Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Chapter 4(5 Transport)

1,144 views

Published on

Transport across membrane

Published in: Education, Technology, Business
  • Be the first to comment

Chapter 4(5 Transport)

  1. 1. CELL STRUCTURE AND FUNCTION Dr Meera Narasimha, ICFAI University, Hyderabad CHAPTER- 4
  2. 2. II. Out Line: <ul><li>Getting through Membranes </li></ul><ul><li>Cell Size </li></ul><ul><li>Goals and Objectives: </li></ul><ul><li>Know the Molecular Structure of a Cell Membrane related to its Function . </li></ul>
  3. 3. GETTING THROUGH MEMBRANES <ul><li>Cell : Nutrients and Wastes. </li></ul><ul><li>PASSIVE TRANSPORT </li></ul><ul><li>DIFFUSION </li></ul><ul><li>DIALYSIS </li></ul><ul><li>OSMOSIS </li></ul><ul><li>FACILITATED DIFFUSION </li></ul><ul><li>ACTIVE TRANSPORT </li></ul>
  4. 4. Fluidity <ul><li>Bilayer </li></ul><ul><ul><li>Hydrophobic tails of each layer associate with each other. </li></ul></ul><ul><ul><li>Hydrophilic heads on the surface of the bilayer </li></ul></ul><ul><ul><li>Membranes are in motion with fast drifting lipids and slower drifting proteins </li></ul></ul>
  5. 5. <ul><li>Membrane fluidity may be influenced by: Presence/absence of Unsaturated Fatty Acid chains and Cholesterol </li></ul><ul><li>Fluidity of membranes is important for proper function </li></ul>
  6. 6. Fluidity Influences Permeability: <ul><li>Permeability : Movement of materials across a membrane </li></ul><ul><li>The hydrophobic portion of the bilayer: Selectively permeable </li></ul>
  7. 7. Cell Membrane is semi permeable <ul><li>Movement of Molecules across the membrane depends </li></ul><ul><li>on : i. Size </li></ul><ul><li>ii. Electric Charge </li></ul><ul><li>iii. Solubility </li></ul><ul><li>Membrane does not influence the direction of </li></ul><ul><li>movement . </li></ul><ul><li>Direction of Movement Molecules depends on </li></ul><ul><li>relative concentration of specific molecules on </li></ul><ul><li>the two sides of the membrane. </li></ul>
  8. 8. Cell recognize signal and respond to Signal <ul><li>Molecules are in constant , random motion . </li></ul><ul><li>NET Movement = Movement in one direction </li></ul><ul><li>– Movement of molecules in opposite direction. </li></ul><ul><li>Relative Concentration : Direction of </li></ul><ul><li>of Molecules determines Molecular movement. </li></ul>
  9. 9. Concentration Gradient <ul><ul><li>Involves a concentration gradient (diffusion </li></ul></ul><ul><ul><li>gradient) </li></ul></ul><ul><li>Difference in concentration of molecules over a distance . </li></ul>
  10. 10. DIFFUSION <ul><li>Molecules move from where they are most concentrated to where they are less concentrated. This is called diffusion. </li></ul><ul><li>DIFFUSION: Net Movement of a kind of </li></ul><ul><ul><li>Molecules from a place where that molecule is </li></ul></ul><ul><ul><li>in concentration to a place the molecule is </li></ul></ul><ul><ul><li>scarce . </li></ul></ul><ul><li>Uneven distribution of Molecules  Diffusion </li></ul>
  11. 11. Direction of Diffusion: <ul><li>Determined solely by the concentration gradient . </li></ul><ul><li>Diffusion is passive that does not require energy input. </li></ul><ul><li>Example: </li></ul><ul><ul><li>Oxygen diffusion </li></ul></ul>
  12. 12. DIFFUSION :
  13. 13. Passive Transport Mechanism : <ul><li>Simple Diffusion : The movement of a substance from higher concentration to lesser concentration </li></ul><ul><li>Occurs across the lipid bilayer </li></ul><ul><li>The bilayer is selectively permeable </li></ul>
  14. 14. No Conc. Gradient=Dynamic Equilibrium ( Movement of molecules is equal in all directions). <ul><li>Rate of Diffusion: Kinetic Energy & Size. </li></ul><ul><li>Free movement of Molecules. </li></ul><ul><li>Movement is random, cell has little control and is </li></ul><ul><li>passive. Example: Oxygen in cell. </li></ul><ul><li>Oxygen concentration in cell is low and CO 2 is </li></ul><ul><li>high and reverse in outside of the cell. </li></ul><ul><li>Circulatory System: Oxygen  Lungs  Into blood  </li></ul><ul><li>Oxygen rich Blood  Transports to body  Oxygen </li></ul><ul><li>diffuses into cells. </li></ul>
  15. 15. Selectively permeability of Membrane: <ul><li>Selectively permeability : Membrane will allow </li></ul><ul><li>certain molecules to pass across it and </li></ul><ul><li>prevent others from passing across it. </li></ul><ul><li>Selective Permeability depends : </li></ul><ul><li>Solubility: Vitamin A & D </li></ul><ul><li>Molecular Size: Water </li></ul><ul><li>Ions: </li></ul>
  16. 16. DIALYSIS : <ul><li>Dialysis: Net movement (Diffusion) of a </li></ul><ul><li>solute through a selectively permeable </li></ul><ul><li>membrane . </li></ul><ul><li>Kidney malfunction : Blood of patient is </li></ul><ul><li>diverted to a series of tubes composed of </li></ul><ul><li>selectively permeable membranes, toxins of </li></ul><ul><li>blood diffuse into surrounding fluids and </li></ul><ul><li>blood returns to patient. </li></ul>
  17. 17. Osmosis : <ul><li>Osmosis : the diffusion of water (solvent) across a membrane </li></ul><ul><ul><li>influenced by total solute concentration </li></ul></ul><ul><li>Water always moves toward the side with a greater concentration of solute </li></ul>
  18. 18. Osmosis
  19. 19. <ul><li>Diffusion of water through a selectively-permeable membrane. </li></ul><ul><li>Occurs when there is a difference in water concentration on opposite sides of the membrane. </li></ul><ul><li>Water will move to the side where there is less water </li></ul><ul><ul><li>Or more solute </li></ul></ul>
  20. 20. Osmotic Pressure: Pressure exerted on a membrane due to an imbalance of solute between the inside and outside of the membrane
  21. 21. Osmosis: Net movement (Diffusion) of Water through a selectively permeable membrane. <ul><li>Example: A solution of 10% Sucrose (90% water and </li></ul><ul><li>10% sugar) separated by a selectively permeable </li></ul><ul><li>membrane from a solution of 20% Sucrose (80% </li></ul><ul><li>water and 20% sugar). </li></ul><ul><li>The membrane allows water molecules to pass </li></ul><ul><li>freely but prevents sucrose from crossing. </li></ul><ul><li>Water from 10% sucrose solution diffuse to solution </li></ul><ul><li>with 20% sucrose. </li></ul><ul><li>In Osmosis, Water is diffusing substance </li></ul><ul><li>The semi permeable membrane is permits water to pass through than sucrose . </li></ul>
  22. 22. Water: <ul><li>Water is a medium required by all living cells to </li></ul><ul><li>function efficiently. </li></ul><ul><li>Cell has to balance with an environment: </li></ul><ul><li>Too little water in cell buildup of poisonous </li></ul><ul><li>substances and too much water in cell may </li></ul><ul><li>dilute cell contents. </li></ul>
  23. 23. Hypertonic vs. Hypotonic <ul><li>If a cell has less water (more solute) than its environment </li></ul><ul><ul><li>It is hypertonic to its surroundings. </li></ul></ul><ul><li>If a cell has more water (less solute) than its environment </li></ul><ul><ul><li>It is hypotonic to its surroundings. </li></ul></ul><ul><li>If a cell has equal amounts of water (and solute) as its environment </li></ul><ul><ul><li>It is isotonic to its surroundings. </li></ul></ul>
  24. 24. Physiological relevance of Osmosis
  25. 25. Isotonic Hypertonic Hypotonic
  26. 26. Tonicity : The ability of a solution to move water <ul><ul><li>Hypertonic: Greater ability to move H 2 O; gains water </li></ul></ul><ul><ul><li>Hypotonic: Lesser ability to move H 2 O; loses water </li></ul></ul><ul><ul><li>Isotonic: equal ability to move H 2 O; no net water movement </li></ul></ul>
  27. 27. DRINKING WATER <ul><li>When we drink small amounts of water, brain cells swell a little and send signals to kidneys to remove water. </li></ul><ul><li>Drinking large amounts of water in a very short time causes the brain to swell , and because the water cannot be removed quickly enough, the person may lose consciousness or even die because the brain cells swell too much. </li></ul>
  28. 28. Osmosis in Animal and Plant Cells
  29. 29. Transport of Molecules: Controlled Methods <ul><li>Molecules required by cell: </li></ul><ul><li>1. If Cannot pass through the membrane </li></ul><ul><li>2. If Occur in low concentration </li></ul><ul><li>A. Facilitated Diffusion </li></ul><ul><li>B. Active Transport </li></ul>
  30. 30. A. Facilitated Diffusion <ul><li>Facilitated Diffusion: Transport of materials </li></ul><ul><li>across membranes is helped (facilitated) by a </li></ul><ul><li>particular membrane protein. </li></ul><ul><li>Example: Movement of Glucose across the </li></ul><ul><li>membranes of certain cells. </li></ul>
  31. 31. Facilitated diffusion <ul><li>Some molecules have to be carried across the membrane. </li></ul><ul><ul><li>Accomplished by carrier proteins </li></ul></ul><ul><li>Still involves diffusion </li></ul><ul><ul><li>Follows a concentration gradient </li></ul></ul><ul><ul><li>Is passive transport </li></ul></ul><ul><ul><li>Example (glucose) </li></ul></ul>
  32. 32. B. Active Transport <ul><li>Molecules move across the membrane from low to high concentration , cell spends energy. </li></ul><ul><li>Active process is very specific . </li></ul><ul><li>Only certain molecules move. </li></ul><ul><li>They must be carried by Specific Carrier Proteins . </li></ul><ul><li>Example: Na & K ions. </li></ul>
  33. 33. Active transport <ul><li>Opposite of diffusion </li></ul><ul><li>Moves molecules across a membrane up their concentration gradient </li></ul><ul><li>Uses transport proteins in the membrane </li></ul><ul><ul><li>Specific proteins pump specific molecules </li></ul></ul><ul><li>Requires the input of energy </li></ul><ul><li>Example (Na and K ion,) </li></ul>
  34. 34. Kinds of Pumps <ul><li>Na + /K + </li></ul><ul><li>H + </li></ul><ul><li>Ca 2+ </li></ul>Some pumps create electrical differences across a membrane ( electrogenic pumps )
  35. 35. Exocytosis and Endocytosis <ul><li>Exocytosis : Transport of materials out of cell . </li></ul><ul><li>Exocytosis involve the movement of macromolecule out of the cell by the fusion of membrane bound vesicles to the plasma membrane </li></ul><ul><li>Endocytosis : Transport of materials into cell . </li></ul><ul><li>Endocytosis involves the movement of macromolecule into the cell by the pinching of the plasma membrane into membrane bound vesicles </li></ul><ul><ul><li>Phagocytosis - Pinocytosis </li></ul></ul>
  36. 36. Endocytosis & Exocytosis:
  37. 37. Endocytosis : <ul><li>Phagocytosis : ingestion of large particle </li></ul><ul><li>Pinocytosis : ingestion of small mixed solutes </li></ul><ul><li>Receptor-mediated pinocytosis : ingestion of specific solutes (ligands) with the aid of binding proteins areas called coated pits </li></ul>
  38. 38. Phagocytosis : A kind of endocytosis is a process cells use to wrap membrane around a particle and engulf it. <ul><li>Example: Leukocyte-Virus, Bacteria, Food & Foreign Material </li></ul><ul><li>In phagocytosis, material to be engulfed touches the surface of the Phagocyte and causes a portion of the outer cell membrane indented. </li></ul><ul><li>The indented cell membrane is pinched off inside the cell </li></ul><ul><li>to form a sac containing the engulfed material. </li></ul><ul><li>The phagosome ( phago = to eat; some =body) is composed of </li></ul><ul><li>single membrane, may brake down or combine with another </li></ul><ul><li>vacuole containing destructive enzymes. </li></ul>
  39. 39. Endocytosis and Exocytosis
  40. 40. Traffic Across Membranes
  41. 41. Signal Transduction: <ul><li>Cells detect specific signals and they transmit </li></ul><ul><li>these signals to the cell interior. </li></ul><ul><li>Signals can be: Physical or Chemical </li></ul><ul><li>Certain chemicals can pass through cell. </li></ul><ul><li>Estrogen , make direct contact with target </li></ul><ul><li>cells. </li></ul>
  42. 42. Signal Transduction : <ul><li>Most signal molecules cannot enter into cell. </li></ul><ul><li>These primary messengers remain outside their target cells. </li></ul><ul><li>Signal / Ligand molecules attach to a receptor </li></ul><ul><li>molecule on membrane and </li></ul><ul><li>this receptor/ligand initiates a sequence of events </li></ul><ul><li>within membrane that </li></ul><ul><li>transmits information through the membrane to the </li></ul><ul><li>interior, generating second messengers. </li></ul><ul><li>. </li></ul>
  43. 43. Signal Transduction: <ul><li>A cascade of chemical reactions that enables </li></ul><ul><li>the target cell to respond to the stimulus by </li></ul><ul><li>making a change in how the cell functions </li></ul><ul><li>Example: Epidermal Growth Factor attaches to </li></ul><ul><li>tyrosine Kinase Receptor </li></ul><ul><li>and triggers a chain of events inside membrane. </li></ul><ul><li>They stimulate a chemical reaction that ultimately </li></ul><ul><li>leads to gene action, </li></ul><ul><li>which in turn causes cell growth and division. </li></ul>
  44. 44. Cell Size : <ul><li>Cells vary greatly in size. </li></ul><ul><li>Size related to level of activity and rate of molecules move </li></ul><ul><li>across its membranes. </li></ul><ul><li>Cell have a constant supply of nutrients, oxygen and other </li></ul><ul><li>molecules. </li></ul><ul><li>Cell has to give out carbon di oxide and other waste products that harmful to it. </li></ul><ul><li>Most cells are small with few exceptions and easy to satisfy the cell needs . </li></ul><ul><li>Example: Egg cell –Yolk of egg is large cell and central portion is inactive stored food is yolk while white surrounds actual cell. </li></ul>
  45. 45. Cell Size <ul><li>Prokaryotic </li></ul><ul><li>cells </li></ul><ul><li>1-2 µm in </li></ul><ul><li>diameter </li></ul><ul><li>Eukaryotic </li></ul><ul><li>Cells </li></ul><ul><li>10-200 µm </li></ul><ul><li>in diameter </li></ul>
  46. 46. Surface Area to Volume Ratio: <ul><li>Cell grows amount of Surface Area increases </li></ul><ul><li>by the Square (X 2 ) but Volume increases by </li></ul><ul><li>the Cube (X 3 ). </li></ul><ul><li>Surface Area increases at a slower rate than </li></ul><ul><li>Volume. </li></ul><ul><li>The Surface Area to Volume Ratio changes </li></ul><ul><li>as cell grows. </li></ul>
  47. 47. Surface area to Volume Ratio <ul><li>Cell size is limited. </li></ul><ul><ul><li>Cells must get all of their nutrients from their environment through their cell membranes . </li></ul></ul><ul><ul><li>Volume increases more quickly than surface area. </li></ul></ul><ul><ul><li>Surface area-to-volume ratio must remain small (because metabolic and nutrition requirements). </li></ul></ul>
  48. 48. Cell Size <ul><li>Limits on cell size determined by ability to perform metabolic processes </li></ul><ul><ul><li>Lower: can all necessary components fit </li></ul></ul><ul><ul><li>Upper: can we regulate supplies adequately (surface to volume ratio) </li></ul></ul>
  49. 49. Acknowledgements <ul><li>I duly acknowledge book “Concepts in Biology by Enger, Ross and Baily, TataMcgrawhill publishers. </li></ul>

×