SlideShare a Scribd company logo
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
Rules of Radicals
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y =x2y
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y = xyy
c. x2y =x2y = xy
Example A. Simplify
a. 8 = 42 = 22
Square Rule: x2 =x x = x if x > 0.
Multiplication Rule: x·y = x·y
We use these rules to simplify root-expressions.
In particular, look for square factors of the radicand to pull
out when simplifying square-root.
Rules of Radicals
b. 72 =362 = 62
d. x2y3 =x2y2y = xyy
c. x2y =x2y = xy
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
a.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
a. =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
a. = =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
a. = =
b.
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
9y2
x2
a. = =
b. =
A radical expression is said to be simplified if as much as
possible is extracted out of the square-root.
Example B. Simplify.
a. 72 = 4 18 = 218 (not simplified yet)
= 292 = 2*3*2 = 62 (simplified)
b.80x4y5 = 16·5x4y4y
= 4x2y25y
Rules of Radicals
Division Rule: y
x
y
x
 =
Example C. Simplify.
9
4
9
4
3
2
9y2
x2
9y2
x2
3y
x
a. = =
b. = =
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
Rules of Radicals
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
Rules of Radicals
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
Example D. Simplify
5
3
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. 
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. = 
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
8x
5b. 
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. = 
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
5
1 15or
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 9 = 4 +913 =
5
1 15or
4x
1 10xor
Example D. Simplify
5
3
5·5
3·5
The radical of a fractional expression is said to be simplified
if the denominator is completely extracted out of the radical,
i.e. the denominator is radical free.
If the denominator does contain radical terms, multiply the
top and bottom by suitably chosen quantities to remove the
radical term in the denominator to simplify it.
Rules of Radicals
2
a. =  =
25
15

=
5
15
8x
5
4·2x
5b. =  =
2x
5

=
2 2x
5
 2x
2x

=
2 2x
10x
*
=
4x
10x
WARNING!!!!
a ± b = a ±b
For example: 4 + 9 = 4 +9 = 2 + 3 = 513 =
5
1 15or
4x
1 10xor
Rules of Radicals
Exercise A. Simplify the following radicals.
1. 12 2. 18 3. 20 4. 28
5. 32 6. 36 7. 40 8. 45
9. 54 10. 60 11. 72 12. 84
13. 90 14. 96x2 15. 108x3 16. 120x2y2
17. 150y4 18. 189x3y2 19. 240x5y8 18. 242x19y34
19. 12 12 20. 1818 21. 2 16
23. 183
22. 123
24. 1227 25. 1850 26. 1040
27. 20x15x 28.12xy15y
29. 32xy324x5 30. x8y13x15y9
Exercise B. Simplify the following radicals. Remember that
you have a choice to simplify each of the radicals first then
multiply, or multiply the radicals first then simplify.
Rules of Radicals
Exercise C. Simplify the following radicals. Remember that
you have a choice to simplify each of the radicals first then
multiply, or multiply the radicals first then simplify. Make sure
the denominators are radical–free.
8x
531. x
10
 14
5x32. 7
20
 5
1233. 15
8x
534. 3
2
 3
32x35. 7
5
 5
236. 29
x

x
(x + 1)39. x
(x + 1)
 x
(x + 1)40. x(x + 1)
1

1
(x + 1)
37.
x
(x2 – 1)41. x(x + 1)
(x – 1)

x
(x + 1)38.
x21 – 1
Exercise D. Take the denominators of out of the radical.
42.
9x21 – 143.

More Related Content

What's hot

Quadratic inequalities
Quadratic inequalitiesQuadratic inequalities
Quadratic inequalitiesmstf mstf
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equationsswartzje
 
Operations with Radicals
Operations with RadicalsOperations with Radicals
Operations with Radicals
cmorgancavo
 
Quadratic inequality
Quadratic inequalityQuadratic inequality
Quadratic inequality
Brian Mary
 
Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
Cipriano De Leon
 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two Cubes
Free Math Powerpoints
 
solving quadratic equations using quadratic formula
solving quadratic equations using quadratic formulasolving quadratic equations using quadratic formula
solving quadratic equations using quadratic formula
maricel mas
 
Equation of a circle
Equation of a circleEquation of a circle
Equation of a circle
vhughes5
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
Ver Louie Gautani
 
Illustrations of Quadratic Equations
Illustrations of Quadratic EquationsIllustrations of Quadratic Equations
Illustrations of Quadratic Equations
Free Math Powerpoints
 
Solving Word Problems Involving Quadratic Equations
Solving Word Problems Involving Quadratic EquationsSolving Word Problems Involving Quadratic Equations
Solving Word Problems Involving Quadratic Equationskliegey524
 
Linear Equations in Two Variables
Linear Equations in Two VariablesLinear Equations in Two Variables
Linear Equations in Two Variables
sheisirenebkm
 
Factoring Perfect Square Trinomial
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
Dhenz Lorenzo
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
Arjuna Senanayake
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
Maria Katrina Miranda
 
Rational Exponents
Rational ExponentsRational Exponents
Rational ExponentsPhil Saraspe
 
Roots and Radicals
Roots and RadicalsRoots and Radicals
Roots and Radicals
Ver Louie Gautani
 
2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubesjennoga08
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
salvie alvaro
 

What's hot (20)

Quadratic inequalities
Quadratic inequalitiesQuadratic inequalities
Quadratic inequalities
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Operations with Radicals
Operations with RadicalsOperations with Radicals
Operations with Radicals
 
Quadratic inequality
Quadratic inequalityQuadratic inequality
Quadratic inequality
 
Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two Cubes
 
solving quadratic equations using quadratic formula
solving quadratic equations using quadratic formulasolving quadratic equations using quadratic formula
solving quadratic equations using quadratic formula
 
Equation of a circle
Equation of a circleEquation of a circle
Equation of a circle
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Illustrations of Quadratic Equations
Illustrations of Quadratic EquationsIllustrations of Quadratic Equations
Illustrations of Quadratic Equations
 
Solving Word Problems Involving Quadratic Equations
Solving Word Problems Involving Quadratic EquationsSolving Word Problems Involving Quadratic Equations
Solving Word Problems Involving Quadratic Equations
 
Linear Equations in Two Variables
Linear Equations in Two VariablesLinear Equations in Two Variables
Linear Equations in Two Variables
 
Factoring Perfect Square Trinomial
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
Rational Exponents
Rational ExponentsRational Exponents
Rational Exponents
 
Roots and Radicals
Roots and RadicalsRoots and Radicals
Roots and Radicals
 
2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 

Viewers also liked

4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponentsmath123b
 
5 1 complex numbers
5 1 complex numbers5 1 complex numbers
5 1 complex numbers
math123b
 
Chain rule solution key
Chain rule solution keyChain rule solution key
Chain rule solution key
Juan Apolinario Reyes
 
4 3 algebra of radicals
4 3 algebra of radicals4 3 algebra of radicals
4 3 algebra of radicalsmath123b
 
Sample 4-5-sp-13
Sample 4-5-sp-13Sample 4-5-sp-13
Sample 4-5-sp-13math123b
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
math123b
 
1 4 homework
1 4 homework1 4 homework
1 4 homeworkmath123b
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicalsmath123b
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadraticsmath123b
 
123b ans-i
123b ans-i123b ans-i
123b ans-imath123b
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equationsmath123b
 
Introduction to the trigonometric functions
Introduction to the trigonometric functionsIntroduction to the trigonometric functions
Introduction to the trigonometric functions
Goetheschule
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equationsmath123b
 
Lesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsLesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric Functions
Matthew Leingang
 
Lecture 9 derivatives of trig functions - section 3.3
Lecture 9   derivatives of trig functions - section 3.3Lecture 9   derivatives of trig functions - section 3.3
Lecture 9 derivatives of trig functions - section 3.3
njit-ronbrown
 
Localizacion Geografica 2
Localizacion Geografica 2Localizacion Geografica 2
Localizacion Geografica 2JCMV83
 
1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x
math123b
 
Trigonometric functions - PreCalculus
Trigonometric functions - PreCalculusTrigonometric functions - PreCalculus
Trigonometric functions - PreCalculus
AmandaWoodbury
 

Viewers also liked (20)

4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
 
5 1 complex numbers
5 1 complex numbers5 1 complex numbers
5 1 complex numbers
 
Chain rule solution key
Chain rule solution keyChain rule solution key
Chain rule solution key
 
4 3 algebra of radicals
4 3 algebra of radicals4 3 algebra of radicals
4 3 algebra of radicals
 
Sample 4-5-sp-13
Sample 4-5-sp-13Sample 4-5-sp-13
Sample 4-5-sp-13
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicals
 
5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics5 4 equations that may be reduced to quadratics
5 4 equations that may be reduced to quadratics
 
123b ans-i
123b ans-i123b ans-i
123b ans-i
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
Introduction to the trigonometric functions
Introduction to the trigonometric functionsIntroduction to the trigonometric functions
Introduction to the trigonometric functions
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
 
Lesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsLesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric Functions
 
Lecture 9 derivatives of trig functions - section 3.3
Lecture 9   derivatives of trig functions - section 3.3Lecture 9   derivatives of trig functions - section 3.3
Lecture 9 derivatives of trig functions - section 3.3
 
Localizacion Geografica 2
Localizacion Geografica 2Localizacion Geografica 2
Localizacion Geografica 2
 
Calculus
CalculusCalculus
Calculus
 
1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x1 2 2nd-degree equation and word problems-x
1 2 2nd-degree equation and word problems-x
 
Trigonometric functions - PreCalculus
Trigonometric functions - PreCalculusTrigonometric functions - PreCalculus
Trigonometric functions - PreCalculus
 

Similar to 4 2 rules of radicals

4 2 rules of radicals-x
4 2 rules of radicals-x4 2 rules of radicals-x
4 2 rules of radicals-x
math123b
 
1 rules of radicals x
1 rules of radicals x1 rules of radicals x
1 rules of radicals x
Tzenma
 
2 algebra of radicals
2 algebra of radicals2 algebra of radicals
2 algebra of radicals
Tzenma
 
4 3 algebra of radicals-x
4 3 algebra of radicals-x4 3 algebra of radicals-x
4 3 algebra of radicals-x
math123b
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
smiller5
 
Algebra 2 Section 3-6
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6
Jimbo Lamb
 
4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x
math123b
 
3 more on algebra of radicals
3 more on algebra of radicals3 more on algebra of radicals
3 more on algebra of radicals
Tzenma
 
Grade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptxGrade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptx
JustineJohnTamayo
 
May 4, 2015
May 4, 2015May 4, 2015
May 4, 2015khyps13
 
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Demetrio Ccesa Rayme
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptx
ERLINDABAYANI2
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
Nazrin Nazdri
 
Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5
Jimbo Lamb
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
KrishnakoumarC
 
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Demetrio Ccesa Rayme
 

Similar to 4 2 rules of radicals (20)

4 2 rules of radicals-x
4 2 rules of radicals-x4 2 rules of radicals-x
4 2 rules of radicals-x
 
1 rules of radicals x
1 rules of radicals x1 rules of radicals x
1 rules of radicals x
 
2 algebra of radicals
2 algebra of radicals2 algebra of radicals
2 algebra of radicals
 
4 3 algebra of radicals-x
4 3 algebra of radicals-x4 3 algebra of radicals-x
4 3 algebra of radicals-x
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 
Algebra 2 Section 3-6
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6
 
4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x
 
3 more on algebra of radicals
3 more on algebra of radicals3 more on algebra of radicals
3 more on algebra of radicals
 
2 rules for radicals
2 rules for radicals2 rules for radicals
2 rules for radicals
 
Grade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptxGrade 9_Week 6_Day 1.pptx
Grade 9_Week 6_Day 1.pptx
 
May 4, 2015
May 4, 2015May 4, 2015
May 4, 2015
 
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
Teoria y problemas de sistema de ecuaciones lineales SE448 ccesa007
 
Multiplication on radicals.pptx
Multiplication on radicals.pptxMultiplication on radicals.pptx
Multiplication on radicals.pptx
 
1 rules for exponents
1 rules for exponents1 rules for exponents
1 rules for exponents
 
Hprec2 2
Hprec2 2Hprec2 2
Hprec2 2
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Hprec2 4
Hprec2 4Hprec2 4
Hprec2 4
 
Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
 
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
Teoria y problemas de sistema de ecuaciones lineales se44 ccesa007
 

More from math123b

4 multiplication and division of rational expressions
4 multiplication and division of rational expressions4 multiplication and division of rational expressions
4 multiplication and division of rational expressions
math123b
 
2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators
math123b
 
5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x
math123b
 
5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x
math123b
 
5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x
math123b
 
5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x
math123b
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-x
math123b
 
4 6 radical equations-x
4 6 radical equations-x4 6 radical equations-x
4 6 radical equations-x
math123b
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
math123b
 
4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x
math123b
 
3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x
math123b
 
3 5 rectangular system and lines-x
3 5 rectangular system and lines-x3 5 rectangular system and lines-x
3 5 rectangular system and lines-x
math123b
 
3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x
math123b
 
3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x
math123b
 
3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
math123b
 
3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x
math123b
 
2 8 variations-xy
2 8 variations-xy2 8 variations-xy
2 8 variations-xy
math123b
 

More from math123b (18)

4 multiplication and division of rational expressions
4 multiplication and division of rational expressions4 multiplication and division of rational expressions
4 multiplication and division of rational expressions
 
2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators
 
5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x5.1 hw sequences and summation notation x
5.1 hw sequences and summation notation x
 
5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x5 4 equations that may be reduced to quadratics-x
5 4 equations that may be reduced to quadratics-x
 
5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x
 
5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-x
 
4 6 radical equations-x
4 6 radical equations-x4 6 radical equations-x
4 6 radical equations-x
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x4 1 radicals and pythagorean theorem-x
4 1 radicals and pythagorean theorem-x
 
3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x3 6 2 d linear inequalities-x
3 6 2 d linear inequalities-x
 
3 5 rectangular system and lines-x
3 5 rectangular system and lines-x3 5 rectangular system and lines-x
3 5 rectangular system and lines-x
 
3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x3 4 absolute inequalities-algebraic-x
3 4 absolute inequalities-algebraic-x
 
3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x3 3 absolute inequalities-geom-x
3 3 absolute inequalities-geom-x
 
3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
 
3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x3 1 the real line and linear inequalities-x
3 1 the real line and linear inequalities-x
 
2 8 variations-xy
2 8 variations-xy2 8 variations-xy
2 8 variations-xy
 
Sample1
Sample1Sample1
Sample1
 

Recently uploaded

JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 

Recently uploaded (20)

JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 

4 2 rules of radicals

  • 2. Square Rule: x2 =x x = x if x > 0. Rules of Radicals
  • 3. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y Rules of Radicals
  • 4. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. Rules of Radicals
  • 5. Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 6. Example A. Simplify a. 8 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 7. Example A. Simplify a. 8 = 42 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 8. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals
  • 9. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =
  • 10. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362
  • 11. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62
  • 12. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y
  • 13. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y =x2y
  • 14. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 c. x2y =x2y = xy
  • 15. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 c. x2y =x2y = xy
  • 16. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y c. x2y =x2y = xy
  • 17. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y = xyy c. x2y =x2y = xy
  • 18. Example A. Simplify a. 8 = 42 = 22 Square Rule: x2 =x x = x if x > 0. Multiplication Rule: x·y = x·y We use these rules to simplify root-expressions. In particular, look for square factors of the radicand to pull out when simplifying square-root. Rules of Radicals b. 72 =362 = 62 d. x2y3 =x2y2y = xyy c. x2y =x2y = xy A radical expression is said to be simplified if as much as possible is extracted out of the square-root.
  • 19. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Rules of Radicals
  • 20. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 Rules of Radicals
  • 21. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 Rules of Radicals
  • 22. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) Rules of Radicals
  • 23. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 Rules of Radicals
  • 24. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 Rules of Radicals
  • 25. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) Rules of Radicals
  • 26. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 Rules of Radicals
  • 27. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y Rules of Radicals
  • 28. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals
  • 29. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  =
  • 30. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify.
  • 31. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 a.
  • 32. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 a. =
  • 33. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 a. = =
  • 34. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 a. = = b.
  • 35. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 9y2 x2 a. = = b. =
  • 36. A radical expression is said to be simplified if as much as possible is extracted out of the square-root. Example B. Simplify. a. 72 = 4 18 = 218 (not simplified yet) = 292 = 2*3*2 = 62 (simplified) b.80x4y5 = 16·5x4y4y = 4x2y25y Rules of Radicals Division Rule: y x y x  = Example C. Simplify. 9 4 9 4 3 2 9y2 x2 9y2 x2 3y x a. = = b. = =
  • 37. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, Rules of Radicals
  • 38. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. Rules of Radicals
  • 39. The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals
  • 40. Example D. Simplify 5 3 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. 
  • 41. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. = 
  • 42. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15 
  • 43. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15
  • 44. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15 8x 5b.  5 1 15or
  • 45. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  5 1 15or
  • 46. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  5 1 15or
  • 47. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  5 1 15or
  • 48. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * 5 1 15or
  • 49. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x 5 1 15or
  • 50. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x 5 1 15or 4x 1 10xor
  • 51. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b 5 1 15or 4x 1 10xor
  • 52. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 913 = 5 1 15or 4x 1 10xor
  • 53. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 913 = 5 1 15or 4x 1 10xor
  • 54. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 9 = 4 +913 = 5 1 15or 4x 1 10xor
  • 55. Example D. Simplify 5 3 5·5 3·5 The radical of a fractional expression is said to be simplified if the denominator is completely extracted out of the radical, i.e. the denominator is radical free. If the denominator does contain radical terms, multiply the top and bottom by suitably chosen quantities to remove the radical term in the denominator to simplify it. Rules of Radicals 2 a. =  = 25 15  = 5 15 8x 5 4·2x 5b. =  = 2x 5  = 2 2x 5  2x 2x  = 2 2x 10x * = 4x 10x WARNING!!!! a ± b = a ±b For example: 4 + 9 = 4 +9 = 2 + 3 = 513 = 5 1 15or 4x 1 10xor
  • 56. Rules of Radicals Exercise A. Simplify the following radicals. 1. 12 2. 18 3. 20 4. 28 5. 32 6. 36 7. 40 8. 45 9. 54 10. 60 11. 72 12. 84 13. 90 14. 96x2 15. 108x3 16. 120x2y2 17. 150y4 18. 189x3y2 19. 240x5y8 18. 242x19y34 19. 12 12 20. 1818 21. 2 16 23. 183 22. 123 24. 1227 25. 1850 26. 1040 27. 20x15x 28.12xy15y 29. 32xy324x5 30. x8y13x15y9 Exercise B. Simplify the following radicals. Remember that you have a choice to simplify each of the radicals first then multiply, or multiply the radicals first then simplify.
  • 57. Rules of Radicals Exercise C. Simplify the following radicals. Remember that you have a choice to simplify each of the radicals first then multiply, or multiply the radicals first then simplify. Make sure the denominators are radical–free. 8x 531. x 10  14 5x32. 7 20  5 1233. 15 8x 534. 3 2  3 32x35. 7 5  5 236. 29 x  x (x + 1)39. x (x + 1)  x (x + 1)40. x(x + 1) 1  1 (x + 1) 37. x (x2 – 1)41. x(x + 1) (x – 1)  x (x + 1)38. x21 – 1 Exercise D. Take the denominators of out of the radical. 42. 9x21 – 143.