

Notation for the definite integral…
b

f(x) dx
a

◦
◦


b is upper limit of integration
a is lower limit of integration

This equals the area under a curve, above
the x-axis if…
1. f(x) is continuous
2. f(x) is nonnegative
b

A rea

f ( x ) d x w h e n f(x)

0

a
b

A rea

f ( x ) d x w h e n f(x)

0

a

Net Area:
b

f ( x ) d x = (a re a a b ove x-a xis) - (a re a b e low x-a xis)
a
If f ( x )

c on [a ,b ], th e n

b

c d x = c(b -a )
a
b

Syntax: To evaluate

f(x) dx …
a

MATH 9 fnInt(
1. Order of Integration
a

b

f(x) dx
b

f(x) dx
a
2. Zero
a

f(x) dx = 0
a
3. Constant Multiple
b

b

k f(x) dx
a

k

f (x ) dx
a
4. Sum and Difference
b

b

[ f(x)
a

g ( x )] d x

b

f(x) dx
a

g( x ) d x
a
5. Additivity
b

c

f(x) dx +
a

c

f(x) dx
b

f (x) dx
a
a

b

1. Order of Integration

f(x) dx

f(x) dx

b

a

a

2. Zero

f(x) dx = 0
a
b

b

3. Constant Multiple

k f(x) dx

k

a

f (x ) dx
a

b

4. Sum and Difference

b

[ f(x)

g ( x )] d x

a

b

f(x) dx
a

b

5. Additivity

c

f(x) dx +
a

a
c

f(x) dx
b

g( x ) d x

f (x) dx
a

4.3 The Definite Integral

  • 2.
     Notation for thedefinite integral… b f(x) dx a ◦ ◦  b is upper limit of integration a is lower limit of integration This equals the area under a curve, above the x-axis if… 1. f(x) is continuous 2. f(x) is nonnegative
  • 3.
    b A rea f (x ) d x w h e n f(x) 0 a b A rea f ( x ) d x w h e n f(x) 0 a Net Area: b f ( x ) d x = (a re a a b ove x-a xis) - (a re a b e low x-a xis) a
  • 4.
    If f (x ) c on [a ,b ], th e n b c d x = c(b -a ) a
  • 5.
    b Syntax: To evaluate f(x)dx … a MATH 9 fnInt(
  • 6.
    1. Order ofIntegration a b f(x) dx b f(x) dx a
  • 7.
  • 8.
    3. Constant Multiple b b kf(x) dx a k f (x ) dx a
  • 9.
    4. Sum andDifference b b [ f(x) a g ( x )] d x b f(x) dx a g( x ) d x a
  • 10.
    5. Additivity b c f(x) dx+ a c f(x) dx b f (x) dx a
  • 11.
    a b 1. Order ofIntegration f(x) dx f(x) dx b a a 2. Zero f(x) dx = 0 a b b 3. Constant Multiple k f(x) dx k a f (x ) dx a b 4. Sum and Difference b [ f(x) g ( x )] d x a b f(x) dx a b 5. Additivity c f(x) dx + a a c f(x) dx b g( x ) d x f (x) dx a