaller than 200nm can be easily sterilized by filtration with a 0.22-mm filter. Drugs, being mostly organic compounds, are more sticky in nature as compared to inorganic materials, such as silica or metal oxides. Hence, it is harder to make smaller nanoparticles of drugs compared with hard materials. Drug nanoparticles can be produced either by milling of macroparticles or by fast precipitation from solutions.