Artem Aliev and Russell Spitzer, DataStax
A Tale of Two Graph Frameworks
on Spark: 

GraphFrames and Tinkerpop
OLAP
#EUeco3
#EUeco3
Pierrot and Harlequin
• Artem
• Graph Analytics Expert
• Earth
• Russell
• Distributed Systems Enthusiast
• Earth
2
Tinkerpop and GraphFrames provide
Complimentary Approaches for Graph Analytics
DataSet Catalyst
GraphFrames
3#EUeco3
Graphs are Vertices and Edges
4
Vertices are things and edges represent their relations to one another
#EUeco3
Graphs are Vertices and Edges
5
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class[6]
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class[8][9]
Service: 2286–2293 (7 Years)
#EUeco3
Graphs are Vertices and Edges
6
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class[6]
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class[8][9]
Service: 2286–2293 (7 Years)
Vertex
Properties
#EUeco3
Graphs are Vertices and Edges
7
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class[6]
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class[8][9]
Service: 2286–2293 (7 Years)
succeeded by
succeeded by
succeeded by
#EUeco3
Graphs are Vertices and Edges
8
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class[6]
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class[8][9]
Service: 2286–2293 (7 Years)
Edge
Edge Labelsucceeded by
succeeded by
succeeded by
#EUeco3
Graphs are Vertices and Edges
9
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class[6]
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class[8][9]
Service: 2286–2293 (7 Years)
Ship
Ship
Ship
Ship
Vertex Label
succeeded by
succeeded by
succeeded by
#EUeco3
Graphs are Vertices and Edges
10
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class
Service: 2245–2285 (40 Years)
Ship
Ship
Ship
Ship
Position: Captain

Name: Kirk
Position: Captain

Name: Picard
Crew
Crew
succeeded by
succeeded by
succeeded by
#EUeco3
Graphs are Vertices and Edges
11
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class
Service: 2286–2293 (7 Years)
Ship
Ship
Ship
Ship
Position: Captain

Name: Kirk
Position: Captain

Name: Picard
Crew
Crew
succeeded by
succeeded by
succeeded by
served on
served on
served on
served on
#EUeco3
Graphs are Vertices and Edges
12
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class
Service: 2286–2293 (7 Years)
Ship
Ship
Ship
Ship
Position: Captain

Name: Kirk
Position: Captain

Name: Picard
Crew
Crew
succeeded by
succeeded by
succeeded by
served on
served on
served on
served on
But why do I
want this?
#EUeco3
Graphs let us ask questions about our data based
on their relations
13
What Captain Served After Kirk?
What Ship was two after the
NCC-1701?
#EUeco3
Traversals involve following paths through the
Graph
14
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-D)
Class: Galaxy
Service: 2363–2371 (8 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class
Service: 2286–2293 (7 Years)
Ship
Ship
Ship
Ship
Position: Captain

Name: Kirk
Position: Captain

Name: Picard
Crew
Crew
succeeded by
succeeded by
succeeded by
served on
served on
served on
served on
#EUeco3
What Captain was After Kirk?
15
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class
Service: 2286–2293 (7 Years)
Ship
Ship
Position: Captain

Name: Kirk
Position: Captain

Name: Picard
Crew
Crewsucceeded by
served on
served on
#EUeco3
What Ship was two after the NCC-1701?
16
Registry: USS Enterprise (NCC-1701-C)
Class: Ambassador
Service: 2332[11] – 2344 (12 Years)
Registry: USS Enterprise (NCC-1701)
Class: Constitution class
Service: 2245–2285 (40 Years)
Registry: USS Enterprise (NCC-1701-A)
Class: Enterprise class
Service: 2286–2293 (7 Years)
Ship
Ship
Ship
succeeded by
succeeded by
#EUeco3
Tinkerpop is a Powerful and Flexible Graph
Framework
• Server, Language, Connectors
• Graph Framework for 

OLAP and OLTP
• Node Centric Representations
• Fluent API (Gremlin)
• Fully Self Contained Framework
17#EUeco3
OLTP Examples
18#EUeco3 18
Movie Lens
Example
Schema
19
https://grouplens.org/datasets/movielens/
#EUeco3 19
20
#EUeco3
What happens when you have too much data?
21
#EUeco3
Tinkerpop Spark OLAP Mechanism
• Instead of one traversal we traverse starting from all nodes simultaneously
22
Distribution Requires Partitioning
23
?
Big Data
Independent Chunks
of Data#EUeco3
#EUeco3
Vertex Stored in a PairRDD
Id -> StarVertex(Edge and Property Information)
24
1
A
C
D
Star Vertex: Adjacency list representation

1: "A", "Kirk"

A: "C", "Kirk"

C: "D", "Picard"

D: "Picard"
 Just Id 

Of Connected 

Vertex
#EUeco3
Vertex Program Runs Initializing Traverser for
every Vertex
25
1
A
C
D
SparkMemory - Accumulator - Used for GlobalState
#EUeco3
Then we cycle through a message Passing
Algorithm
26
1
A
C
D
1
A
C
D
1
A
C
D
SparkMemory - Accumulator - Used for GlobalState
#EUeco3
Then we cycle through a message Passing
Algorithm
27
1
A
C
D
1
A
C
D
1
A
C
D
SparkMemory - Accumulator - Used for GlobalState
Passes messages from one Vertex to another with a join
#EUeco3
Then we cycle through a message Passing
Algorithm
28
1
A
C
D
1
A
C
D
1
A
C
D
SparkMemory - Accumulator - Used for GlobalState
Repeat
#EUeco3
Then we cycle through a message Passing
Algorithm
29
1
A
C
D
1
A
C
D
1
A
C
D
SparkMemory - Accumulator - Used for GlobalState
All Traversers Halt

Or
Program Terminates
Result!
#EUeco3
Example OLAP Traversals
30
#EUeco3
Tinkerpop Spark OLAP Pros/Cons
Pros
• Every message pass requires only a single shuffle
• Edges and edge properties accessible without a step
• Very Flexible, Many Provider Specific Shortcuts possible
• Internal properties can be any Java type
• All in one, Server already ready for multiple clients
Cons
• Limited in ability to connect to external sources/other spark applications
• Flexibility of framework allows for many platform specific shortcuts to be added
• Genericness provides difficulty in making some optimizations
• Edges co-partitioned with vertices, high degree nodes can cause memory issues
31
#EUeco3
GraphFrames Background
• Third Party Package
• https://graphframes.github.io/
• Integrates with Dataset/Dataframe in Spark
• Relational under the hood
32
#EUeco3
GraphFrames are built of two DataFrames
33
Row
Column
#EUeco3
GraphFrames are built of two DataFrames
34
id job species
Geordi Chief
Engineer
Human
Data Science
Officer
Android
Vertex DataFrame
src dst relationship
Geordi Data Friend
Edge DataFrame
Friend
#EUeco3
GraphFrames are built of two DataFrames
35
id job species
Geordi Chief
Engineer
Human
Data Science
Officer
Android
Vertex DataFrame
src dst relationship
Geordi Data Friend
Edge DataFrame
Friend
Can Only Be Spark Types
#EUeco3
GraphFrames are built of two DataFrames
36
id job species
Geordi Chief
Engineer
Human
Data Science
Officer
Android
Vertex DataFrame
src dst relationship
Geordi Data Friend
Edge DataFrame
Friend
No Built in Labels
#EUeco3
Catalyst Optimizes any Requests
• Simple requests using DataFrame api don't do
anything special
• Some methods fall back to GraphX (RDD Based)
• Others use pure DataFrame methods
37
#EUeco3
GraphFrames Motif Matching
38
GraphFrame
(a)-[e]->(b)
V E
#EUeco3
GraphFrames Motif Matching
39
GraphFrame
(a)-[e]->(b)
Vertex (a) Vertices as a UDT "A"V E
A: <VertexRow>
#EUeco3
GraphFrames Motif Matching
40
GraphFrame
(a)-[e]->(b)
Vertex (a) Vertices as a UDT "A"
Edge [b] 

Edges as UDT "E"

Join with edges
where A.id = E.src
V E
A: <VertexRow>
Join
A: <VertexRow>,
E: <EdgeRow>
#EUeco3
GraphFrames Motif Matching
41
GraphFrame
(a)-[e]->(b)
Vertex (a) Vertices as a UDT "A"
[e]
Vertices as UDT "B"
Join with edges where
E.dst = B.id
Edge
Vertex
[b] 

Edges as UDT "E"

Join with edges
where A.id = E.src
V E
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
Join
JoinA: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
#EUeco3
GraphFrames Motif Matching
42
GraphFrame
(a)-[e]->(b)
Vertex (a) Vertices as a UDT "A"
[e]
Vertices as UDT "B"
Join with edges where
E.dst = B.id
Edge
Vertex
[b] 

Edges as UDT "E"

Join with edges
where A.id = E.src
V E
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
Join
JoinA: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
THAT'S SO
MANY JOINS
#EUeco3 43
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
DataFrames means Optimizations are Automatic
#EUeco3 44
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Select A.ID
Columns Pruned and Predicates Pushed
45
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Select A.ID
Columns Pruned and Predicates Pushed
#EUeco3
46
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Select A.ID
Columns Pruned and Predicates Pushed
#EUeco3
47
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Select A.ID
Columns Pruned and Predicates Pushed
#EUeco3
#EUeco3
All of the normal optimizations happen within this
FrameWork
48
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Broadcast?
Broadcast?
#EUeco3
Code Generation and Internal Rows
49
Vertex
Edge
Vertex
A: <VertexRow>
A: <VertexRow>,
E: <EdgeRow>
A: <VertexRow>,
E: <EdgeRow>,
B: <VertexRow>
Code
Generation
Code
Generation
Code
Generation
Code
Generation
Code
Generation
#EUeco3
GraphFrames Examples
50
#EUeco3
GraphFrame Pros Cons
Pros
• Much Faster on basic counts
• Powerful optimizations + CodeGen
• Easy to connect to other sources


Cons
• Slower on complex traversals (2 Joins per hop)
• Relational Model not as Flexible
51
#EUeco3
Choosing the Right Framework
52
Choose TinkerPop OLAP For Long Paths
• More complicated queries
• Traversals that require many hops
• g.V().out.out.out.out 

• Avoid for simple counts and aggregations
• Avoid if you have very high degree Vertices
53#EUeco3
Choose GraphFrames for Interoperability and
Short Paths
• General Edge/Vertex stats groupCount, min, max
• Connecting to other sources
• Short paths
• High Degree Vertices
• Avoid
• Long path algorithms
54#EUeco3
#EUeco3
Choosing the Right Framework
55
Gremlin on

Graphframes
OLTP backed
by DSE Graph
Built in Spark
We write it!
Search Built In!
Advanced
Security
#EUeco3
Thanks for Listening
56
Datastax Academy Graph Course
https://academy.datastax.com/resources/ds330-datastax-enterprise-graph

Try out Datastax Enterprise!
https://academy.datastax.com/quick-downloads



Apache Tinkerpop

http://tinkerpop.apache.org/


GraphFrames Link
https://graphframes.github.io/

A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem Aliev and Russell Spitzer

  • 1.
    Artem Aliev andRussell Spitzer, DataStax A Tale of Two Graph Frameworks on Spark: 
 GraphFrames and Tinkerpop OLAP #EUeco3
  • 2.
    #EUeco3 Pierrot and Harlequin •Artem • Graph Analytics Expert • Earth • Russell • Distributed Systems Enthusiast • Earth 2
  • 3.
    Tinkerpop and GraphFramesprovide Complimentary Approaches for Graph Analytics DataSet Catalyst GraphFrames 3#EUeco3
  • 4.
    Graphs are Verticesand Edges 4 Vertices are things and edges represent their relations to one another #EUeco3
  • 5.
    Graphs are Verticesand Edges 5 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class[6] Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class[8][9] Service: 2286–2293 (7 Years) #EUeco3
  • 6.
    Graphs are Verticesand Edges 6 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class[6] Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class[8][9] Service: 2286–2293 (7 Years) Vertex Properties #EUeco3
  • 7.
    Graphs are Verticesand Edges 7 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class[6] Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class[8][9] Service: 2286–2293 (7 Years) succeeded by succeeded by succeeded by #EUeco3
  • 8.
    Graphs are Verticesand Edges 8 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class[6] Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class[8][9] Service: 2286–2293 (7 Years) Edge Edge Labelsucceeded by succeeded by succeeded by #EUeco3
  • 9.
    Graphs are Verticesand Edges 9 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class[6] Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class[8][9] Service: 2286–2293 (7 Years) Ship Ship Ship Ship Vertex Label succeeded by succeeded by succeeded by #EUeco3
  • 10.
    Graphs are Verticesand Edges 10 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class Service: 2245–2285 (40 Years) Ship Ship Ship Ship Position: Captain
 Name: Kirk Position: Captain
 Name: Picard Crew Crew succeeded by succeeded by succeeded by #EUeco3
  • 11.
    Graphs are Verticesand Edges 11 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class Service: 2286–2293 (7 Years) Ship Ship Ship Ship Position: Captain
 Name: Kirk Position: Captain
 Name: Picard Crew Crew succeeded by succeeded by succeeded by served on served on served on served on #EUeco3
  • 12.
    Graphs are Verticesand Edges 12 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class Service: 2286–2293 (7 Years) Ship Ship Ship Ship Position: Captain
 Name: Kirk Position: Captain
 Name: Picard Crew Crew succeeded by succeeded by succeeded by served on served on served on served on But why do I want this? #EUeco3
  • 13.
    Graphs let usask questions about our data based on their relations 13 What Captain Served After Kirk? What Ship was two after the NCC-1701? #EUeco3
  • 14.
    Traversals involve followingpaths through the Graph 14 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-D) Class: Galaxy Service: 2363–2371 (8 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class Service: 2286–2293 (7 Years) Ship Ship Ship Ship Position: Captain
 Name: Kirk Position: Captain
 Name: Picard Crew Crew succeeded by succeeded by succeeded by served on served on served on served on #EUeco3
  • 15.
    What Captain wasAfter Kirk? 15 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class Service: 2286–2293 (7 Years) Ship Ship Position: Captain
 Name: Kirk Position: Captain
 Name: Picard Crew Crewsucceeded by served on served on #EUeco3
  • 16.
    What Ship wastwo after the NCC-1701? 16 Registry: USS Enterprise (NCC-1701-C) Class: Ambassador Service: 2332[11] – 2344 (12 Years) Registry: USS Enterprise (NCC-1701) Class: Constitution class Service: 2245–2285 (40 Years) Registry: USS Enterprise (NCC-1701-A) Class: Enterprise class Service: 2286–2293 (7 Years) Ship Ship Ship succeeded by succeeded by #EUeco3
  • 17.
    Tinkerpop is aPowerful and Flexible Graph Framework • Server, Language, Connectors • Graph Framework for 
 OLAP and OLTP • Node Centric Representations • Fluent API (Gremlin) • Fully Self Contained Framework 17#EUeco3
  • 18.
  • 19.
  • 20.
  • 21.
    #EUeco3 What happens whenyou have too much data? 21
  • 22.
    #EUeco3 Tinkerpop Spark OLAPMechanism • Instead of one traversal we traverse starting from all nodes simultaneously 22
  • 23.
    Distribution Requires Partitioning 23 ? BigData Independent Chunks of Data#EUeco3
  • 24.
    #EUeco3 Vertex Stored ina PairRDD Id -> StarVertex(Edge and Property Information) 24 1 A C D Star Vertex: Adjacency list representation
 1: "A", "Kirk"
 A: "C", "Kirk"
 C: "D", "Picard"
 D: "Picard"
 Just Id 
 Of Connected 
 Vertex
  • 25.
    #EUeco3 Vertex Program RunsInitializing Traverser for every Vertex 25 1 A C D SparkMemory - Accumulator - Used for GlobalState
  • 26.
    #EUeco3 Then we cyclethrough a message Passing Algorithm 26 1 A C D 1 A C D 1 A C D SparkMemory - Accumulator - Used for GlobalState
  • 27.
    #EUeco3 Then we cyclethrough a message Passing Algorithm 27 1 A C D 1 A C D 1 A C D SparkMemory - Accumulator - Used for GlobalState Passes messages from one Vertex to another with a join
  • 28.
    #EUeco3 Then we cyclethrough a message Passing Algorithm 28 1 A C D 1 A C D 1 A C D SparkMemory - Accumulator - Used for GlobalState Repeat
  • 29.
    #EUeco3 Then we cyclethrough a message Passing Algorithm 29 1 A C D 1 A C D 1 A C D SparkMemory - Accumulator - Used for GlobalState All Traversers Halt
 Or Program Terminates Result!
  • 30.
  • 31.
    #EUeco3 Tinkerpop Spark OLAPPros/Cons Pros • Every message pass requires only a single shuffle • Edges and edge properties accessible without a step • Very Flexible, Many Provider Specific Shortcuts possible • Internal properties can be any Java type • All in one, Server already ready for multiple clients Cons • Limited in ability to connect to external sources/other spark applications • Flexibility of framework allows for many platform specific shortcuts to be added • Genericness provides difficulty in making some optimizations • Edges co-partitioned with vertices, high degree nodes can cause memory issues 31
  • 32.
    #EUeco3 GraphFrames Background • ThirdParty Package • https://graphframes.github.io/ • Integrates with Dataset/Dataframe in Spark • Relational under the hood 32
  • 33.
    #EUeco3 GraphFrames are builtof two DataFrames 33 Row Column
  • 34.
    #EUeco3 GraphFrames are builtof two DataFrames 34 id job species Geordi Chief Engineer Human Data Science Officer Android Vertex DataFrame src dst relationship Geordi Data Friend Edge DataFrame Friend
  • 35.
    #EUeco3 GraphFrames are builtof two DataFrames 35 id job species Geordi Chief Engineer Human Data Science Officer Android Vertex DataFrame src dst relationship Geordi Data Friend Edge DataFrame Friend Can Only Be Spark Types
  • 36.
    #EUeco3 GraphFrames are builtof two DataFrames 36 id job species Geordi Chief Engineer Human Data Science Officer Android Vertex DataFrame src dst relationship Geordi Data Friend Edge DataFrame Friend No Built in Labels
  • 37.
    #EUeco3 Catalyst Optimizes anyRequests • Simple requests using DataFrame api don't do anything special • Some methods fall back to GraphX (RDD Based) • Others use pure DataFrame methods 37
  • 38.
  • 39.
  • 40.
    #EUeco3 GraphFrames Motif Matching 40 GraphFrame (a)-[e]->(b) Vertex(a) Vertices as a UDT "A" Edge [b] 
 Edges as UDT "E"
 Join with edges where A.id = E.src V E A: <VertexRow> Join A: <VertexRow>, E: <EdgeRow>
  • 41.
    #EUeco3 GraphFrames Motif Matching 41 GraphFrame (a)-[e]->(b) Vertex(a) Vertices as a UDT "A" [e] Vertices as UDT "B" Join with edges where E.dst = B.id Edge Vertex [b] 
 Edges as UDT "E"
 Join with edges where A.id = E.src V E A: <VertexRow> A: <VertexRow>, E: <EdgeRow> Join JoinA: <VertexRow>, E: <EdgeRow>, B: <VertexRow>
  • 42.
    #EUeco3 GraphFrames Motif Matching 42 GraphFrame (a)-[e]->(b) Vertex(a) Vertices as a UDT "A" [e] Vertices as UDT "B" Join with edges where E.dst = B.id Edge Vertex [b] 
 Edges as UDT "E"
 Join with edges where A.id = E.src V E A: <VertexRow> A: <VertexRow>, E: <EdgeRow> Join JoinA: <VertexRow>, E: <EdgeRow>, B: <VertexRow> THAT'S SO MANY JOINS
  • 43.
    #EUeco3 43 Vertex Edge Vertex A: <VertexRow> A:<VertexRow>, E: <EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> DataFrames means Optimizations are Automatic
  • 44.
    #EUeco3 44 Vertex Edge Vertex A: <VertexRow> A:<VertexRow>, E: <EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Select A.ID Columns Pruned and Predicates Pushed
  • 45.
    45 Vertex Edge Vertex A: <VertexRow> A: <VertexRow>, E:<EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Select A.ID Columns Pruned and Predicates Pushed #EUeco3
  • 46.
    46 Vertex Edge Vertex A: <VertexRow> A: <VertexRow>, E:<EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Select A.ID Columns Pruned and Predicates Pushed #EUeco3
  • 47.
    47 Vertex Edge Vertex A: <VertexRow> A: <VertexRow>, E:<EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Select A.ID Columns Pruned and Predicates Pushed #EUeco3
  • 48.
    #EUeco3 All of thenormal optimizations happen within this FrameWork 48 Vertex Edge Vertex A: <VertexRow> A: <VertexRow>, E: <EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Broadcast? Broadcast?
  • 49.
    #EUeco3 Code Generation andInternal Rows 49 Vertex Edge Vertex A: <VertexRow> A: <VertexRow>, E: <EdgeRow> A: <VertexRow>, E: <EdgeRow>, B: <VertexRow> Code Generation Code Generation Code Generation Code Generation Code Generation
  • 50.
  • 51.
    #EUeco3 GraphFrame Pros Cons Pros •Much Faster on basic counts • Powerful optimizations + CodeGen • Easy to connect to other sources 
 Cons • Slower on complex traversals (2 Joins per hop) • Relational Model not as Flexible 51
  • 52.
  • 53.
    Choose TinkerPop OLAPFor Long Paths • More complicated queries • Traversals that require many hops • g.V().out.out.out.out 
 • Avoid for simple counts and aggregations • Avoid if you have very high degree Vertices 53#EUeco3
  • 54.
    Choose GraphFrames forInteroperability and Short Paths • General Edge/Vertex stats groupCount, min, max • Connecting to other sources • Short paths • High Degree Vertices • Avoid • Long path algorithms 54#EUeco3
  • 55.
    #EUeco3 Choosing the RightFramework 55 Gremlin on
 Graphframes OLTP backed by DSE Graph Built in Spark We write it! Search Built In! Advanced Security
  • 56.
    #EUeco3 Thanks for Listening 56 DatastaxAcademy Graph Course https://academy.datastax.com/resources/ds330-datastax-enterprise-graph
 Try out Datastax Enterprise! https://academy.datastax.com/quick-downloads
 
 Apache Tinkerpop
 http://tinkerpop.apache.org/ 
 GraphFrames Link https://graphframes.github.io/