SlideShare a Scribd company logo
Rectangular Coordinate System
Back to 123a-Home
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
x = amount to move
right (+) or left (–).
A coordinate system is a system of assigning addresses for
positions in the plane (2 D) or in space (3 D).
The rectangular coordinate system for the plane consists of a
rectangular grid where each point in the plane is addressed by
an ordered pair of numbers (x, y).
Rectangular Coordinate System
The horizontal axis is called
the x-axis. The vertical axis
is called the y-axis. The point
where the axes meet
is called the origin.
Starting from the origin, each
point is addressed by its
ordered pair (x, y) where:
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3)
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right,
Rectangular Coordinate System
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
(4, –3)
P
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
B
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
A
B
C
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5),
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5), Q(3, -5),
P
Q
R
x = amount to move
right (+) or left (–).
y = amount to move
up (+) or down (–).
For example, the point P
corresponds to (4, –3) is
4 right, and 3 down from
the origin.
Rectangular Coordinate System
Example A.
Label the points
A(-1, 2), B(-3, -2),C(0, -5).
The ordered pair (x, y) corresponds to a point is called the
coordinate of the point, x is the x-coordinate and y is the
y-coordinate.
A
B
C
Example B: Find the coordinate of P, Q, R as shown.
P(4, 5), Q(3, -5), R(-6, 0)
P
Q
R
The coordinate of the
origin is (0, 0).
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).
(0, 6)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
(5, 0)(-6, 0)
Any point on the y-axis
has coordinate of the
form (0, y).
(0, -4)
(0, 6)
(0,0)
Rectangular Coordinate System
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
(+,+)
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
QIQII
QIII QIV
(+,+)(–,+)
The coordinate of the
origin is (0, 0).
Any point on the x-axis
has coordinate of the
form (x, 0).
Any point on the y-axis
has coordinate of the
form (0, y).
Rectangular Coordinate System
Q1Q2
Q3 Q4
(+,+)(–,+)
(–,–) (+,–)
The axes divide the plane
into four parts. Counter
clockwise, they are denoted
as quadrants I, II, III, and IV.
Respectively, the signs of
the coordinates of each
quadrant are shown.
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
(5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
(5,4)(–5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4)
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4) (–x, –y) is the reflection of
(x, y) across the origin.
Rectangular Coordinate System
When the x-coordinate of the
a point (x, y) is changed to
its opposite as (–x , y), the
new point is the reflection
across the y-axis.
When the y-coordinate of
the a point (x, y) is changed
to its opposite as (x , –y),
the new point is the
reflection across the x-axis.
(5,4)(–5,4)
(5, –4) (–x, –y) is the reflection of
(x, y) across the origin.
(–5, –4)
Rectangular Coordinate System
Movements and Coordinates
Rectangular Coordinate System
Movements and Coordinates
Let A be the point (2, 3).
Rectangular Coordinate System
A
(2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3)
Rectangular Coordinate System
A
(2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
Rectangular Coordinate System
A B
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
x–coord.
increased
by 4
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3)
x–coord.
increased
by 4
(2, 3) (6, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
If the x–change is +, the point moves to the right.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Movements and Coordinates
Let A be the point (2, 3).
Suppose it’s x–coordinate is
increased by 4 to
(2 + 4, 3) = (6, 3) - to the point B,
this corresponds to moving A to the
right by 4.
Rectangular Coordinate System
A B
Similarly if the x–coordinate of
(2, 3) is decreased by 4 to
(2 – 4, 3) = (–2, 3) - to the point C,
this corresponds to moving A to the
left by 4.
Hence we conclude that changes in the x–coordinates of a point
move the point right and left.
If the x–change is +, the point moves to the right.
If the x–change is – , the point moves to the left.
C
x–coord.
increased
by 4
x–coord.
decreased
by 4
(2, 3) (6, 3)(–2, 3)
Again let A be the point (2, 3).
Rectangular Coordinate System
A
(2, 3)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7)
Rectangular Coordinate System
A
(2, 3)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
Rectangular Coordinate System
A
D
y–coord.
increased
by 4
(2, 3)
(2, 7)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
y–coord.
increased
by 4
(2, 3)
(2, 7)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
If the y–change is +, the point moves up.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Again let A be the point (2, 3).
Suppose its y–coordinate is
increased by 4 to
(2, 3 + 4) = (2, 7) - to the point D,
this corresponds to moving A up
by 4.
Rectangular Coordinate System
A
D
Similarly if the y–coordinate of
(2, 3) is decreased by 4 to
(2, 3 – 4) = (2, –1) - to the point E,
this corresponds to
moving A down by 4.
Hence we conclude that changes in the y–coordinates of a point
move the point right and left.
If the y–change is +, the point moves up.
If the y–change is – , the point moves down.
E
y–coord.
increased
by 4
y–coord.
decreased
by 4
(2, 3)
(2, 7)
(2, –1)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100)
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Here is the vertical format for the calculation:
(–2, 4)
point A
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Here is the vertical format for the calculation:
adding 50 to the x–coordinate to move right,
and –30 to the y–coordinate to move down.
(–2, 4)
point A
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Here is the vertical format for the calculation:
adding 50 to the x–coordinate to move right,
and –30 to the y–coordinate to move down.
(–2, 4)
+ (50, –30)
+ the “moves”
point A
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Here is the vertical format for the calculation:
adding 50 to the x–coordinate to move right,
and –30 to the y–coordinate to move down.
(–2, 4)
+ (50, –30)
(48, –26)
point A
+ the “moves”
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D
that is 50 to the right and 30 below A?
Here is the vertical format for the calculation:
adding 50 to the x–coordinate to move right,
and –30 to the y–coordinate to move down.
Hence D has the coordinate (–2 + 50, 4 – 30) = (48, –26).
(–2, 4)
+ (50, –30)
(48, –26)
point A
+ the “moves”
Rectangular Coordinate System
d. The point A(–2, 4) is 50 to the right and 30 below the point E
What’s the coordinate of the point E?
Rectangular Coordinate System
d. The point A(–2, 4) is 50 to the right and 30 below the point E
What’s the coordinate of the point E?
Let the coordinate of E be (a, b). (a , b) point E
Rectangular Coordinate System
d. The point A(–2, 4) is 50 to the right and 30 below the point E
What’s the coordinate of the point E?
Let the coordinate of E be (a, b).
In the vertical format we have:
(a , b)
+ (50, –30)
(–2, 4)
the “moves”
point A
point E
Rectangular Coordinate System
d. The point A(–2, 4) is 50 to the right and 30 below the point E
What’s the coordinate of the point E?
Let the coordinate of E be (a, b).
In the vertical format we have
Hence a + 50 = –2 so a = –52
and that b + (–30) = 4 so b = 34.
(a , b)
+ (50, –30)
(–2, 4)
the “moves”
point A
point E
Rectangular Coordinate System
d. The point A(–2, 4) is 50 to the right and 30 below the point E
What’s the coordinate of the point E?
Let the coordinate of E be (a, b).
In the vertical format we have
Hence a + 50 = –2 so a = –52
and that b + (–30) = 4 so b = 34.
Hence E is (–52 , 34).
(a , b)
+ (50, –30)
(–2, 4)
the “moves”
point A
point E
Rectangular Coordinate System
Example. C.
a. Let A be the point (–2, 4). What is the coordinate of
the point B that is 100 units directly left of A?
Moving left corresponds to decreasing the x-coordinate.
Hence B is (–2 – 100, 4) = (–102, 4).
b. What is the coordinate of the point C that is 100 units
directly above A?
Moving up corresponds to increasing the y-coordinate.
Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
c. What is the coordinate of the point D that is 50 to the right
and 30 below A?
We need to add 50 to the x–coordinate (to the right)
and subtract 30 from the y–coordinate (to go down).
Hence D has coordinate (–2 + 50, 4 – 30) = (48, –26).
Exercise. A.
a. Write down the coordinates of the following points.
Rectangular Coordinate System
AB
C
D
E
F
G
H
Ex. B. Plot the following points on the graph paper.
Rectangular Coordinate System
2. a. (2, 0) b. (–2, 0) c. (5, 0) d. (–8, 0) e. (–10, 0)
All these points are on which axis?
3. a. (0, 2) b. (0, –2) c. (0, 5) d. (0, –6) e. (0, 7)
All these points are on which quadrant?
4. a. (5, 2) b. (2, 5) c. (1, 7) d. (7, 1) e. (6, 6)
All these points are in which quadrant?
5. a. (–5, –2) b. (–2, –5) c. (–1, –7) d. (–7, –1) e. (–6, –6)
All these points are in which quadrant?
6. List three coordinates whose locations are in the 2nd
quadrant and plot them.
7. List three coordinates whose locations are in the 4th
quadrant and plot them.
C. Find the coordinates of the following points. Draw both
points for each problem.
Rectangular Coordinate System
The point that’s
8. 5 units to the right of (3, –2).
10. 4 units to the left of (–1, –5).
9. 6 units to the right of (–4, 2).
11. 6 units to the left of (2, –6).
12. 3 units to the left and 6 units down from (–2, 5).
13. 1 unit to the right and 5 units up from (–3, 1).
14. 3 units to the right and 3 units down from (–3, 4).
15. 2 units to the left and 6 units up from (4, –1).

More Related Content

What's hot

59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
alg1testreview
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
math260
 
1576 parabola
1576 parabola1576 parabola
1576 parabola
Dr Fereidoun Dejahang
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
math260
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
math267
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
alg1testreview
 
Parabola
ParabolaParabola
Parabola
heiner gomez
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i x
math260
 
Graphing parabola presentation
Graphing parabola presentationGraphing parabola presentation
Graphing parabola presentation
Virgilio Paragele
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
Lori Rapp
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations
math123c
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
math260
 
Parabola
ParabolaParabola
Parabola complete
Parabola completeParabola complete
Parabola complete
MATOME PETER
 
3.4 ellipses
3.4 ellipses3.4 ellipses
3.4 ellipses
math123c
 
Math1.2
Math1.2Math1.2
Math1.2
wraithxjmin
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
math266
 
Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01
A.
 
10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
math266
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
Paco Marcos
 

What's hot (20)

59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
1576 parabola
1576 parabola1576 parabola
1576 parabola
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
Parabola
ParabolaParabola
Parabola
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i x
 
Graphing parabola presentation
Graphing parabola presentationGraphing parabola presentation
Graphing parabola presentation
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
Parabola
ParabolaParabola
Parabola
 
Parabola complete
Parabola completeParabola complete
Parabola complete
 
3.4 ellipses
3.4 ellipses3.4 ellipses
3.4 ellipses
 
Math1.2
Math1.2Math1.2
Math1.2
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
 
Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01Parabola 091102134314-phpapp01
Parabola 091102134314-phpapp01
 
10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 

Similar to 1 rectangular coordinate system x

Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
KeizylleCajeme
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
KeizylleCajeme
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 grade
Siddu Lingesh
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variables
Mpumi Mokoena
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variables
mukundapriya
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)
itutor
 
Cordinate geometry for class VIII and IX
Cordinate  geometry for class VIII and IXCordinate  geometry for class VIII and IX
Cordinate geometry for class VIII and IX
MD. G R Ahmed
 
The rectangular coordinate plane
The rectangular coordinate planeThe rectangular coordinate plane
The rectangular coordinate plane
MartinGeraldine
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
math267
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
math260
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
math266
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
Warren Cunanan
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
avb public school
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
HarwinderSingh143
 
1 6 Notes
1 6 Notes1 6 Notes
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
math267
 
Maths presentation 22
Maths presentation 22Maths presentation 22
Maths presentation 22
Nandeesh Laxetty
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
M, Michelle Jeannite
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
M, Michelle Jeannite
 
Analytic geometry basic concepts
Analytic geometry basic conceptsAnalytic geometry basic concepts
Analytic geometry basic concepts
Nancy Morales Felipe
 

Similar to 1 rectangular coordinate system x (20)

Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 grade
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variables
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variables
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)
 
Cordinate geometry for class VIII and IX
Cordinate  geometry for class VIII and IXCordinate  geometry for class VIII and IX
Cordinate geometry for class VIII and IX
 
The rectangular coordinate plane
The rectangular coordinate planeThe rectangular coordinate plane
The rectangular coordinate plane
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
1 6 Notes
1 6 Notes1 6 Notes
1 6 Notes
 
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
 
Maths presentation 22
Maths presentation 22Maths presentation 22
Maths presentation 22
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
 
Msm1 fl ch11_03
Msm1 fl ch11_03Msm1 fl ch11_03
Msm1 fl ch11_03
 
Analytic geometry basic concepts
Analytic geometry basic conceptsAnalytic geometry basic concepts
Analytic geometry basic concepts
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
Tzenma
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
Tzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
Tzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
Tzenma
 
1 functions
1 functions1 functions
1 functions
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
Tzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
Tzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
Tzenma
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
Tzenma
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
Tzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
Tzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
Tzenma
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
Tzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
Tzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
Tzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
Tzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
Tzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 

Recently uploaded

MDP on air pollution of class 8 year 2024-2025
MDP on air pollution of class 8 year 2024-2025MDP on air pollution of class 8 year 2024-2025
MDP on air pollution of class 8 year 2024-2025
khuleseema60
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
giancarloi8888
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
zuzanka
 
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
TechSoup
 
How to Fix [Errno 98] address already in use
How to Fix [Errno 98] address already in useHow to Fix [Errno 98] address already in use
How to Fix [Errno 98] address already in use
Celine George
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
RidwanHassanYusuf
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
Nguyen Thanh Tu Collection
 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
Mohammad Al-Dhahabi
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
How to Manage Reception Report in Odoo 17
How to Manage Reception Report in Odoo 17How to Manage Reception Report in Odoo 17
How to Manage Reception Report in Odoo 17
Celine George
 
Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)
nitinpv4ai
 
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
Payaamvohra1
 
How to Download & Install Module From the Odoo App Store in Odoo 17
How to Download & Install Module From the Odoo App Store in Odoo 17How to Download & Install Module From the Odoo App Store in Odoo 17
How to Download & Install Module From the Odoo App Store in Odoo 17
Celine George
 
Juneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School DistrictJuneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School District
David Douglas School District
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
zuzanka
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
nitinpv4ai
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
سمير بسيوني
 

Recently uploaded (20)

MDP on air pollution of class 8 year 2024-2025
MDP on air pollution of class 8 year 2024-2025MDP on air pollution of class 8 year 2024-2025
MDP on air pollution of class 8 year 2024-2025
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
 
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptxRESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
RESULTS OF THE EVALUATION QUESTIONNAIRE.pptx
 
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
Elevate Your Nonprofit's Online Presence_ A Guide to Effective SEO Strategies...
 
How to Fix [Errno 98] address already in use
How to Fix [Errno 98] address already in useHow to Fix [Errno 98] address already in use
How to Fix [Errno 98] address already in use
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptxBIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
BIOLOGY NATIONAL EXAMINATION COUNCIL (NECO) 2024 PRACTICAL MANUAL.pptx
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN TẬP VÀ PHÁT TRIỂN CÂU HỎI TRONG ĐỀ MINH HỌA THI TỐT NGHIỆP THPT ...
 
skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)skeleton System.pdf (skeleton system wow)
skeleton System.pdf (skeleton system wow)
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
How to Manage Reception Report in Odoo 17
How to Manage Reception Report in Odoo 17How to Manage Reception Report in Odoo 17
How to Manage Reception Report in Odoo 17
 
Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)
 
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
NIPER 2024 MEMORY BASED QUESTIONS.ANSWERS TO NIPER 2024 QUESTIONS.NIPER JEE 2...
 
How to Download & Install Module From the Odoo App Store in Odoo 17
How to Download & Install Module From the Odoo App Store in Odoo 17How to Download & Install Module From the Odoo App Store in Odoo 17
How to Download & Install Module From the Odoo App Store in Odoo 17
 
Juneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School DistrictJuneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School District
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
 

1 rectangular coordinate system x

  • 2. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). Rectangular Coordinate System
  • 3. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System
  • 4. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System
  • 5. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis.
  • 6. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis.
  • 7. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin.
  • 8. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where:
  • 9. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where: x = amount to move right (+) or left (–).
  • 10. A coordinate system is a system of assigning addresses for positions in the plane (2 D) or in space (3 D). The rectangular coordinate system for the plane consists of a rectangular grid where each point in the plane is addressed by an ordered pair of numbers (x, y). Rectangular Coordinate System The horizontal axis is called the x-axis. The vertical axis is called the y-axis. The point where the axes meet is called the origin. Starting from the origin, each point is addressed by its ordered pair (x, y) where: x = amount to move right (+) or left (–). y = amount to move up (+) or down (–).
  • 11. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). Rectangular Coordinate System
  • 12. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) Rectangular Coordinate System
  • 13. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, Rectangular Coordinate System
  • 14. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System (4, –3) P
  • 15. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5).
  • 16. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A
  • 17. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A B
  • 18. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). A B C
  • 19. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C
  • 20. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P Q R
  • 21. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), P Q R
  • 22. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), Q(3, -5), P Q R
  • 23. x = amount to move right (+) or left (–). y = amount to move up (+) or down (–). For example, the point P corresponds to (4, –3) is 4 right, and 3 down from the origin. Rectangular Coordinate System Example A. Label the points A(-1, 2), B(-3, -2),C(0, -5). The ordered pair (x, y) corresponds to a point is called the coordinate of the point, x is the x-coordinate and y is the y-coordinate. A B C Example B: Find the coordinate of P, Q, R as shown. P(4, 5), Q(3, -5), R(-6, 0) P Q R
  • 24. The coordinate of the origin is (0, 0). (0,0) Rectangular Coordinate System
  • 25. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (0,0) Rectangular Coordinate System
  • 26. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0) (0,0) Rectangular Coordinate System
  • 27. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) (0,0) Rectangular Coordinate System
  • 28. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y).(0,0) Rectangular Coordinate System
  • 29. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y). (0, 6) (0,0) Rectangular Coordinate System
  • 30. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). (5, 0)(-6, 0) Any point on the y-axis has coordinate of the form (0, y). (0, -4) (0, 6) (0,0) Rectangular Coordinate System
  • 31. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV
  • 32. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV (+,+)
  • 33. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. QIQII QIII QIV (+,+)(–,+)
  • 34. The coordinate of the origin is (0, 0). Any point on the x-axis has coordinate of the form (x, 0). Any point on the y-axis has coordinate of the form (0, y). Rectangular Coordinate System Q1Q2 Q3 Q4 (+,+)(–,+) (–,–) (+,–) The axes divide the plane into four parts. Counter clockwise, they are denoted as quadrants I, II, III, and IV. Respectively, the signs of the coordinates of each quadrant are shown.
  • 35. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. (5,4) Rectangular Coordinate System
  • 36. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. (5,4)(–5,4) Rectangular Coordinate System
  • 37. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) Rectangular Coordinate System
  • 38. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) Rectangular Coordinate System
  • 39. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) (–x, –y) is the reflection of (x, y) across the origin. Rectangular Coordinate System
  • 40. When the x-coordinate of the a point (x, y) is changed to its opposite as (–x , y), the new point is the reflection across the y-axis. When the y-coordinate of the a point (x, y) is changed to its opposite as (x , –y), the new point is the reflection across the x-axis. (5,4)(–5,4) (5, –4) (–x, –y) is the reflection of (x, y) across the origin. (–5, –4) Rectangular Coordinate System
  • 42. Movements and Coordinates Let A be the point (2, 3). Rectangular Coordinate System A (2, 3)
  • 43. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) Rectangular Coordinate System A (2, 3)
  • 44. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, Rectangular Coordinate System A B (2, 3) (6, 3)
  • 45. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B x–coord. increased by 4 (2, 3) (6, 3)
  • 46. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) x–coord. increased by 4 (2, 3) (6, 3)
  • 47. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 48. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 49. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 50. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. If the x–change is +, the point moves to the right. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 51. Movements and Coordinates Let A be the point (2, 3). Suppose it’s x–coordinate is increased by 4 to (2 + 4, 3) = (6, 3) - to the point B, this corresponds to moving A to the right by 4. Rectangular Coordinate System A B Similarly if the x–coordinate of (2, 3) is decreased by 4 to (2 – 4, 3) = (–2, 3) - to the point C, this corresponds to moving A to the left by 4. Hence we conclude that changes in the x–coordinates of a point move the point right and left. If the x–change is +, the point moves to the right. If the x–change is – , the point moves to the left. C x–coord. increased by 4 x–coord. decreased by 4 (2, 3) (6, 3)(–2, 3)
  • 52. Again let A be the point (2, 3). Rectangular Coordinate System A (2, 3)
  • 53. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) Rectangular Coordinate System A (2, 3)
  • 54. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, Rectangular Coordinate System A D y–coord. increased by 4 (2, 3) (2, 7)
  • 55. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D y–coord. increased by 4 (2, 3) (2, 7)
  • 56. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 57. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 58. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 59. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. If the y–change is +, the point moves up. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 60. Again let A be the point (2, 3). Suppose its y–coordinate is increased by 4 to (2, 3 + 4) = (2, 7) - to the point D, this corresponds to moving A up by 4. Rectangular Coordinate System A D Similarly if the y–coordinate of (2, 3) is decreased by 4 to (2, 3 – 4) = (2, –1) - to the point E, this corresponds to moving A down by 4. Hence we conclude that changes in the y–coordinates of a point move the point right and left. If the y–change is +, the point moves up. If the y–change is – , the point moves down. E y–coord. increased by 4 y–coord. decreased by 4 (2, 3) (2, 7) (2, –1)
  • 61. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A?
  • 62. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate.
  • 63. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4)
  • 64. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4).
  • 65. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A?
  • 66. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate.
  • 67. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100)
  • 68. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104).
  • 69. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A?
  • 70. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? Here is the vertical format for the calculation: (–2, 4) point A
  • 71. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? Here is the vertical format for the calculation: adding 50 to the x–coordinate to move right, and –30 to the y–coordinate to move down. (–2, 4) point A
  • 72. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? Here is the vertical format for the calculation: adding 50 to the x–coordinate to move right, and –30 to the y–coordinate to move down. (–2, 4) + (50, –30) + the “moves” point A
  • 73. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? Here is the vertical format for the calculation: adding 50 to the x–coordinate to move right, and –30 to the y–coordinate to move down. (–2, 4) + (50, –30) (48, –26) point A + the “moves”
  • 74. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? Here is the vertical format for the calculation: adding 50 to the x–coordinate to move right, and –30 to the y–coordinate to move down. Hence D has the coordinate (–2 + 50, 4 – 30) = (48, –26). (–2, 4) + (50, –30) (48, –26) point A + the “moves”
  • 75. Rectangular Coordinate System d. The point A(–2, 4) is 50 to the right and 30 below the point E What’s the coordinate of the point E?
  • 76. Rectangular Coordinate System d. The point A(–2, 4) is 50 to the right and 30 below the point E What’s the coordinate of the point E? Let the coordinate of E be (a, b). (a , b) point E
  • 77. Rectangular Coordinate System d. The point A(–2, 4) is 50 to the right and 30 below the point E What’s the coordinate of the point E? Let the coordinate of E be (a, b). In the vertical format we have: (a , b) + (50, –30) (–2, 4) the “moves” point A point E
  • 78. Rectangular Coordinate System d. The point A(–2, 4) is 50 to the right and 30 below the point E What’s the coordinate of the point E? Let the coordinate of E be (a, b). In the vertical format we have Hence a + 50 = –2 so a = –52 and that b + (–30) = 4 so b = 34. (a , b) + (50, –30) (–2, 4) the “moves” point A point E
  • 79. Rectangular Coordinate System d. The point A(–2, 4) is 50 to the right and 30 below the point E What’s the coordinate of the point E? Let the coordinate of E be (a, b). In the vertical format we have Hence a + 50 = –2 so a = –52 and that b + (–30) = 4 so b = 34. Hence E is (–52 , 34). (a , b) + (50, –30) (–2, 4) the “moves” point A point E
  • 80. Rectangular Coordinate System Example. C. a. Let A be the point (–2, 4). What is the coordinate of the point B that is 100 units directly left of A? Moving left corresponds to decreasing the x-coordinate. Hence B is (–2 – 100, 4) = (–102, 4). b. What is the coordinate of the point C that is 100 units directly above A? Moving up corresponds to increasing the y-coordinate. Hence C is (–2, 4) = (–2, 4 +100) = (–2, 104). c. What is the coordinate of the point D that is 50 to the right and 30 below A? We need to add 50 to the x–coordinate (to the right) and subtract 30 from the y–coordinate (to go down). Hence D has coordinate (–2 + 50, 4 – 30) = (48, –26).
  • 81. Exercise. A. a. Write down the coordinates of the following points. Rectangular Coordinate System AB C D E F G H
  • 82. Ex. B. Plot the following points on the graph paper. Rectangular Coordinate System 2. a. (2, 0) b. (–2, 0) c. (5, 0) d. (–8, 0) e. (–10, 0) All these points are on which axis? 3. a. (0, 2) b. (0, –2) c. (0, 5) d. (0, –6) e. (0, 7) All these points are on which quadrant? 4. a. (5, 2) b. (2, 5) c. (1, 7) d. (7, 1) e. (6, 6) All these points are in which quadrant? 5. a. (–5, –2) b. (–2, –5) c. (–1, –7) d. (–7, –1) e. (–6, –6) All these points are in which quadrant? 6. List three coordinates whose locations are in the 2nd quadrant and plot them. 7. List three coordinates whose locations are in the 4th quadrant and plot them.
  • 83. C. Find the coordinates of the following points. Draw both points for each problem. Rectangular Coordinate System The point that’s 8. 5 units to the right of (3, –2). 10. 4 units to the left of (–1, –5). 9. 6 units to the right of (–4, 2). 11. 6 units to the left of (2, –6). 12. 3 units to the left and 6 units down from (–2, 5). 13. 1 unit to the right and 5 units up from (–3, 1). 14. 3 units to the right and 3 units down from (–3, 4). 15. 2 units to the left and 6 units up from (4, –1).