SlideShare a Scribd company logo
Concept Kit
Modeling of 3-Phase AC Motor
Drive Simulation
For Electric Drive Systems
[PSpice Version]


         All Rights Reserved Copyright (C) Bee Technologies Inc. 2012   1
Contents

                                                                                                                                                       Slide #

    1. Modeling of 3-Phase AC Motor Model
         1.1 Manufacturer Specification.........................................................................................................       3
         1.2 Torque and Back-EMF...............................................................................................................        4
         1.3 Simplified 3-Phase AC Motor Model.........................................................................................                5
         1.4 The 3-Phase AC Motor Equivalent Circuit.................................................................................                  6
         1.5 Parameter Settings.....................................................................................................................   7
    2. Simulation Circuit of 3-Phase AC Motor Model................................................................................                    8
         2.1 Phase Current Characteristics Under Load Variation................................................................                        9
         2.2 Back-EMF Characteristics Under Load Condition.....................................................................                        10
         2.3 Speed and Torque Characteristics At 140Arms........................................................................                       11
         2.4 Power Output and Efficiency Characteristics At 140Arms.........................................................                           12
              Appendix A: Measured Point of Simulation Circuit (1/2)...........................................................                        13
              Appendix A: Measured Point of Simulation Circuit (2/2)...........................................................                        14
              Appendix B: Evaluation Text......................................................................................................        15
              Appendix C: Gate Signal for Six-Step Control...........................................................................                  16
              Appendix D: 3-Phase AC Motor Model Text (1/2).....................................................................                       17
              Appendix D: 3-Phase AC Motor Model Text (2/2).....................................................................                       18
              Appendix E: Simulation Settings................................................................................................          19




                                              All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                                       2
1.1) Manufacturer Specification


     Motenergy, Inc (ME0913)
       Motor Electrical Parameters
         •   Operating Voltage Range..........................0 – 72 VMAX
         •   Rated Continuous Current........................140 Arms
         •   Peak Stalled Current.................................400 Arms
         •   Voltage Constant.......................................50 RPM/V
         •   Phase Resistance (L-L).............................0.0125 Ω
         •   Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz
         •   Maximum Continuous Power Rating……..17KW at 102VDC Battery Voltage

                                                                   14.3KW at 84VDC Battery Voltage
                                                                  12KW at 72VDC Battery Voltage

       Motor Mechanical Parameters
         •   Rated Speed.............................................3000 RPM
         •   Maximum Speed.......................................5000 RPM
         •   Rated Torque............................................288 Lb-in
         •   Torque Constant.......................................1.6 Lb-in/A



                               All Rights Reserved Copyright (C) Bee Technologies Inc. 2012          3
1.2) Torque and Back-EMF

•    The Torque are defined by :
                          Tu  KT  Iu                                         phe : u, v, w
                                                                              Vphe : Phase voltage applied from inverter to motor
                          Tv  KT  Iv                     (1)
                                                                              VAC : Operating voltage range (Maximum voltage)
                          Tw  KT  Iw
                                                                              VBAT : DC Voltage applied from battery
                          Te  Tu  Tv  Tw                (2)                Iphe : Phase current

      At 140Arms (Rated Continuous Current)                                   Tphe : Electric torque produced by u, v, w phase
      KT = 1.6 Lb-in/A
                                                                              Te : Electric torque produced by motor
                                                                              Ephe : Phase Back-EMF
      Tphe = 1.6  140 = 224Lb-in                                             KE : Back-EMF constant
      Te = 224*3= 672Lb-in                                                    KT : Torque constant
                                                                              ωm : Angular speed of rotor
•    The Back-EMF are defined by :
                          Eu  KE  m                                                                1 Pound Inch equals 0.11 Nm

                          Ev  KE  m                     (3)
                          Ew  KE  m
            At 5000 RPM (Maximum Speed)
            Ephe ≈ VBAT      (In an ideal motor, R and L are zero)
            Ephe = 102V

            KE = Ephe /ωm = 102 / 5000
             KE ≈ 0.02V/RPM
                                    All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                             4
1.3) Simplified 3-Phase AC Motor Model


                                                           Frequency Response




                                                                                            110uH




                                                                                       105uH



                               BEMF1
         R1         L1
 U              1        2




         R2         L2
                               BEMF2                               Phase Resistance (L-L)       : 0.0125Ω
 V              1        2                                         Phase Inductance              : 105uH
                                               N0                                                : 110uH
                               BEMF3
         R3         L3
 W              1        2




 Fig. 1 Scheme of the 3-Phase Model                                                 Fig.2 Phase-to-Ground

                             All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                   5
1.4) The 3-Phase AC Motor Equivalent Circuit
                                                  E1
                                  eu                      +   emf_u                                                PARAMETERS:     PARAMETERS:
                                                      +
                |Z| - Frequency                       -
                                                          -             Back-EMF Voltage                           RLL = 0.0125    LOAD = 140
                                                                                                                   LL = 105U
                                                                                                          lim_u    KT = 1.6
         Vu                                       0
                    U1                                                                                             KE = 0.02
               n1                                     emf_u
U                                                                OUT+    IN+               IN+   OUT+
                    1




                                         TQSP 2
                                                  sp_u           OUT-    IN-               IN-   OUT-
                                                  tu                           0       0                  lim_v
                                                                                                    0
                                                  E2                                       IN+   OUT+
                                  ev                  +   +   emf_v                        IN-   OUT-
                                                      -
                                                          -                            0                  lim_w
                                                                                                    0
         Vv                                       0
                    U2                                                                     IN+   OUT+
               n2                                     emf_v
V                                                                OUT+    IN+               IN-   OUT-
                    1




                                         TQSP 2   sp_v           OUT-    IN-           0                            Mechanical part
                                                  tv                           0                    0
                                                                                                                                  torque
                                                  E3
                                  ew                  +   +   emf_w
                                                      -
                                                          -                                                       IN+   OUT+
                                                                                                                  IN-   OUT-
         Vw                                       0
                    U3
               n3                                     emf_w                                                   0            0      speed
W                                                                OUT+    IN+
                                         TQSP 2
                    1




                                                  sp_w           OUT-    IN-
                                                  tw                           0       sp_u
                                                                                                        mul
                                                                                       sp_v                       IN+   OUT+
                                                                                       sp_w                       IN-   OUT-

                                                                                                              0            0
N0




                                  Fig. 3 Three-Phase AC Motor Equivalent Circuit

        •     This figure shows the equivalent circuit of AC motor model that includes the |Z|-
              frequency part ,Back-EMF voltage part ,and Mechanical part.
        •      The Back-EMF voltage is the voltage generated across the motor's terminals as the
              windings move through the motor's magnetic field.
                                       All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                              6
1.5) Parameters Settings

                                                           Model Parameters:
                                                               LOAD : Load current each phase of motor [Arms]
                                  U1                           – e.g. LL = 125Arms, 140Arms, or 400Arms
                                  ME0913
    1
                                                               LL : Phase inductance [H]
                              LL = 105U
                                                               – e.g. LL = 10mH, 100mH, or 1H
    2

    3
                 M       4    RLL = 0.0125
                           N0 KE = 0.02
                              KT = 1.6                         RLL : Phase resistance (Phase-to-phase) [Ω]
                              LOAD = 140                       – e.g. RLL = 10mΩ, 100mΩ, or 1Ω

                                                               KE : Back-EMF constant [V/RPM]
                                                               – e.g. KE= 0.01, 0.05, or 0.1

Fig. 4 Symbol of 3-Phase Induction Motor                       KT : Torque constant [Lb-in/A]
                                                               – e.g. KT= 0.1, 0.5, or 1

                                                                                                1 Pound Inch equals 0.11 Nm


•       From the 3-Phase Induction Motor specification, the model is characterized by setting parameters
        LL, RLL, KE, KT and LOAD.

                                All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                            7
2) Simulation Circuit of 3-Phase AC Motor Model



          V1              S1                 D1                 S3            D3           S5           D5
         102V   UP        +    +             DMOD_01 VP         +    +        DMOD_01 WP   +    +       DMOD_01
                          -    -                                -    -                     -    -

                      0                                     0                              0                                                 U1
                                                                                                                                             ME0913
                                                                                                         RU               U    1




                                                                                                                                            4
N0
                                                                                                         RV

                                                                                                         RW
                                                                                                                          V

                                                                                                                          W
                                                                                                                               2

                                                                                                                               3
                                                                                                                                    M           N0

                                                                                                                                                         N0
                                                                                                         RU, RV, RW: 173.75m
          V2
         102V
                                                                                                                                   LL = 105U
                          S2                 D2                 S4            D4           S6           D6                         RLL = 0.0125
                UD        +    +             DMOD_01 VD         +    +        DMOD_01 WD   +    +       DMOD_01                    KE = 0.02
                                                                                                                                   KT = 1.6
                          -    -                                -    -                     -    -                                  LOAD = 140
                      0                                     0                              0


     0


                                                            •            Fig.5 Analysis of motor operation powered by
         UP     UD   VP        VD       WP   WD
                                                                         alternating voltage variation involves using the
                                                                         model of three-phase induction motor.
                                                  U2
         UP




                     VP




                                        WP
                UD




                                   VD




                                             WD




                                                  GDRV




                                                   All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                                      8
2.1) Phase Current Characteristics Under Load Variation
- Simulation Results

   500A

                                                                                                Load 50Arms

     0A




  -500A
          0s                                                                                                500ms
   500A        I(RU)/SQRT(2)
                                                                Time
                                                                                                Load 140Arms

     0A




  -500A
          0s                                                                                                500ms
   500A        I(RU)/SQRT(2)
                                                                Time                            Load 200Arms

     0A




  -500A
          0s                                                                                                500ms
               I(RU)/SQRT(2)
                                                                Time                            Reference of Phase U

                               Fig. 6 Current Characteristics under load Condition

                                All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                        9
2.2) Back-EMF Characteristics Under Load Condition
- Simulation Results

   200V
                                                                                             Load 50Arms
   100V

     0V

  -100V

  -200V
          0s                                                                                             500ms
   200V        V(X_U1.EU)
                                                             Time                            Load 140Arms
   100V

     0V

  -100V

  -200V
          0s                                                                                             500ms
   200V        V(X_U1.EU)
                                                             Time                            Load 200Arms
   100V

     0V

  -100V

  -200V
          0s                                                                                             500ms
               V(X_U1.EU)
                                                             Time                            Reference of Phase U

                            Fig. 7 Back-EMF Characteristics under load Condition

                             All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                     10
2.3) Speed and Torque Characteristics At 140Arms
  - Simulation Results

        4.0KV
                     The Load 140(Arms) is Rated Continuous Current
        3.0KV

                                                                                                         (464.146m,3.2311K)

RPM     2.0KV



        1.0KV


        SEL>>
           0V
                     V(X_U1.speed)
        1.0KV
                                                                                   Tphe: Electric torque produced by each phase



Lb-in
        0.5KV
                                                                                                          (446.486m,223.728)




           0V
                0s                                                                                                             500ms
                     V(X_U1.tu)
                                                                          Time                                   Reference of Phase U


                                  Fig. 8 Speed and Torque Characteristics at Load=140Arms

                                          All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                             11
2.4) Power Output and Efficiency Characteristics At 140Arms
   - Simulation Results

       20KW
               At Load=140Arms, Power Output ≈ 13.7 [KW]



                                                                                                    (960.616m,13.662K)
Watt   10KW




       SEL>>
          0W
               RMS(V(RU:1,N0))*RMS(I(RU))
        100
               At Load=140Arms, Efficiency ≈ 82 [%]

                                                                                                       (962.500m,81.941)
 [%]
         50




          0
          0.5s                                                                                                             1.0s
              100*( (RMS(V(U,N0))*RMS(I(RU))) / (RMS(V(RU:1,N0))*RMS(I(RU))) )
                                                                 Time                                       Reference of Phase U


                       Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms

                                     All Rights Reserved Copyright (C) Bee Technologies Inc. 2012                            12

More Related Content

What's hot

Ujt relaxation oscillators
Ujt relaxation oscillatorsUjt relaxation oscillators
Ujt relaxation oscillators
anonymous anonymous
 
Current source inverter
Current source inverterCurrent source inverter
Current source inverter
Prashant Kumar
 
Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
Tsuyoshi Horigome
 
Power electronics (III-EEE)
Power electronics (III-EEE)Power electronics (III-EEE)
Power electronics (III-EEE)
betasam
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)
Tsuyoshi Horigome
 
Solar Power Charge Controller
Solar Power Charge ControllerSolar Power Charge Controller
Solar Power Charge Controller
Edgefxkits & Solutions
 
Maximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systemsMaximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systems
Siksha 'O' Anusandhan (Deemed to be University )
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
LiewChiaPing
 
Perturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cellPerturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cell
Alexander Decker
 
Electrical drives and control
Electrical drives and controlElectrical drives and control
Electrical drives and control
Anandhakumar Chenniappan
 
Calculo De Corrientes De Cortocircuito
Calculo De Corrientes De CortocircuitoCalculo De Corrientes De Cortocircuito
Calculo De Corrientes De CortocircuitoF Blanco
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
Akshay Parmar
 
Thyristor
Thyristor Thyristor
Thyristor
Sasi Villa
 
Power Electronics introduction
Power Electronics introductionPower Electronics introduction
Power Electronics introduction
Poornima D
 
Working principle diode and special diode
Working principle diode and special diodeWorking principle diode and special diode
Working principle diode and special diode
aman1894
 
Transformer ppt
Transformer pptTransformer ppt
Transformer ppt
Sumeet Wadibhasme
 
Ic voltage regulators
Ic voltage regulatorsIc voltage regulators
Ic voltage regulators
gajju177
 
Effect of Shading on Photovoltaic Cell
Effect of Shading on Photovoltaic CellEffect of Shading on Photovoltaic Cell
Effect of Shading on Photovoltaic Cell
IOSR Journals
 
MPPT
MPPTMPPT
Mppt
MpptMppt

What's hot (20)

Ujt relaxation oscillators
Ujt relaxation oscillatorsUjt relaxation oscillators
Ujt relaxation oscillators
 
Current source inverter
Current source inverterCurrent source inverter
Current source inverter
 
Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
 
Power electronics (III-EEE)
Power electronics (III-EEE)Power electronics (III-EEE)
Power electronics (III-EEE)
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)
 
Solar Power Charge Controller
Solar Power Charge ControllerSolar Power Charge Controller
Solar Power Charge Controller
 
Maximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systemsMaximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systems
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 
Perturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cellPerturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cell
 
Electrical drives and control
Electrical drives and controlElectrical drives and control
Electrical drives and control
 
Calculo De Corrientes De Cortocircuito
Calculo De Corrientes De CortocircuitoCalculo De Corrientes De Cortocircuito
Calculo De Corrientes De Cortocircuito
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
 
Thyristor
Thyristor Thyristor
Thyristor
 
Power Electronics introduction
Power Electronics introductionPower Electronics introduction
Power Electronics introduction
 
Working principle diode and special diode
Working principle diode and special diodeWorking principle diode and special diode
Working principle diode and special diode
 
Transformer ppt
Transformer pptTransformer ppt
Transformer ppt
 
Ic voltage regulators
Ic voltage regulatorsIc voltage regulators
Ic voltage regulators
 
Effect of Shading on Photovoltaic Cell
Effect of Shading on Photovoltaic CellEffect of Shading on Photovoltaic Cell
Effect of Shading on Photovoltaic Cell
 
MPPT
MPPTMPPT
MPPT
 
Mppt
MpptMppt
Mppt
 

Viewers also liked

Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Tsuyoshi Horigome
 
LTspiceでDCモータ系のシミュレーションをやってみる
LTspiceでDCモータ系のシミュレーションをやってみるLTspiceでDCモータ系のシミュレーションをやってみる
LTspiceでDCモータ系のシミュレーションをやってみる
Tatsuya Sanada
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
Tsuyoshi Horigome
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)
Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
Tsuyoshi Horigome
 
Single phase induction motor
Single phase induction motorSingle phase induction motor
Single phase induction motor
Gowtham Packiaraj
 
3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor ppt
Ajay Balar
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデル
Tsuyoshi Horigome
 
LTspiceのPWLとスイッチの使い方
LTspiceのPWLとスイッチの使い方LTspiceのPWLとスイッチの使い方
LTspiceのPWLとスイッチの使い方
Tsuyoshi Horigome
 
TB62206FGのスパイスモデル
TB62206FGのスパイスモデルTB62206FGのスパイスモデル
TB62206FGのスパイスモデル
Tsuyoshi Horigome
 
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
IOSR Journals
 
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
マルツエレック株式会社 marutsuelec
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Tsuyoshi Horigome
 
3-Phase Motor Characteristics
3-Phase Motor Characteristics3-Phase Motor Characteristics
3-Phase Motor Characteristics
Azfar Rasool
 
電子回路シミュレータ(LTspice)の講義資料
電子回路シミュレータ(LTspice)の講義資料電子回路シミュレータ(LTspice)の講義資料
電子回路シミュレータ(LTspice)の講義資料
Tsuyoshi Horigome
 
Starting method for 3 phase induction motor
Starting method for 3 phase induction motorStarting method for 3 phase induction motor
Starting method for 3 phase induction motor
Ahmed A.Hassan
 
Multi-phase Brush-less DC motor And Applications
Multi-phase Brush-less DC motor And Applications Multi-phase Brush-less DC motor And Applications
Multi-phase Brush-less DC motor And Applications
Zain Ul Abideen
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
Tsuyoshi Horigome
 
How does a 3-phase motor works
How does a 3-phase motor worksHow does a 3-phase motor works
How does a 3-phase motor works
Shashi Katiyar
 
Ltspiceのpwlとスイッチの使い方
Ltspiceのpwlとスイッチの使い方Ltspiceのpwlとスイッチの使い方
Ltspiceのpwlとスイッチの使い方
マルツエレック株式会社 marutsuelec
 

Viewers also liked (20)

Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
 
LTspiceでDCモータ系のシミュレーションをやってみる
LTspiceでDCモータ系のシミュレーションをやってみるLTspiceでDCモータ系のシミュレーションをやってみる
LTspiceでDCモータ系のシミュレーションをやってみる
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
LTspiceを活用した3相ACモータドライブ回路シミュレーション要約
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
 
Single phase induction motor
Single phase induction motorSingle phase induction motor
Single phase induction motor
 
3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor ppt
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデル
 
LTspiceのPWLとスイッチの使い方
LTspiceのPWLとスイッチの使い方LTspiceのPWLとスイッチの使い方
LTspiceのPWLとスイッチの使い方
 
TB62206FGのスパイスモデル
TB62206FGのスパイスモデルTB62206FGのスパイスモデル
TB62206FGのスパイスモデル
 
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
 
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
 
3-Phase Motor Characteristics
3-Phase Motor Characteristics3-Phase Motor Characteristics
3-Phase Motor Characteristics
 
電子回路シミュレータ(LTspice)の講義資料
電子回路シミュレータ(LTspice)の講義資料電子回路シミュレータ(LTspice)の講義資料
電子回路シミュレータ(LTspice)の講義資料
 
Starting method for 3 phase induction motor
Starting method for 3 phase induction motorStarting method for 3 phase induction motor
Starting method for 3 phase induction motor
 
Multi-phase Brush-less DC motor And Applications
Multi-phase Brush-less DC motor And Applications Multi-phase Brush-less DC motor And Applications
Multi-phase Brush-less DC motor And Applications
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
How does a 3-phase motor works
How does a 3-phase motor worksHow does a 3-phase motor works
How does a 3-phase motor works
 
Ltspiceのpwlとスイッチの使い方
Ltspiceのpwlとスイッチの使い方Ltspiceのpwlとスイッチの使い方
Ltspiceのpwlとスイッチの使い方
 

Similar to Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)

Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Tsuyoshi Horigome
 
デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書
Tsuyoshi Horigome
 
Motor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K GuptaMotor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K Gupta
RajuGupta88
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maual
Divya15121983
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IRParviz Parto
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
Tsuyoshi Horigome
 
Bipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC AnalysisBipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC Analysis
Tahmina Zebin
 
Dc machines1
Dc machines1Dc machines1
Dc machines1
satyajit patra
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICE
Tsuyoshi Horigome
 
Report pid controller dc motor
Report pid controller dc motorReport pid controller dc motor
Report pid controller dc motor
chea kimsairng
 
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...Amol Mahurkar
 
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
IJMER
 
Transformer testing
Transformer testingTransformer testing
Transformer testingajayknows
 
Control_System_Lab.pdf
Control_System_Lab.pdfControl_System_Lab.pdf
Control_System_Lab.pdf
SolotheEngineer
 
Control And Programingof Synchronous Generator
Control And Programingof Synchronous GeneratorControl And Programingof Synchronous Generator
Control And Programingof Synchronous Generator
freelay
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)
John Turner
 
Speed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueSpeed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM Technique
RITESH D. PATIL
 
Electrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatusElectrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatus
Mubarek Kurt
 
Abb technical guide_no_7_revc
Abb technical guide_no_7_revcAbb technical guide_no_7_revc
Abb technical guide_no_7_revc
Shashank Pathak
 

Similar to Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version) (20)

Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書
 
Motor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K GuptaMotor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K Gupta
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maual
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 
Bipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC AnalysisBipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC Analysis
 
Dc machines1
Dc machines1Dc machines1
Dc machines1
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICE
 
How to build a Inverters
How to build a InvertersHow to build a Inverters
How to build a Inverters
 
Report pid controller dc motor
Report pid controller dc motorReport pid controller dc motor
Report pid controller dc motor
 
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...
Study of Vector Control Algorithm and Inverter design for BLDC Motor, V/f con...
 
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
Design, Simulation and Implementation of Flyback based, True Single Stage, Is...
 
Transformer testing
Transformer testingTransformer testing
Transformer testing
 
Control_System_Lab.pdf
Control_System_Lab.pdfControl_System_Lab.pdf
Control_System_Lab.pdf
 
Control And Programingof Synchronous Generator
Control And Programingof Synchronous GeneratorControl And Programingof Synchronous Generator
Control And Programingof Synchronous Generator
 
Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)Temple, San Jose Interconnection App Stamped (1)
Temple, San Jose Interconnection App Stamped (1)
 
Speed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueSpeed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM Technique
 
Electrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatusElectrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatus
 
Abb technical guide_no_7_revc
Abb technical guide_no_7_revcAbb technical guide_no_7_revc
Abb technical guide_no_7_revc
 

More from Tsuyoshi Horigome

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
Tsuyoshi Horigome
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
Tsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
Tsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
Tsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
Tsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
Tsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 

Recently uploaded

Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
contactproperweb2014
 
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
7sd8fier
 
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
n0tivyq
 
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
pmgdscunsri
 
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
h7j5io0
 
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
708pb191
 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
TE Studio
 
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
smpc3nvg
 
Top Israeli Products and Brands - Plan it israel.pdf
Top Israeli Products and Brands - Plan it israel.pdfTop Israeli Products and Brands - Plan it israel.pdf
Top Israeli Products and Brands - Plan it israel.pdf
PlanitIsrael
 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
GOWSIKRAJA PALANISAMY
 
Borys Sutkowski portfolio interior design
Borys Sutkowski portfolio interior designBorys Sutkowski portfolio interior design
Borys Sutkowski portfolio interior design
boryssutkowski
 
White wonder, Work developed by Eva Tschopp
White wonder, Work developed by Eva TschoppWhite wonder, Work developed by Eva Tschopp
White wonder, Work developed by Eva Tschopp
Mansi Shah
 
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
Mansi Shah
 
一比一原版(BU毕业证)波士顿大学毕业证如何办理
一比一原版(BU毕业证)波士顿大学毕业证如何办理一比一原版(BU毕业证)波士顿大学毕业证如何办理
一比一原版(BU毕业证)波士顿大学毕业证如何办理
peuce
 
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
h7j5io0
 
Portfolio.pdf
Portfolio.pdfPortfolio.pdf
Portfolio.pdf
garcese
 
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
smpc3nvg
 
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
7sd8fier
 
Can AI do good? at 'offtheCanvas' India HCI prelude
Can AI do good? at 'offtheCanvas' India HCI preludeCan AI do good? at 'offtheCanvas' India HCI prelude
Can AI do good? at 'offtheCanvas' India HCI prelude
Alan Dix
 
Research 20 slides Amelia gavryliuks.pdf
Research 20 slides Amelia gavryliuks.pdfResearch 20 slides Amelia gavryliuks.pdf
Research 20 slides Amelia gavryliuks.pdf
ameli25062005
 

Recently uploaded (20)

Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
 
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
一比一原版(NCL毕业证书)纽卡斯尔大学毕业证成绩单如何办理
 
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
一比一原版(Glasgow毕业证书)格拉斯哥大学毕业证成绩单如何办理
 
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
 
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
一比一原版(Bolton毕业证书)博尔顿大学毕业证成绩单如何办理
 
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
一比一原版(UAL毕业证书)伦敦艺术大学毕业证成绩单如何办理
 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
 
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
一比一原版(Brunel毕业证书)布鲁内尔大学毕业证成绩单如何办理
 
Top Israeli Products and Brands - Plan it israel.pdf
Top Israeli Products and Brands - Plan it israel.pdfTop Israeli Products and Brands - Plan it israel.pdf
Top Israeli Products and Brands - Plan it israel.pdf
 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
 
Borys Sutkowski portfolio interior design
Borys Sutkowski portfolio interior designBorys Sutkowski portfolio interior design
Borys Sutkowski portfolio interior design
 
White wonder, Work developed by Eva Tschopp
White wonder, Work developed by Eva TschoppWhite wonder, Work developed by Eva Tschopp
White wonder, Work developed by Eva Tschopp
 
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
Between Filth and Fortune- Urban Cattle Foraging Realities by Devi S Nair, An...
 
一比一原版(BU毕业证)波士顿大学毕业证如何办理
一比一原版(BU毕业证)波士顿大学毕业证如何办理一比一原版(BU毕业证)波士顿大学毕业证如何办理
一比一原版(BU毕业证)波士顿大学毕业证如何办理
 
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
一比一原版(BU毕业证书)伯恩茅斯大学毕业证成绩单如何办理
 
Portfolio.pdf
Portfolio.pdfPortfolio.pdf
Portfolio.pdf
 
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
一比一原版(Bristol毕业证书)布里斯托大学毕业证成绩单如何办理
 
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
一比一原版(UNUK毕业证书)诺丁汉大学毕业证如何办理
 
Can AI do good? at 'offtheCanvas' India HCI prelude
Can AI do good? at 'offtheCanvas' India HCI preludeCan AI do good? at 'offtheCanvas' India HCI prelude
Can AI do good? at 'offtheCanvas' India HCI prelude
 
Research 20 slides Amelia gavryliuks.pdf
Research 20 slides Amelia gavryliuks.pdfResearch 20 slides Amelia gavryliuks.pdf
Research 20 slides Amelia gavryliuks.pdf
 

Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)

  • 1. Concept Kit Modeling of 3-Phase AC Motor Drive Simulation For Electric Drive Systems [PSpice Version] All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 1
  • 2. Contents Slide # 1. Modeling of 3-Phase AC Motor Model 1.1 Manufacturer Specification......................................................................................................... 3 1.2 Torque and Back-EMF............................................................................................................... 4 1.3 Simplified 3-Phase AC Motor Model......................................................................................... 5 1.4 The 3-Phase AC Motor Equivalent Circuit................................................................................. 6 1.5 Parameter Settings..................................................................................................................... 7 2. Simulation Circuit of 3-Phase AC Motor Model................................................................................ 8 2.1 Phase Current Characteristics Under Load Variation................................................................ 9 2.2 Back-EMF Characteristics Under Load Condition..................................................................... 10 2.3 Speed and Torque Characteristics At 140Arms........................................................................ 11 2.4 Power Output and Efficiency Characteristics At 140Arms......................................................... 12 Appendix A: Measured Point of Simulation Circuit (1/2)........................................................... 13 Appendix A: Measured Point of Simulation Circuit (2/2)........................................................... 14 Appendix B: Evaluation Text...................................................................................................... 15 Appendix C: Gate Signal for Six-Step Control........................................................................... 16 Appendix D: 3-Phase AC Motor Model Text (1/2)..................................................................... 17 Appendix D: 3-Phase AC Motor Model Text (2/2)..................................................................... 18 Appendix E: Simulation Settings................................................................................................ 19 All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 2
  • 3. 1.1) Manufacturer Specification Motenergy, Inc (ME0913) Motor Electrical Parameters • Operating Voltage Range..........................0 – 72 VMAX • Rated Continuous Current........................140 Arms • Peak Stalled Current.................................400 Arms • Voltage Constant.......................................50 RPM/V • Phase Resistance (L-L).............................0.0125 Ω • Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz • Maximum Continuous Power Rating……..17KW at 102VDC Battery Voltage 14.3KW at 84VDC Battery Voltage 12KW at 72VDC Battery Voltage Motor Mechanical Parameters • Rated Speed.............................................3000 RPM • Maximum Speed.......................................5000 RPM • Rated Torque............................................288 Lb-in • Torque Constant.......................................1.6 Lb-in/A All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 3
  • 4. 1.2) Torque and Back-EMF • The Torque are defined by : Tu  KT  Iu  phe : u, v, w Vphe : Phase voltage applied from inverter to motor Tv  KT  Iv (1) VAC : Operating voltage range (Maximum voltage) Tw  KT  Iw VBAT : DC Voltage applied from battery Te  Tu  Tv  Tw (2) Iphe : Phase current At 140Arms (Rated Continuous Current) Tphe : Electric torque produced by u, v, w phase KT = 1.6 Lb-in/A Te : Electric torque produced by motor Ephe : Phase Back-EMF Tphe = 1.6  140 = 224Lb-in KE : Back-EMF constant Te = 224*3= 672Lb-in KT : Torque constant ωm : Angular speed of rotor • The Back-EMF are defined by : Eu  KE  m  1 Pound Inch equals 0.11 Nm Ev  KE  m (3) Ew  KE  m At 5000 RPM (Maximum Speed) Ephe ≈ VBAT (In an ideal motor, R and L are zero) Ephe = 102V KE = Ephe /ωm = 102 / 5000 KE ≈ 0.02V/RPM All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 4
  • 5. 1.3) Simplified 3-Phase AC Motor Model Frequency Response 110uH 105uH BEMF1 R1 L1 U 1 2 R2 L2 BEMF2 Phase Resistance (L-L) : 0.0125Ω V 1 2 Phase Inductance : 105uH N0 : 110uH BEMF3 R3 L3 W 1 2 Fig. 1 Scheme of the 3-Phase Model Fig.2 Phase-to-Ground All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 5
  • 6. 1.4) The 3-Phase AC Motor Equivalent Circuit E1 eu + emf_u PARAMETERS: PARAMETERS: + |Z| - Frequency - - Back-EMF Voltage RLL = 0.0125 LOAD = 140 LL = 105U lim_u KT = 1.6 Vu 0 U1 KE = 0.02 n1 emf_u U OUT+ IN+ IN+ OUT+ 1 TQSP 2 sp_u OUT- IN- IN- OUT- tu 0 0 lim_v 0 E2 IN+ OUT+ ev + + emf_v IN- OUT- - - 0 lim_w 0 Vv 0 U2 IN+ OUT+ n2 emf_v V OUT+ IN+ IN- OUT- 1 TQSP 2 sp_v OUT- IN- 0 Mechanical part tv 0 0 torque E3 ew + + emf_w - - IN+ OUT+ IN- OUT- Vw 0 U3 n3 emf_w 0 0 speed W OUT+ IN+ TQSP 2 1 sp_w OUT- IN- tw 0 sp_u mul sp_v IN+ OUT+ sp_w IN- OUT- 0 0 N0 Fig. 3 Three-Phase AC Motor Equivalent Circuit • This figure shows the equivalent circuit of AC motor model that includes the |Z|- frequency part ,Back-EMF voltage part ,and Mechanical part. • The Back-EMF voltage is the voltage generated across the motor's terminals as the windings move through the motor's magnetic field. All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 6
  • 7. 1.5) Parameters Settings Model Parameters: LOAD : Load current each phase of motor [Arms] U1 – e.g. LL = 125Arms, 140Arms, or 400Arms ME0913 1 LL : Phase inductance [H] LL = 105U – e.g. LL = 10mH, 100mH, or 1H 2 3 M 4 RLL = 0.0125 N0 KE = 0.02 KT = 1.6 RLL : Phase resistance (Phase-to-phase) [Ω] LOAD = 140 – e.g. RLL = 10mΩ, 100mΩ, or 1Ω KE : Back-EMF constant [V/RPM] – e.g. KE= 0.01, 0.05, or 0.1 Fig. 4 Symbol of 3-Phase Induction Motor KT : Torque constant [Lb-in/A] – e.g. KT= 0.1, 0.5, or 1  1 Pound Inch equals 0.11 Nm • From the 3-Phase Induction Motor specification, the model is characterized by setting parameters LL, RLL, KE, KT and LOAD. All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 7
  • 8. 2) Simulation Circuit of 3-Phase AC Motor Model V1 S1 D1 S3 D3 S5 D5 102V UP + + DMOD_01 VP + + DMOD_01 WP + + DMOD_01 - - - - - - 0 0 0 U1 ME0913 RU U 1 4 N0 RV RW V W 2 3 M N0 N0 RU, RV, RW: 173.75m V2 102V LL = 105U S2 D2 S4 D4 S6 D6 RLL = 0.0125 UD + + DMOD_01 VD + + DMOD_01 WD + + DMOD_01 KE = 0.02 KT = 1.6 - - - - - - LOAD = 140 0 0 0 0 • Fig.5 Analysis of motor operation powered by UP UD VP VD WP WD alternating voltage variation involves using the model of three-phase induction motor. U2 UP VP WP UD VD WD GDRV All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 8
  • 9. 2.1) Phase Current Characteristics Under Load Variation - Simulation Results 500A Load 50Arms 0A -500A 0s 500ms 500A I(RU)/SQRT(2) Time Load 140Arms 0A -500A 0s 500ms 500A I(RU)/SQRT(2) Time Load 200Arms 0A -500A 0s 500ms I(RU)/SQRT(2) Time  Reference of Phase U Fig. 6 Current Characteristics under load Condition All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 9
  • 10. 2.2) Back-EMF Characteristics Under Load Condition - Simulation Results 200V Load 50Arms 100V 0V -100V -200V 0s 500ms 200V V(X_U1.EU) Time Load 140Arms 100V 0V -100V -200V 0s 500ms 200V V(X_U1.EU) Time Load 200Arms 100V 0V -100V -200V 0s 500ms V(X_U1.EU) Time  Reference of Phase U Fig. 7 Back-EMF Characteristics under load Condition All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 10
  • 11. 2.3) Speed and Torque Characteristics At 140Arms - Simulation Results 4.0KV The Load 140(Arms) is Rated Continuous Current 3.0KV (464.146m,3.2311K) RPM 2.0KV 1.0KV SEL>> 0V V(X_U1.speed) 1.0KV Tphe: Electric torque produced by each phase Lb-in 0.5KV (446.486m,223.728) 0V 0s 500ms V(X_U1.tu) Time  Reference of Phase U Fig. 8 Speed and Torque Characteristics at Load=140Arms All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 11
  • 12. 2.4) Power Output and Efficiency Characteristics At 140Arms - Simulation Results 20KW At Load=140Arms, Power Output ≈ 13.7 [KW] (960.616m,13.662K) Watt 10KW SEL>> 0W RMS(V(RU:1,N0))*RMS(I(RU)) 100 At Load=140Arms, Efficiency ≈ 82 [%] (962.500m,81.941) [%] 50 0 0.5s 1.0s 100*( (RMS(V(U,N0))*RMS(I(RU))) / (RMS(V(RU:1,N0))*RMS(I(RU))) ) Time  Reference of Phase U Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms All Rights Reserved Copyright (C) Bee Technologies Inc. 2012 12