SlideShare a Scribd company logo
The Least Common Multiple (LCM)
The Least Common Multiple (LCM)
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2
The Least Common Multiple (LCM)
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
xy2 is a multiple of x,
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
We say m is a multiple of x if m can be divided by x.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
For example, 12 is the LCM of 4 and 6.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
For example, 12 is the LCM of 4 and 6,
xy is the LCM of x and y,
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
For example, 12 is the LCM of 4 and 6,
xy is the LCM of x and y,
and that 12xy is the LCM of 4x and 6y.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
For example, 12 is the LCM of 4 and 6,
xy is the LCM of x and y,
and that 12xy is the LCM of 4x and 6y.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
We give two methods for finding the LCM.
I. The searching method
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
The least common multiple (LCM) of two or more numbers is
the smallest common multiple of all the given numbers.
For example, 12 is a multiple of 2. 12 is also a multiple of 3,
4, 6 or 12 itself.
For example, 12 is the LCM of 4 and 6,
xy is the LCM of x and y,
and that 12xy is the LCM of 4x and 6y.
The Least Common Multiple (LCM)
A common multiple of two or more quantities is a multiple of
all the given quantities.
For example, 24 is a common multiple of 4 and 6,
We give two methods for finding the LCM.
I. The searching method
II. The construction method
xy2 is a multiple of x, xy2 is also a multiple of y or xy.
xy2 is a common multiple of x and y.
We say m is a multiple of x if m can be divided by x.
(LCM) The Searching Method
Methods of Finding LCM
The Minimum Coverage and The Construction Method
(LCM) The Searching Method
Example B. Find the LCM of 18, 24, 16.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24:
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The largest one on the list.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The largest one on the list.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The 1st one
that can also be
divided by 16&18.The largest one on the list.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
so the LCM of {18, 24, 16} is 144.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The 1st one
that can also be
divided by 16&18.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
so the LCM of {18, 24, 16} is 144.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The construction method is based on the principle of building
"the minimal (smallest, least) coverage which is necessary
to fulfill assorted requirements or conditions."
The 1st one
that can also be
divided by 16&18.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
so the LCM of {18, 24, 16} is 144.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The construction method is based on the principle of building
"the minimal (smallest, least) coverage which is necessary
to fulfill assorted requirements or conditions."
The 1st one
that can also be
divided by 16&18.
Following are two concrete examples that demonstrate
the principle of constructing the “the minimum coverage”.
(LCM) The Searching Method
To find the LCM of a list of numbers, test the multiples of
the largest number, one by one, until we find the LCM.
Example B. Find the LCM of 18, 24, 16.
List the multiples of 24: 24, 48, 72, 96, 120, 144, …
so the LCM of {18, 24, 16} is 144.
Methods of Finding LCM
The Minimum Coverage and The Construction Method
The construction method is based on the principle of building
"the minimal (smallest, least) coverage which is necessary
to fulfill assorted requirements or conditions."
Following are two concrete examples that demonstrate
the principle of constructing the “the minimum coverage”.
We will construct the LCD utilizing this principle later.
The 1st one
that can also be
divided by 16&18.
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list.
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Methods of Finding LCM
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
Science Math. English Arts
A 2 yrs 3 yrs 3 yrs
B 3 yrs 3 yrs 2 yrs
C 2 yrs 2 yrs 4 yrs 1 yrs
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
Science Math. English Arts
A 2 yrs 3 yrs 3 yrs
B 3 yrs 3 yrs 2 yrs
C 2 yrs 2 yrs 4 yrs 1 yrs
Science-3 yr
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
Science Math. English Arts
A 2 yrs 3 yrs 3 yrs
B 3 yrs 3 yrs 2 yrs
C 2 yrs 2 yrs 4 yrs 1 yrs
Science-3 yr Math-3yrs
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
Science Math. English Arts
A 2 yrs 3 yrs 3 yrs
B 3 yrs 3 yrs 2 yrs
C 2 yrs 2 yrs 4 yrs 1 yrs
Science-3 yr Math-3yrs English-4 yrs Arts-1yr
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
Science Math. English Arts
A 2 yrs 3 yrs 3 yrs
B 3 yrs 3 yrs 2 yrs
C 2 yrs 2 yrs 4 yrs 1 yrs
Science-3 yr Math-3yrs English-4 yrs Arts-1yr
Methods of Finding LCM
The minimal-coverage-construction method takes just
enough of each specification to build the minimum which
"covers" all the requirements on the list. The following is an
example that illustrates the principle behind this method .
Example B. A student wants to take enough courses so she
meets the requirement to apply to colleges A, B, and C.
The following is a table of requirements for each college,
how many years of each subject does she need?
form the least amount of required classes needed to be taken.
LCM and LCD
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
LCM and LCD
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
LCM and LCD
What’s left after
Apu took some
items.
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
What is the least amount of items
possible in box originaIly?
What’s the least amount of items
that each person took?
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
What is the least amount of items
possible in box originaIly?
What’s the least amount of items
that each person took?
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
The least amount of items in the box consist of 2 apples,
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
What is the least amount of items
possible in box originaIly?
What’s the least amount of items
that each person took?
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
The least amount of items in the box consist of 2 apples,
5 bananas and 4 carrots.
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
What is the least amount of items
possible in box originaIly?
What’s the least amount of items
that each person took?
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
The least amount of items in the box consist of 2 apples,
5 bananas and 4 carrots. Apu took 1 apple and 1 banana,
Here is another example of fulfilling "the minimal" requirements.
Example C. There are three identical
boxes with the same content.
Apu took some items from the 1st
box and what’s left is shown here.
Bolo took some items from the 2nd
box and what’s left is shown here.
Cato took some items from the 3rd
box and what’s left is shown here.
What is the least amount of items
possible in box originaIly?
What’s the least amount of items
that each person took?
LCM and LCD
What’s left after
Apu took some
items.
What’s left after
Bolo took some
items.
What’s left after
Cato took some
items.
The least amount of items in the box consist of 2 apples,
5 bananas and 4 carrots. Apu took 1 apple and 1 banana,
Bolo took 2 carrots, and Cato took 2 banana and 1 carrot.
Here is another example of fulfilling "the minimal" requirements.
But when the LCM is large, the listing method is cumbersome.
LCM and LCD
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
Example D. Construct the LCM of {8, 15, 18}.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
Example D. Construct the LCM of {8, 15, 18}.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor:
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23,
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
The LCM must be divisible by 8 = 23
so it must have the factor 23
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
The LCM must be divisible by 18 = 2*32
so it must have the factor 32
(we have enough 2’s already)
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5,
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
The LCM must has the factor 5
to be divisible by 15 = 3*5
(we have enough 3’s already)
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example D. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5, so the LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead because
the LCM is a type of minimal coverage of the list of numbers.
LCM and LCD
The LCM–Construction Method
b. Construct the LCM of x2y3z, x3yz4, x3zw
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM =
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 – x – 2
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 – x – 2
Factor each quantity.
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM =
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4)
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
x2 – 4x + 4 = (x – 2)2
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
x2 – 4x + 4 = (x – 2)2
Taking the highest power of each factor to get the
LCM =
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
x2 – 4x + 4 = (x – 2)2
Taking the highest power of each factor to get the
LCM = x2
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
x2 – 4x + 4 = (x – 2)2
Taking the highest power of each factor to get the
LCM = x2(x + 2)(x – 2)2
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
b. Construct the LCM of x2y3z, x3yz4, x3zw
All quantities are factored, taking the highest power of each
factor. The LCM = x3y3z4w.
Methods of Finding LCM
d. Construct the LCM of x4 – 4x2, x2 – 4x +4
Factor each quantity.
x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2)
x2 – 4x + 4 = (x – 2)2
Taking the highest power of each factor to get the
LCM = x2(x + 2)(x – 2)2
c. Construct the LCM of x2 – 3x + 2, x2 + x – 2
Factor each quantity.
x2 – 3x + 2 = (x – 2)(x – 1)
x2 + x – 2 = (x + 2)(x – 1)
Taking the highest power of each factor to get the
LCM = (x – 2)(x – 1)(x +2)
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations.
Clearing Denominator with LCD
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2 (x – 2)(x + 4)( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2 (x – 2)(x + 4)
x + 1
( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2 (x – 2)(x + 4)
x + 1
( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2 (x – 2)(x + 4)
x + 1
( )
= (x + 1)(x + 4)
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2 (x – 2)(x + 4)
x + 1
( )
= (x + 1)(x + 4)
= x2 + 5x + 4
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2
x + 4
2x – 1
(x – 2)(x + 4)
c. Simplify (x – 2)(x + 4)
x + 1
( )
( )
= (x + 1)(x + 4)
= x2 + 5x + 4
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2
x + 4
2x – 1
(x – 2)(x + 4)
c. Simplify (x – 2)(x + 4)
x + 1
( )
( )
= (x + 1)(x + 4)
= x2 + 5x + 4
x + 4
2x – 1
(x – 2)(x + 4)( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2
x + 4
2x – 1
(x – 2)(x + 4)
c. Simplify (x – 2)(x + 4)
x + 1
( )
( )
= (x + 1)(x + 4)
= x2 + 5x + 4
= (2x – 1)(x – 2)x + 4
2x – 1
(x – 2)(x + 4)( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
Example E.
Their LCD is (x – 2)(x + 4).
x– 2
( ) (x – 2)(x + 4)
a. Find the LCD of
x + 1
x – 2 , x + 4
2x – 1
b. Simplify
x + 1
x – 2
x + 4
2x – 1
(x – 2)(x + 4)
c. Simplify (x – 2)(x + 4)
x + 1
( )
( )
= (x + 1)(x + 4)
= x2 + 5x + 4
= (2x – 1)(x – 2)
= 2x2 – 5x + 2
x + 4
2x – 1
(x – 2)(x + 4)( )
Clearing Denominator with LCD
The LCD is used for clearing denominators to simplify fractional
calculations. Likewise the LCD is utilized in the same manner
and purposes for simplifying rational expression calculations.
Here is a typical sequence of steps of rational operations.
x– 2
–
x + 4
( )(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
Clearing Denominator with LCD
x– 2
–
x + 4
)(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
Clearing Denominator with LCD
x– 2
–
x + 4
( )(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
(x + 4)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
Clearing Denominator with LCD
x– 2
–
x + 4
( )(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
Clearing Denominator with LCD
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
Clearing Denominator with LCD
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
= x2 + 5x + 4 – [2x2 – 5x + 2]
Clearing Denominator with LCD
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)
Clearing Denominator with LCD
d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
= x2 + 5x + 4 – [2x2 – 5x + 2]
= x2 + 5x + 4 – 2x2 + 5x – 2
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)
Clearing Denominator with LCD
d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
= x2 + 5x + 4 – [2x2 – 5x + 2]
= x2 + 5x + 4 – 2x2 + 5x – 2
= – x2 + 10x + 2
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)
Clearing Denominator with LCD
d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
= x2 + 5x + 4 – [2x2 – 5x + 2]
= x2 + 5x + 4 – 2x2 + 5x – 2
= – x2 + 10x + 2
x– 2
–
x + 4
x + 1 2x – 1
e. Combine
= (x + 1)(x + 4) – (2x – 1)(x – 2)
x– 2
–
x + 4
( )(x – 2)(x + 4)
Clearing Denominator with LCD
d. Simplify
x + 1 2x – 1
(x + 4) (x – 2)
x – 2
–
x + 4
( ) (x – 2)(x + 4)x + 1 2x – 1
= x2 + 5x + 4 – [2x2 – 5x + 2]
= x2 + 5x + 4 – 2x2 + 5x – 2
= – x2 + 10x + 2
x– 2
–
x + 4
x + 1 2x – 1
This is the next topic.
e. Combine
Ex. A. Find the LCM of the given expressions.
Methods of Finding LCM
xy3, xy1. x2y, xy32. xy3, xyz3.
4xy3, 6xy4. x2y, xy3, xy25. 9xy3, 12x3y, 15x2y36.
(x + 2), (x – 1)7. (x + 2), (2x – 4)8. (4x + 12), (10 – 5x)9.
(4x + 6), (2x + 3)10. (9x + 18), (2x + 4)11. (–x + 2), (4x – 8) 12.
x2(x + 2), (x + 2)13. (x – 1)(x + 2), (x + 2)(x – 2)14.
(x – 3)(x – 3), (3 – x)(x + 2)17. x2(x – 2), (x – 2)x18.
19. x2(x + 2), (x + 2)(–x – 2)20.(x – 1)(1 – x), (–1 – x)(x + 1)
(3x + 6)(x – 2), (x + 2)(x + 1)15. (x – 3)(2x + 1), (2x + 1)(x – 2)16.
x2 – 4x + 4, x2 – 421. x2 – x – 6, x2 – x – 222.
x2 + 2x – 3, 1 – x225. –x2 – 2x + 3, x2 – x26.
x2 – x – 6, x2 – 923. x2 + 5x – 6, x2 – x – 624.
2x2 + 5x – 3, x – 4x327. x2 – 5x + 4, x3 – 16x28.
Multiplication and Division of Rational Expressions
33. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
)
34. x + 3
x2 – 4
( – 2x + 1
x2 + x – 2
)
35. x – 1
x2 – x – 6
( –
x + 1
x2 – 2x – 3 )
36.
x + 2
x2 – 4x + 3
( – 2x + 1
x2 + 2x – 3)
29. 4 – x
x – 3
( –
x – 1
2x + 3
) * LCD
30. 3 – x
x + 2
( –
2x + 3
x – 3
)
Ex B. Find the LCD of the terms then expand and simplify
the following expressions. (These are from the last section.)
31. 3 – 4x
x + 1
( – 1 – 2x
x + 3
)
32. 5x – 7
x + 5
( –
4 – 5x
x – 3
)
* LCD
* LCD
* LCD
* LCD
* LCD
* LCD
* LCD

More Related Content

Similar to 4 the lcm and clearing denominators x

123a-1-f4 lcm and lcd
123a-1-f4 lcm and lcd123a-1-f4 lcm and lcd
123a-1-f4 lcm and lcdNTIP
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcdmath123a
 
15 addition and subtraction of fractions
15 addition and subtraction of fractions15 addition and subtraction of fractions
15 addition and subtraction of fractions
alg-ready-review
 
least common multiple.ppt
least common multiple.pptleast common multiple.ppt
least common multiple.ppt
CautES1
 
Lesson 5 5 lcm
Lesson 5 5 lcmLesson 5 5 lcm
Lesson 5 5 lcmmlabuski
 
Sec. 5.4
Sec. 5.4Sec. 5.4
Sec. 5.4bweldon
 
Updated sec. 5.4
Updated sec. 5.4Updated sec. 5.4
Updated sec. 5.4bweldon
 
DIVISIBILITY PDF.pdf
DIVISIBILITY PDF.pdfDIVISIBILITY PDF.pdf
DIVISIBILITY PDF.pdf
Marjorie Malveda
 
GRADE 3 -FACTORS AND MULTIPLES.pptx
GRADE 3 -FACTORS AND MULTIPLES.pptxGRADE 3 -FACTORS AND MULTIPLES.pptx
GRADE 3 -FACTORS AND MULTIPLES.pptx
ZelPaclarDucay
 
Ch. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleCh. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleKathy Favazza
 
Ciii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multipleCiii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multiple
ErnestoAlfonso7
 
Number theory
Number theoryNumber theory
Number theory
Litty Cherian
 
Number theory.ppt22
Number theory.ppt22Number theory.ppt22
Number theory.ppt22
teena zacharias
 
Quick Guide For HCF & LCM
Quick Guide For HCF & LCMQuick Guide For HCF & LCM
Quick Guide For HCF & LCM
KameliaBanerjee
 
Segunda expocision
Segunda expocisionSegunda expocision
Segunda expocision
RICHARD213840
 

Similar to 4 the lcm and clearing denominators x (17)

123a-1-f4 lcm and lcd
123a-1-f4 lcm and lcd123a-1-f4 lcm and lcd
123a-1-f4 lcm and lcd
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
15 addition and subtraction of fractions
15 addition and subtraction of fractions15 addition and subtraction of fractions
15 addition and subtraction of fractions
 
least common multiple.ppt
least common multiple.pptleast common multiple.ppt
least common multiple.ppt
 
Lesson 5 5 lcm
Lesson 5 5 lcmLesson 5 5 lcm
Lesson 5 5 lcm
 
Ch. 5.1 Bt
Ch. 5.1 BtCh. 5.1 Bt
Ch. 5.1 Bt
 
Sec. 5.4
Sec. 5.4Sec. 5.4
Sec. 5.4
 
Updated sec. 5.4
Updated sec. 5.4Updated sec. 5.4
Updated sec. 5.4
 
3 6
3 63 6
3 6
 
DIVISIBILITY PDF.pdf
DIVISIBILITY PDF.pdfDIVISIBILITY PDF.pdf
DIVISIBILITY PDF.pdf
 
GRADE 3 -FACTORS AND MULTIPLES.pptx
GRADE 3 -FACTORS AND MULTIPLES.pptxGRADE 3 -FACTORS AND MULTIPLES.pptx
GRADE 3 -FACTORS AND MULTIPLES.pptx
 
Ch. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleCh. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common Multiple
 
Ciii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multipleCiii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multiple
 
Number theory
Number theoryNumber theory
Number theory
 
Number theory.ppt22
Number theory.ppt22Number theory.ppt22
Number theory.ppt22
 
Quick Guide For HCF & LCM
Quick Guide For HCF & LCMQuick Guide For HCF & LCM
Quick Guide For HCF & LCM
 
Segunda expocision
Segunda expocisionSegunda expocision
Segunda expocision
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
Tzenma
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
Tzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
Tzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
Tzenma
 
1 functions
1 functions1 functions
1 functions
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Tzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
Tzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
Tzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
Tzenma
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
Tzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
Tzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
Tzenma
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
Tzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
Tzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
Tzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
Tzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
Tzenma
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
Tzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 

Recently uploaded

Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 

4 the lcm and clearing denominators x

  • 1. The Least Common Multiple (LCM)
  • 2. The Least Common Multiple (LCM) We say m is a multiple of x if m can be divided by x.
  • 3. For example, 12 is a multiple of 2 The Least Common Multiple (LCM) We say m is a multiple of x if m can be divided by x.
  • 4. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) We say m is a multiple of x if m can be divided by x.
  • 5. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) xy2 is a multiple of x, We say m is a multiple of x if m can be divided by x.
  • 6. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) xy2 is a multiple of x, xy2 is also a multiple of y or xy. We say m is a multiple of x if m can be divided by x.
  • 7. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. xy2 is a multiple of x, xy2 is also a multiple of y or xy. We say m is a multiple of x if m can be divided by x.
  • 8. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. We say m is a multiple of x if m can be divided by x.
  • 9. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 10. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 11. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. For example, 12 is the LCM of 4 and 6. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 12. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. For example, 12 is the LCM of 4 and 6, xy is the LCM of x and y, The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 13. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. For example, 12 is the LCM of 4 and 6, xy is the LCM of x and y, and that 12xy is the LCM of 4x and 6y. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 14. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. For example, 12 is the LCM of 4 and 6, xy is the LCM of x and y, and that 12xy is the LCM of 4x and 6y. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, We give two methods for finding the LCM. I. The searching method xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 15. The least common multiple (LCM) of two or more numbers is the smallest common multiple of all the given numbers. For example, 12 is a multiple of 2. 12 is also a multiple of 3, 4, 6 or 12 itself. For example, 12 is the LCM of 4 and 6, xy is the LCM of x and y, and that 12xy is the LCM of 4x and 6y. The Least Common Multiple (LCM) A common multiple of two or more quantities is a multiple of all the given quantities. For example, 24 is a common multiple of 4 and 6, We give two methods for finding the LCM. I. The searching method II. The construction method xy2 is a multiple of x, xy2 is also a multiple of y or xy. xy2 is a common multiple of x and y. We say m is a multiple of x if m can be divided by x.
  • 16. (LCM) The Searching Method Methods of Finding LCM The Minimum Coverage and The Construction Method
  • 17. (LCM) The Searching Method Example B. Find the LCM of 18, 24, 16. Methods of Finding LCM The Minimum Coverage and The Construction Method
  • 18. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. Methods of Finding LCM The Minimum Coverage and The Construction Method
  • 19. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: Methods of Finding LCM The Minimum Coverage and The Construction Method The largest one on the list.
  • 20. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … Methods of Finding LCM The Minimum Coverage and The Construction Method The largest one on the list.
  • 21. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … Methods of Finding LCM The Minimum Coverage and The Construction Method The 1st one that can also be divided by 16&18.The largest one on the list.
  • 22. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … so the LCM of {18, 24, 16} is 144. Methods of Finding LCM The Minimum Coverage and The Construction Method The 1st one that can also be divided by 16&18.
  • 23. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … so the LCM of {18, 24, 16} is 144. Methods of Finding LCM The Minimum Coverage and The Construction Method The construction method is based on the principle of building "the minimal (smallest, least) coverage which is necessary to fulfill assorted requirements or conditions." The 1st one that can also be divided by 16&18.
  • 24. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … so the LCM of {18, 24, 16} is 144. Methods of Finding LCM The Minimum Coverage and The Construction Method The construction method is based on the principle of building "the minimal (smallest, least) coverage which is necessary to fulfill assorted requirements or conditions." The 1st one that can also be divided by 16&18. Following are two concrete examples that demonstrate the principle of constructing the “the minimum coverage”.
  • 25. (LCM) The Searching Method To find the LCM of a list of numbers, test the multiples of the largest number, one by one, until we find the LCM. Example B. Find the LCM of 18, 24, 16. List the multiples of 24: 24, 48, 72, 96, 120, 144, … so the LCM of {18, 24, 16} is 144. Methods of Finding LCM The Minimum Coverage and The Construction Method The construction method is based on the principle of building "the minimal (smallest, least) coverage which is necessary to fulfill assorted requirements or conditions." Following are two concrete examples that demonstrate the principle of constructing the “the minimum coverage”. We will construct the LCD utilizing this principle later. The 1st one that can also be divided by 16&18.
  • 26. The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. Methods of Finding LCM
  • 27. The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Methods of Finding LCM
  • 28. Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need?
  • 29. Science Math. English Arts A 2 yrs 3 yrs 3 yrs B 3 yrs 3 yrs 2 yrs C 2 yrs 2 yrs 4 yrs 1 yrs Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need?
  • 30. Science Math. English Arts A 2 yrs 3 yrs 3 yrs B 3 yrs 3 yrs 2 yrs C 2 yrs 2 yrs 4 yrs 1 yrs Science-3 yr Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need?
  • 31. Science Math. English Arts A 2 yrs 3 yrs 3 yrs B 3 yrs 3 yrs 2 yrs C 2 yrs 2 yrs 4 yrs 1 yrs Science-3 yr Math-3yrs Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need?
  • 32. Science Math. English Arts A 2 yrs 3 yrs 3 yrs B 3 yrs 3 yrs 2 yrs C 2 yrs 2 yrs 4 yrs 1 yrs Science-3 yr Math-3yrs English-4 yrs Arts-1yr Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need?
  • 33. Science Math. English Arts A 2 yrs 3 yrs 3 yrs B 3 yrs 3 yrs 2 yrs C 2 yrs 2 yrs 4 yrs 1 yrs Science-3 yr Math-3yrs English-4 yrs Arts-1yr Methods of Finding LCM The minimal-coverage-construction method takes just enough of each specification to build the minimum which "covers" all the requirements on the list. The following is an example that illustrates the principle behind this method . Example B. A student wants to take enough courses so she meets the requirement to apply to colleges A, B, and C. The following is a table of requirements for each college, how many years of each subject does she need? form the least amount of required classes needed to be taken.
  • 34. LCM and LCD Here is another example of fulfilling "the minimal" requirements.
  • 35. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. LCM and LCD Here is another example of fulfilling "the minimal" requirements.
  • 36. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. LCM and LCD What’s left after Apu took some items. Here is another example of fulfilling "the minimal" requirements.
  • 37. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. Here is another example of fulfilling "the minimal" requirements.
  • 38. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. Here is another example of fulfilling "the minimal" requirements.
  • 39. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. What is the least amount of items possible in box originaIly? What’s the least amount of items that each person took? LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. Here is another example of fulfilling "the minimal" requirements.
  • 40. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. What is the least amount of items possible in box originaIly? What’s the least amount of items that each person took? LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. The least amount of items in the box consist of 2 apples, Here is another example of fulfilling "the minimal" requirements.
  • 41. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. What is the least amount of items possible in box originaIly? What’s the least amount of items that each person took? LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. The least amount of items in the box consist of 2 apples, 5 bananas and 4 carrots. Here is another example of fulfilling "the minimal" requirements.
  • 42. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. What is the least amount of items possible in box originaIly? What’s the least amount of items that each person took? LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. The least amount of items in the box consist of 2 apples, 5 bananas and 4 carrots. Apu took 1 apple and 1 banana, Here is another example of fulfilling "the minimal" requirements.
  • 43. Example C. There are three identical boxes with the same content. Apu took some items from the 1st box and what’s left is shown here. Bolo took some items from the 2nd box and what’s left is shown here. Cato took some items from the 3rd box and what’s left is shown here. What is the least amount of items possible in box originaIly? What’s the least amount of items that each person took? LCM and LCD What’s left after Apu took some items. What’s left after Bolo took some items. What’s left after Cato took some items. The least amount of items in the box consist of 2 apples, 5 bananas and 4 carrots. Apu took 1 apple and 1 banana, Bolo took 2 carrots, and Cato took 2 banana and 1 carrot. Here is another example of fulfilling "the minimal" requirements.
  • 44. But when the LCM is large, the listing method is cumbersome. LCM and LCD
  • 45. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD
  • 46. Example D. Construct the LCM of {8, 15, 18}. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 47. To construct the LCM: a. Factor each number completely Example D. Construct the LCM of {8, 15, 18}. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 48. To construct the LCM: a. Factor each number completely Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 49. To construct the LCM: a. Factor each number completely Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 50. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 51. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 52. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method The LCM must be divisible by 8 = 23 so it must have the factor 23
  • 53. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method The LCM must be divisible by 18 = 2*32 so it must have the factor 32 (we have enough 2’s already)
  • 54. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method The LCM must has the factor 5 to be divisible by 15 = 3*5 (we have enough 3’s already)
  • 55. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example D. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, so the LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead because the LCM is a type of minimal coverage of the list of numbers. LCM and LCD The LCM–Construction Method
  • 56. b. Construct the LCM of x2y3z, x3yz4, x3zw Methods of Finding LCM
  • 57. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = Methods of Finding LCM
  • 58. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3 Methods of Finding LCM
  • 59. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3 Methods of Finding LCM
  • 60. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4 Methods of Finding LCM
  • 61. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM
  • 62. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 – x – 2
  • 63. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 – x – 2 Factor each quantity.
  • 64. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1)
  • 65. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1)
  • 66. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM =
  • 67. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)
  • 68. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)
  • 69. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 70. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 71. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 72. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 73. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 74. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) x2 – 4x + 4 = (x – 2)2 c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 75. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) x2 – 4x + 4 = (x – 2)2 Taking the highest power of each factor to get the LCM = c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 76. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) x2 – 4x + 4 = (x – 2)2 Taking the highest power of each factor to get the LCM = x2 c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 77. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) x2 – 4x + 4 = (x – 2)2 Taking the highest power of each factor to get the LCM = x2(x + 2)(x – 2)2 c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 78. b. Construct the LCM of x2y3z, x3yz4, x3zw All quantities are factored, taking the highest power of each factor. The LCM = x3y3z4w. Methods of Finding LCM d. Construct the LCM of x4 – 4x2, x2 – 4x +4 Factor each quantity. x4 – 4x2 = x2(x2 – 4) = x2(x + 2)(x – 2) x2 – 4x + 4 = (x – 2)2 Taking the highest power of each factor to get the LCM = x2(x + 2)(x – 2)2 c. Construct the LCM of x2 – 3x + 2, x2 + x – 2 Factor each quantity. x2 – 3x + 2 = (x – 2)(x – 1) x2 + x – 2 = (x + 2)(x – 1) Taking the highest power of each factor to get the LCM = (x – 2)(x – 1)(x +2)
  • 80. The LCD is used for clearing denominators to simplify fractional calculations. Clearing Denominator with LCD
  • 81. Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations.
  • 82. Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 83. Example E. a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 84. Example E. Their LCD is (x – 2)(x + 4). a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 85. Example E. Their LCD is (x – 2)(x + 4). a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 (x – 2)(x + 4)( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 86. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 (x – 2)(x + 4) x + 1 ( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 87. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 (x – 2)(x + 4) x + 1 ( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 88. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 (x – 2)(x + 4) x + 1 ( ) = (x + 1)(x + 4) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 89. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 (x – 2)(x + 4) x + 1 ( ) = (x + 1)(x + 4) = x2 + 5x + 4 Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 90. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 x + 4 2x – 1 (x – 2)(x + 4) c. Simplify (x – 2)(x + 4) x + 1 ( ) ( ) = (x + 1)(x + 4) = x2 + 5x + 4 Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 91. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 x + 4 2x – 1 (x – 2)(x + 4) c. Simplify (x – 2)(x + 4) x + 1 ( ) ( ) = (x + 1)(x + 4) = x2 + 5x + 4 x + 4 2x – 1 (x – 2)(x + 4)( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 92. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 x + 4 2x – 1 (x – 2)(x + 4) c. Simplify (x – 2)(x + 4) x + 1 ( ) ( ) = (x + 1)(x + 4) = x2 + 5x + 4 = (2x – 1)(x – 2)x + 4 2x – 1 (x – 2)(x + 4)( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 93. Example E. Their LCD is (x – 2)(x + 4). x– 2 ( ) (x – 2)(x + 4) a. Find the LCD of x + 1 x – 2 , x + 4 2x – 1 b. Simplify x + 1 x – 2 x + 4 2x – 1 (x – 2)(x + 4) c. Simplify (x – 2)(x + 4) x + 1 ( ) ( ) = (x + 1)(x + 4) = x2 + 5x + 4 = (2x – 1)(x – 2) = 2x2 – 5x + 2 x + 4 2x – 1 (x – 2)(x + 4)( ) Clearing Denominator with LCD The LCD is used for clearing denominators to simplify fractional calculations. Likewise the LCD is utilized in the same manner and purposes for simplifying rational expression calculations. Here is a typical sequence of steps of rational operations.
  • 94. x– 2 – x + 4 ( )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 Clearing Denominator with LCD
  • 95. x– 2 – x + 4 )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 Clearing Denominator with LCD
  • 96. x– 2 – x + 4 ( )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 (x + 4) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 Clearing Denominator with LCD
  • 97. x– 2 – x + 4 ( )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 Clearing Denominator with LCD
  • 98. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 Clearing Denominator with LCD
  • 99. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4)d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 = x2 + 5x + 4 – [2x2 – 5x + 2] Clearing Denominator with LCD
  • 100. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4) Clearing Denominator with LCD d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 = x2 + 5x + 4 – [2x2 – 5x + 2] = x2 + 5x + 4 – 2x2 + 5x – 2
  • 101. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4) Clearing Denominator with LCD d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 = x2 + 5x + 4 – [2x2 – 5x + 2] = x2 + 5x + 4 – 2x2 + 5x – 2 = – x2 + 10x + 2
  • 102. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4) Clearing Denominator with LCD d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 = x2 + 5x + 4 – [2x2 – 5x + 2] = x2 + 5x + 4 – 2x2 + 5x – 2 = – x2 + 10x + 2 x– 2 – x + 4 x + 1 2x – 1 e. Combine
  • 103. = (x + 1)(x + 4) – (2x – 1)(x – 2) x– 2 – x + 4 ( )(x – 2)(x + 4) Clearing Denominator with LCD d. Simplify x + 1 2x – 1 (x + 4) (x – 2) x – 2 – x + 4 ( ) (x – 2)(x + 4)x + 1 2x – 1 = x2 + 5x + 4 – [2x2 – 5x + 2] = x2 + 5x + 4 – 2x2 + 5x – 2 = – x2 + 10x + 2 x– 2 – x + 4 x + 1 2x – 1 This is the next topic. e. Combine
  • 104. Ex. A. Find the LCM of the given expressions. Methods of Finding LCM xy3, xy1. x2y, xy32. xy3, xyz3. 4xy3, 6xy4. x2y, xy3, xy25. 9xy3, 12x3y, 15x2y36. (x + 2), (x – 1)7. (x + 2), (2x – 4)8. (4x + 12), (10 – 5x)9. (4x + 6), (2x + 3)10. (9x + 18), (2x + 4)11. (–x + 2), (4x – 8) 12. x2(x + 2), (x + 2)13. (x – 1)(x + 2), (x + 2)(x – 2)14. (x – 3)(x – 3), (3 – x)(x + 2)17. x2(x – 2), (x – 2)x18. 19. x2(x + 2), (x + 2)(–x – 2)20.(x – 1)(1 – x), (–1 – x)(x + 1) (3x + 6)(x – 2), (x + 2)(x + 1)15. (x – 3)(2x + 1), (2x + 1)(x – 2)16. x2 – 4x + 4, x2 – 421. x2 – x – 6, x2 – x – 222. x2 + 2x – 3, 1 – x225. –x2 – 2x + 3, x2 – x26. x2 – x – 6, x2 – 923. x2 + 5x – 6, x2 – x – 624. 2x2 + 5x – 3, x – 4x327. x2 – 5x + 4, x3 – 16x28.
  • 105. Multiplication and Division of Rational Expressions 33. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) 34. x + 3 x2 – 4 ( – 2x + 1 x2 + x – 2 ) 35. x – 1 x2 – x – 6 ( – x + 1 x2 – 2x – 3 ) 36. x + 2 x2 – 4x + 3 ( – 2x + 1 x2 + 2x – 3) 29. 4 – x x – 3 ( – x – 1 2x + 3 ) * LCD 30. 3 – x x + 2 ( – 2x + 3 x – 3 ) Ex B. Find the LCD of the terms then expand and simplify the following expressions. (These are from the last section.) 31. 3 – 4x x + 1 ( – 1 – 2x x + 3 ) 32. 5x – 7 x + 5 ( – 4 – 5x x – 3 ) * LCD * LCD * LCD * LCD * LCD * LCD * LCD