SlideShare a Scribd company logo
9.4 Systems of Linear Equations
                 Matrices




Matthew 6:14 "For if you forgive others their trespasses, your
heavenly Father will also forgive you,"
Let’s take a closer look at using a matrix ...
Let’s take a closer look at using a matrix ...


         ⎡ a11 a12    a13   a14 ⎤
         ⎢                      ⎥
     A = ⎢ a21 a22    a23   a24 ⎥
         ⎢ a    a32   a33   a34 ⎥
              31
         ⎣                      ⎦
Let’s take a closer look at using a matrix ...


         ⎡ a11 a12    a13   a14 ⎤
         ⎢                      ⎥
     A = ⎢ a21 a22    a23   a24 ⎥
         ⎢ a    a32   a33   a34 ⎥
              31
         ⎣                      ⎦

So, b25 is the value of the element in the B matrix
occupying the 2nd row & 5th column position.
Here is a slightly different way of representing a
linear system with a matrix ... called putting it into
                   Augmented Form
Here is a slightly different way of representing a
linear system with a matrix ... called putting it into
                   Augmented Form

                                ⎧ 7x − 2y − z = 4
                                ⎪
      Given this system:        ⎨ x     + 3z = 6
                                ⎪     4y + z = 7
                                ⎩
Here is a slightly different way of representing a
  linear system with a matrix ... called putting it into
                     Augmented Form

                                  ⎧ 7x − 2y − z = 4
                                  ⎪
        Given this system:        ⎨ x     + 3z = 6
                                  ⎪     4y + z = 7
                                  ⎩

                                ⎡ 7 −2 −1 4 ⎤
written in Augmented Form:      ⎢           ⎥
                                ⎢ 1 0 3 6 ⎥
                                ⎢ 0 4 1 7 ⎥
                                ⎣           ⎦
Here is a slightly different way of representing a
  linear system with a matrix ... called putting it into
                     Augmented Form

                                  ⎧ 7x − 2y − z = 4
                                  ⎪
        Given this system:        ⎨ x     + 3z = 6
                                  ⎪     4y + z = 7
                                  ⎩

                                ⎡ 7 −2 −1 4 ⎤
written in Augmented Form:      ⎢           ⎥
                                ⎢ 1 0 3 6 ⎥
                                ⎢ 0 4 1 7 ⎥
                                ⎣           ⎦

       it simply includes the constants as well ...
Matrix Row Operations: We can ...
 1) Add a multiple of one row to another
 2) Multiply a row by a nonzero constant
 3) Interchange two rows
Matrix Row Operations: We can ...
 1) Add a multiple of one row to another
 2) Multiply a row by a nonzero constant
 3) Interchange two rows

          Matrix Row Operation Notation:
Matrix Row Operations: We can ...
 1) Add a multiple of one row to another
 2) Multiply a row by a nonzero constant
 3) Interchange two rows

          Matrix Row Operation Notation:
 R1 + 3R3 → R1
Matrix Row Operations: We can ...
  1) Add a multiple of one row to another
  2) Multiply a row by a nonzero constant
  3) Interchange two rows

           Matrix Row Operation Notation:
  R1 + 3R3 → R1
The result of adding Row 1 to 3 times Row 3 is placed
into Row 1
Matrix Row Operations: We can ...
  1) Add a multiple of one row to another
  2) Multiply a row by a nonzero constant
  3) Interchange two rows

           Matrix Row Operation Notation:
  R1 + 3R3 → R1
The result of adding Row 1 to 3 times Row 3 is placed
into Row 1

  −2R3 → R3
Matrix Row Operations: We can ...
  1) Add a multiple of one row to another
  2) Multiply a row by a nonzero constant
  3) Interchange two rows

           Matrix Row Operation Notation:
  R1 + 3R3 → R1
The result of adding Row 1 to 3 times Row 3 is placed
into Row 1

  −2R3 → R3
Replace Row 3 with -2 times Row 3
Matrix Row Operations: We can ...
  1) Add a multiple of one row to another
  2) Multiply a row by a nonzero constant
  3) Interchange two rows

             Matrix Row Operation Notation:
  R1 + 3R3 → R1
The result of adding Row 1 to 3 times Row 3 is placed
into Row 1

  −2R3 → R3
Replace Row 3 with -2 times Row 3

   R2 ↔ R3
Matrix Row Operations: We can ...
  1) Add a multiple of one row to another
  2) Multiply a row by a nonzero constant
  3) Interchange two rows

             Matrix Row Operation Notation:
  R1 + 3R3 → R1
The result of adding Row 1 to 3 times Row 3 is placed
into Row 1

  −2R3 → R3
Replace Row 3 with -2 times Row 3

   R2 ↔ R3
Interchange rows 2 and 3
Use Matrix Row Operation Notation when transforming
  a matrix in order to document what you are doing.
A matrix is in Row-Echelon Form if:
A matrix is in Row-Echelon Form if:

1) The leading entry in each row is 1
A matrix is in Row-Echelon Form if:

1) The leading entry in each row is 1

2) The leading entry (of 1) in each row is to the right
    of the leading entry in the row above it
A matrix is in Row-Echelon Form if:

1) The leading entry in each row is 1

2) The leading entry (of 1) in each row is to the right
    of the leading entry in the row above it

3) All rows consisting only of zeros is at the bottom
A matrix is in Row-Echelon Form if:

1) The leading entry in each row is 1

2) The leading entry (of 1) in each row is to the right
    of the leading entry in the row above it

3) All rows consisting only of zeros is at the bottom

                  ⎡ 1 2 −4 6 ⎤
      Example:    ⎢          ⎥
                  ⎢ 0 1 3 −7 ⎥
                  ⎢ 0 0 1
                  ⎣        2 ⎥
                              ⎦
A matrix is in Row-Echelon Form if:

1) The leading entry in each row is 1

2) The leading entry (of 1) in each row is to the right
    of the leading entry in the row above it

3) All rows consisting only of zeros is at the bottom

                  ⎡ 1 2 −4 6 ⎤
      Example:    ⎢          ⎥
                  ⎢ 0 1 3 −7 ⎥
                  ⎢ 0 0 1
                  ⎣        2 ⎥
                              ⎦

Notice this is just like Triangular Form ...
 in essence, z=2 and we could use back substitution
 to find y and x
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3
  ⎪
  ⎨ x + 2y − 6z = 7
  ⎪ 4x − y + 8z = 15
  ⎩
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1   5   3 ⎤
                         ⎢              ⎥
                         ⎢              ⎥
                         ⎢
                         ⎣              ⎥
                                         ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1   5   3 ⎤
          R1 − R2 → R2   ⎢              ⎥
                         ⎢              ⎥
                         ⎢
                         ⎣              ⎥
                                         ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
                         ⎢
                         ⎣            ⎥
                                       ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
       −4R1 + R3 → R3    ⎢
                         ⎣            ⎥
                                       ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
       −4R1 + R3 → R3    ⎢ 0 3 −12 3 ⎥
                         ⎣            ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
       −4R1 + R3 → R3    ⎢ 0 3 −12 3 ⎥
                         ⎣            ⎦

                         ⎡ 1 −1   5   3 ⎤
                         ⎢              ⎥
                         ⎢              ⎥
                         ⎢
                         ⎣              ⎥
                                         ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
       −4R1 + R3 → R3    ⎢ 0 3 −12 3 ⎥
                         ⎣            ⎦

                         ⎡ 1 −1   5   3 ⎤
                         ⎢              ⎥
               R2 ↔ R3   ⎢              ⎥
                         ⎢
                         ⎣              ⎥
                                         ⎦
Let’s use an Augmented Matrix and Gaussian
Elimination to solve this system:

  ⎧ x − y + 5z = 3      ⎡ 1 −1 5 3 ⎤
  ⎪                     ⎢           ⎥
  ⎨ x + 2y − 6z = 7     ⎢ 1 2 −6 7 ⎥
  ⎪ 4x − y + 8z = 15    ⎢ 4 −1 8 15 ⎥
  ⎩                     ⎣           ⎦

                         ⎡ 1 −1 5 3 ⎤
          R1 − R2 → R2   ⎢            ⎥
                         ⎢ 0 −3 11 −4 ⎥
       −4R1 + R3 → R3    ⎢ 0 3 −12 3 ⎥
                         ⎣            ⎦

                         ⎡ 1 −1 5 3 ⎤
                         ⎢            ⎥
               R2 ↔ R3   ⎢ 0 3 −12 3 ⎥
                         ⎢ 0 −3 11 −4 ⎥
                         ⎣            ⎦
⎡ 1 −1 5 3 ⎤
⎢            ⎥
⎢            ⎥
⎢ 0 −3 11 −4 ⎥
⎣            ⎦
⎡ 1 −1 5 3 ⎤
R2        ⎢            ⎥
   → R2   ⎢            ⎥
3         ⎢ 0 −3 11 −4 ⎥
          ⎣            ⎦
⎡ 1 −1 5 3 ⎤
R2        ⎢            ⎥
   → R2   ⎢ 0  1 −4 1 ⎥
3         ⎢ 0 −3 11 −4 ⎥
          ⎣            ⎦
⎡ 1 −1 5 3 ⎤
R2        ⎢            ⎥
   → R2   ⎢ 0  1 −4 1 ⎥
3         ⎢ 0 −3 11 −4 ⎥
          ⎣            ⎦

          ⎡ 1 −1 5    3 ⎤
          ⎢             ⎥
          ⎢ 0  1 −4   1 ⎥
          ⎢
          ⎣             ⎥
                         ⎦
⎡ 1 −1 5 3 ⎤
    R2          ⎢            ⎥
       → R2     ⎢ 0  1 −4 1 ⎥
    3           ⎢ 0 −3 11 −4 ⎥
                ⎣            ⎦

                ⎡ 1 −1 5    3 ⎤
                ⎢             ⎥
3R2 + R3 → R3   ⎢ 0  1 −4   1 ⎥
                ⎢
                ⎣             ⎥
                               ⎦
⎡ 1 −1 5 3 ⎤
    R2          ⎢            ⎥
       → R2     ⎢ 0  1 −4 1 ⎥
    3           ⎢ 0 −3 11 −4 ⎥
                ⎣            ⎦

                ⎡ 1 −1 5 3 ⎤
                ⎢            ⎥
3R2 + R3 → R3   ⎢ 0  1 −4 1 ⎥
                ⎢ 0
                ⎣    0 −1 −1 ⎥
                              ⎦
⎡ 1 −1 5 3 ⎤
    R2          ⎢            ⎥
       → R2     ⎢ 0  1 −4 1 ⎥
    3           ⎢ 0 −3 11 −4 ⎥
                ⎣            ⎦

                ⎡ 1 −1 5 3 ⎤
                ⎢            ⎥
3R2 + R3 → R3   ⎢ 0  1 −4 1 ⎥
                ⎢ 0
                ⎣    0 −1 −1 ⎥
                              ⎦

                ⎡ 1 −1 5    3 ⎤
                ⎢             ⎥
                ⎢ 0  1 −4   1 ⎥
                ⎢
                ⎣             ⎥
                               ⎦
⎡ 1 −1 5 3 ⎤
    R2          ⎢            ⎥
       → R2     ⎢ 0  1 −4 1 ⎥
    3           ⎢ 0 −3 11 −4 ⎥
                ⎣            ⎦

                ⎡ 1 −1 5 3 ⎤
                ⎢            ⎥
3R2 + R3 → R3   ⎢ 0  1 −4 1 ⎥
                ⎢ 0
                ⎣    0 −1 −1 ⎥
                              ⎦

                ⎡ 1 −1 5    3 ⎤
                ⎢             ⎥
   −1R3 → R3    ⎢ 0  1 −4   1 ⎥
                ⎢
                ⎣             ⎥
                               ⎦
⎡ 1 −1 5 3 ⎤
    R2          ⎢            ⎥
       → R2     ⎢ 0  1 −4 1 ⎥
    3           ⎢ 0 −3 11 −4 ⎥
                ⎣            ⎦

                ⎡ 1 −1 5 3 ⎤
                ⎢            ⎥
3R2 + R3 → R3   ⎢ 0  1 −4 1 ⎥
                ⎢ 0
                ⎣    0 −1 −1 ⎥
                              ⎦

                ⎡ 1 −1 5    3 ⎤
                ⎢             ⎥
   −1R3 → R3    ⎢ 0  1 −4   1 ⎥
                ⎢ 0
                ⎣    0 1    1 ⎥
                               ⎦
⎡ 1 −1 5     3 ⎤
          ⎢              ⎥
          ⎢ 0  1 −4    1 ⎥
          ⎢ 0
          ⎣    0 1     1 ⎥
                          ⎦
This is now in Row-Echelon Form (REF)
⎡ 1 −1 5      3 ⎤
                  ⎢               ⎥
                  ⎢ 0  1 −4     1 ⎥
                  ⎢ 0
                  ⎣    0 1      1 ⎥
                                   ⎦
       This is now in Row-Echelon Form (REF)

z =1         y − 4 (1) = 1     x − 1(5) + 5(1) = 3
                y=5                     x=3
⎡ 1 −1 5      3 ⎤
                  ⎢               ⎥
                  ⎢ 0  1 −4     1 ⎥
                  ⎢ 0
                  ⎣    0 1      1 ⎥
                                   ⎦
       This is now in Row-Echelon Form (REF)

z =1         y − 4 (1) = 1     x − 1(5) + 5(1) = 3
                y=5                     x=3


              ( 3, 5, 1)
A matrix is in Reduced Row-Echelon Form (RREF) if it
is in REF and every number above and below each
leading term is a zero.
A matrix is in Reduced Row-Echelon Form (RREF) if it
is in REF and every number above and below each
leading term is a zero.
                         ⎡ 1 0 0 3 ⎤
              RREF:      ⎢            ⎥
                         ⎢ 0 1 0 5 ⎥
                         ⎢ 0 0 1 1 ⎥
                         ⎣            ⎦
A matrix is in Reduced Row-Echelon Form (RREF) if it
is in REF and every number above and below each
leading term is a zero.
                         ⎡ 1 0 0 3 ⎤
              RREF:      ⎢            ⎥
                         ⎢ 0 1 0 5 ⎥
                         ⎢ 0 0 1 1 ⎥
                         ⎣            ⎦

           Notice that this system is solved
A matrix is in Reduced Row-Echelon Form (RREF) if it
is in REF and every number above and below each
leading term is a zero.
                         ⎡ 1 0 0 3 ⎤
              RREF:      ⎢            ⎥
                         ⎢ 0 1 0 5 ⎥
                         ⎢ 0 0 1 1 ⎥
                         ⎣            ⎦

           Notice that this system is solved

                         x=3    y=5    z =1
A matrix is in Reduced Row-Echelon Form (RREF) if it
is in REF and every number above and below each
leading term is a zero.
                         ⎡ 1 0 0 3 ⎤
              RREF:      ⎢            ⎥
                         ⎢ 0 1 0 5 ⎥
                         ⎢ 0 0 1 1 ⎥
                         ⎣            ⎦

           Notice that this system is solved

                         x=3    y=5    z =1

So ... rather than back substitute when we get the
matrix to REF, we could continue to use row operations
in order to get it to RREF.
            (start at the bottom and work up)
Let’s take the REF of that last problem and
put it into RREF
Let’s take the REF of that last problem and
put it into RREF
                   ⎡ 1 −1 5 3 ⎤
        REF:       ⎢          ⎥
                   ⎢ 0 1 −4 1 ⎥
                   ⎢ 0 0 1 1 ⎥
                   ⎣          ⎦
Let’s take the REF of that last problem and
put it into RREF
                   ⎡ 1 −1 5 3 ⎤
        REF:       ⎢          ⎥
                   ⎢ 0 1 −4 1 ⎥
                   ⎢ 0 0 1 1 ⎥
                   ⎣          ⎦

We need to get these 3 elements to be 0
Let’s take the REF of that last problem and
put it into RREF
                   ⎡ 1 −1 5 3 ⎤
        REF:       ⎢          ⎥
                   ⎢ 0 1 −4 1 ⎥
                   ⎢ 0 0 1 1 ⎥
                   ⎣          ⎦

We need to get these 3 elements to be 0


                   ⎡ 1 −1 5 3 ⎤
 4R3 + R2 → R2     ⎢          ⎥
                   ⎢ 0 1 0 5 ⎥
                   ⎢ 0 0 1 1 ⎥
                   ⎣          ⎦
⎡ 1 −1 5 3 ⎤
(from previous slide)   ⎢          ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣          ⎦
⎡ 1 −1 5 3 ⎤
(from previous slide)   ⎢          ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣          ⎦

                        ⎡ 1 0 5 8 ⎤
     R2 + R1 → R1       ⎢         ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣         ⎦
⎡ 1 −1 5 3 ⎤
(from previous slide)   ⎢          ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣          ⎦

                        ⎡ 1 0 5 8 ⎤
     R2 + R1 → R1       ⎢         ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣         ⎦

                        ⎡ 1 0 0 3 ⎤
  −5R3 + R1 → R1        ⎢         ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣         ⎦
⎡ 1 −1 5 3 ⎤
(from previous slide)   ⎢          ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣          ⎦

                        ⎡ 1 0 5 8 ⎤
     R2 + R1 → R1       ⎢         ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣         ⎦

                        ⎡ 1 0 0 3 ⎤
  −5R3 + R1 → R1        ⎢         ⎥
                        ⎢ 0 1 0 5 ⎥
                        ⎢ 0 0 1 1 ⎥
                        ⎣         ⎦

                           ( 3, 5, 1)
Solving a system of linear equations by putting an
augmented matrix into reduced row-echelon form is called
               Gauss - Jordan Elimination
Solving a system of linear equations by putting an
augmented matrix into reduced row-echelon form is called
               Gauss - Jordan Elimination

                    ⎧6x + 18y − 6z = 24
                    ⎪
Let’s do it with:   ⎨5x + 15y + 3z = −20
                    ⎪−3x + y + 33z = −42
                    ⎩
Solving a system of linear equations by putting an
augmented matrix into reduced row-echelon form is called
               Gauss - Jordan Elimination

                    ⎧6x + 18y − 6z = 24
                    ⎪
Let’s do it with:   ⎨5x + 15y + 3z = −20
                    ⎪−3x + y + 33z = −42
                    ⎩

                    ⎡ 6 18 −6 24 ⎤
                    ⎢             ⎥
                    ⎢ 5 15 3 −20 ⎥
                    ⎢ −3 1 33 −42 ⎥
                    ⎣             ⎦
⎡ 1 3 −1 4 ⎤
R1        ⎢             ⎥
   → R1   ⎢ 5 15 3 −20 ⎥
6
          ⎢ −3 1 33 −42 ⎥
          ⎣             ⎦
⎡ 1 3 −1 4 ⎤
     R1          ⎢             ⎥
        → R1     ⎢ 5 15 3 −20 ⎥
     6
                 ⎢ −3 1 33 −42 ⎥
                 ⎣             ⎦

                 ⎡ 1 3 −1 4 ⎤
−5R1 + R2 → R2   ⎢             ⎥
                 ⎢ 0 0 8 −40 ⎥
 3R1 + R3 → R3   ⎢ 0 10 30 −30 ⎥
                 ⎣             ⎦
⎡ 1 3 −1 4 ⎤
     R1          ⎢             ⎥
        → R1     ⎢ 5 15 3 −20 ⎥
     6
                 ⎢ −3 1 33 −42 ⎥
                 ⎣             ⎦

                 ⎡ 1 3 −1 4 ⎤
−5R1 + R2 → R2   ⎢             ⎥
                 ⎢ 0 0 8 −40 ⎥
 3R1 + R3 → R3   ⎢ 0 10 30 −30 ⎥
                 ⎣             ⎦

                 ⎡ 1 3 −1 4 ⎤
      R2 ↔ R3    ⎢             ⎥
                 ⎢ 0 10 30 −30 ⎥
                 ⎢ 0 0 8 −40 ⎥
                 ⎣             ⎦
R2        ⎡ 1 3 −1 4 ⎤
   → R2
10        ⎢          ⎥
          ⎢ 0 1 3 −3 ⎥   REF
R3
   → R3   ⎢ 0 0 1 −5 ⎥
          ⎣          ⎦
 8
R2          ⎡ 1 3 −1 4 ⎤
        → R2
     10          ⎢          ⎥
                 ⎢ 0 1 3 −3 ⎥   REF
     R3
        → R3     ⎢ 0 0 1 −5 ⎥
                 ⎣          ⎦
      8

                 ⎡ 1 3 0 −1 ⎤
  R3 + R1 → R1   ⎢          ⎥
                 ⎢ 0 1 0 12 ⎥
−3R3 + R2 → R2   ⎢ 0 0 1 −5 ⎥
                 ⎣          ⎦
R2          ⎡ 1 3 −1 4 ⎤
        → R2
     10          ⎢          ⎥
                 ⎢ 0 1 3 −3 ⎥       REF
     R3
        → R3     ⎢ 0 0 1 −5 ⎥
                 ⎣          ⎦
      8

                 ⎡ 1 3 0 −1 ⎤
  R3 + R1 → R1   ⎢          ⎥
                 ⎢ 0 1 0 12 ⎥
−3R3 + R2 → R2   ⎢ 0 0 1 −5 ⎥
                 ⎣          ⎦

                 ⎡ 1 0 0 −37 ⎤
−3R2 + R1 → R1   ⎢           ⎥
                 ⎢ 0 1 0 12 ⎥       RREF
                 ⎢ 0 0 1 −5 ⎥
                 ⎣           ⎦

                   ( −37, 12, − 5 )
HW #7

And in the end, it’s not the years in your life that count.
It’s the life in your years.
                           Abraham Lincoln

More Related Content

What's hot

Alg2 lesson 3-2
Alg2 lesson 3-2Alg2 lesson 3-2
Alg2 lesson 3-2
Carol Defreese
 
Lca10 0505
Lca10 0505Lca10 0505
Lca10 0505
Venkata RamBabu
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Lossian Barbosa Bacelar Miranda
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
Lossian Barbosa Bacelar Miranda
 
Linear systems with 3 unknows
Linear systems with 3 unknowsLinear systems with 3 unknows
Linear systems with 3 unknows
mstf mstf
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
Hazel Joy Chong
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
dionesioable
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа
Март
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
KarunaGupta1982
 
0211 ch 2 day 11
0211 ch 2 day 110211 ch 2 day 11
0211 ch 2 day 11
festivalelmo
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
Dr. Nirav Vyas
 
Systems of equations and matricies
Systems of equations and matriciesSystems of equations and matricies
Systems of equations and matricies
ST ZULAIHA NURHAJARURAHMAH
 
Solving systems of equations
Solving systems of equationsSolving systems of equations
Solving systems of equations
billingssr
 
January18
January18January18
January18
khyps13
 
Systemsof3 equations ppt_alg2
Systemsof3 equations ppt_alg2Systemsof3 equations ppt_alg2
Systemsof3 equations ppt_alg2
swartzje
 
Algebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and PolynomialsAlgebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and Polynomials
FrillaMarita
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
Drradz Maths
 

What's hot (18)

Alg2 lesson 3-2
Alg2 lesson 3-2Alg2 lesson 3-2
Alg2 lesson 3-2
 
Lca10 0505
Lca10 0505Lca10 0505
Lca10 0505
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
 
Linear systems with 3 unknows
Linear systems with 3 unknowsLinear systems with 3 unknows
Linear systems with 3 unknows
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
0211 ch 2 day 11
0211 ch 2 day 110211 ch 2 day 11
0211 ch 2 day 11
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Systems of equations and matricies
Systems of equations and matriciesSystems of equations and matricies
Systems of equations and matricies
 
Solving systems of equations
Solving systems of equationsSolving systems of equations
Solving systems of equations
 
January18
January18January18
January18
 
Systemsof3 equations ppt_alg2
Systemsof3 equations ppt_alg2Systemsof3 equations ppt_alg2
Systemsof3 equations ppt_alg2
 
Algebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and PolynomialsAlgebra Presentation on Topic Modulus Function and Polynomials
Algebra Presentation on Topic Modulus Function and Polynomials
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
 

Viewers also liked

0909 ch 9 day 9
0909 ch 9 day 90909 ch 9 day 9
0909 ch 9 day 9
festivalelmo
 
0911 ch 9 day 11
0911 ch 9 day 110911 ch 9 day 11
0911 ch 9 day 11
festivalelmo
 
1103 ch 11 day 3
1103 ch 11 day 31103 ch 11 day 3
1103 ch 11 day 3
festivalelmo
 
0913 ch 9 day 13
0913 ch 9 day 130913 ch 9 day 13
0913 ch 9 day 13
festivalelmo
 
0912 ch 9 day 12
0912 ch 9 day 120912 ch 9 day 12
0912 ch 9 day 12
festivalelmo
 
Row Reducing
Row ReducingRow Reducing
Row Reducing
nicholsm
 
1001 ch 10 day 1
1001 ch 10 day 11001 ch 10 day 1
1001 ch 10 day 1
festivalelmo
 
Salomon quintero 6 a
Salomon quintero 6 aSalomon quintero 6 a
Salomon quintero 6 a
salomonquintero
 
Cs221 linear algebra
Cs221 linear algebraCs221 linear algebra
Cs221 linear algebra
darwinrlo
 
Application of algebra
Application of algebraApplication of algebra
Application of algebra
Abhinav Somani
 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebra
Prerak Trivedi
 
System of linear equation - SLE
System of linear equation - SLESystem of linear equation - SLE
System of linear equation - SLE
Imamul Kadir
 

Viewers also liked (12)

0909 ch 9 day 9
0909 ch 9 day 90909 ch 9 day 9
0909 ch 9 day 9
 
0911 ch 9 day 11
0911 ch 9 day 110911 ch 9 day 11
0911 ch 9 day 11
 
1103 ch 11 day 3
1103 ch 11 day 31103 ch 11 day 3
1103 ch 11 day 3
 
0913 ch 9 day 13
0913 ch 9 day 130913 ch 9 day 13
0913 ch 9 day 13
 
0912 ch 9 day 12
0912 ch 9 day 120912 ch 9 day 12
0912 ch 9 day 12
 
Row Reducing
Row ReducingRow Reducing
Row Reducing
 
1001 ch 10 day 1
1001 ch 10 day 11001 ch 10 day 1
1001 ch 10 day 1
 
Salomon quintero 6 a
Salomon quintero 6 aSalomon quintero 6 a
Salomon quintero 6 a
 
Cs221 linear algebra
Cs221 linear algebraCs221 linear algebra
Cs221 linear algebra
 
Application of algebra
Application of algebraApplication of algebra
Application of algebra
 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebra
 
System of linear equation - SLE
System of linear equation - SLESystem of linear equation - SLE
System of linear equation - SLE
 

Similar to 0908 ch 9 day 8

Elementary-linear-algebra- chapter 1.pdf
Elementary-linear-algebra- chapter 1.pdfElementary-linear-algebra- chapter 1.pdf
Elementary-linear-algebra- chapter 1.pdf
RanaHammad39
 
LINEAR EQUATION.pptx
LINEAR EQUATION.pptxLINEAR EQUATION.pptx
LINEAR EQUATION.pptx
SarabanTahora
 
demo attachment
demo attachmentdemo attachment
demo attachment
Subhankar Paul
 
9.3 Solving Systems With Gaussian Elimination
9.3 Solving Systems With Gaussian Elimination9.3 Solving Systems With Gaussian Elimination
9.3 Solving Systems With Gaussian Elimination
smiller5
 
Simultaneous equations (2)
Simultaneous equations (2)Simultaneous equations (2)
Simultaneous equations (2)
Arjuna Senanayake
 
Systemsof3 equations
Systemsof3 equationsSystemsof3 equations
Systemsof3 equations
gandhinagar
 
Gaussian elimination
Gaussian eliminationGaussian elimination
Gaussian elimination
Awais Qureshi
 
7.2 Systems of Linear Equations - Three Variables
7.2 Systems of Linear Equations - Three Variables7.2 Systems of Linear Equations - Three Variables
7.2 Systems of Linear Equations - Three Variables
smiller5
 
Math lecture 6 (System of Linear Equations)
Math lecture 6 (System of Linear Equations)Math lecture 6 (System of Linear Equations)
Math lecture 6 (System of Linear Equations)
Osama Zahid
 
7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination
smiller5
 
Mth 4101-2 a
Mth 4101-2 aMth 4101-2 a
Mth 4101-2 a
outdoorjohn
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
AliEb2
 
3.5 solving systems of equations in three variables
3.5 solving systems of equations in three variables3.5 solving systems of equations in three variables
3.5 solving systems of equations in three variables
morrobea
 
linear equation and gaussian elimination
linear equation and gaussian eliminationlinear equation and gaussian elimination
linear equation and gaussian elimination
Aju Thadikulangara
 
shanza project maths.pptx
shanza project maths.pptxshanza project maths.pptx
shanza project maths.pptx
shanzaashraf5
 
Gauss Jordan
Gauss JordanGauss Jordan
Gauss Jordan
Ezzat Gul
 
0903 ch 9 day 3
0903 ch 9 day 30903 ch 9 day 3
0903 ch 9 day 3
festivalelmo
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
Nazrin Nazdri
 
Maths portffolio sequences (2)
Maths portffolio   sequences (2)Maths portffolio   sequences (2)
Maths portffolio sequences (2)
Seef Marsden
 
Mathematics 8 Systems of Linear Inequalities
Mathematics 8 Systems of Linear InequalitiesMathematics 8 Systems of Linear Inequalities
Mathematics 8 Systems of Linear Inequalities
Juan Miguel Palero
 

Similar to 0908 ch 9 day 8 (20)

Elementary-linear-algebra- chapter 1.pdf
Elementary-linear-algebra- chapter 1.pdfElementary-linear-algebra- chapter 1.pdf
Elementary-linear-algebra- chapter 1.pdf
 
LINEAR EQUATION.pptx
LINEAR EQUATION.pptxLINEAR EQUATION.pptx
LINEAR EQUATION.pptx
 
demo attachment
demo attachmentdemo attachment
demo attachment
 
9.3 Solving Systems With Gaussian Elimination
9.3 Solving Systems With Gaussian Elimination9.3 Solving Systems With Gaussian Elimination
9.3 Solving Systems With Gaussian Elimination
 
Simultaneous equations (2)
Simultaneous equations (2)Simultaneous equations (2)
Simultaneous equations (2)
 
Systemsof3 equations
Systemsof3 equationsSystemsof3 equations
Systemsof3 equations
 
Gaussian elimination
Gaussian eliminationGaussian elimination
Gaussian elimination
 
7.2 Systems of Linear Equations - Three Variables
7.2 Systems of Linear Equations - Three Variables7.2 Systems of Linear Equations - Three Variables
7.2 Systems of Linear Equations - Three Variables
 
Math lecture 6 (System of Linear Equations)
Math lecture 6 (System of Linear Equations)Math lecture 6 (System of Linear Equations)
Math lecture 6 (System of Linear Equations)
 
7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination
 
Mth 4101-2 a
Mth 4101-2 aMth 4101-2 a
Mth 4101-2 a
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
3.5 solving systems of equations in three variables
3.5 solving systems of equations in three variables3.5 solving systems of equations in three variables
3.5 solving systems of equations in three variables
 
linear equation and gaussian elimination
linear equation and gaussian eliminationlinear equation and gaussian elimination
linear equation and gaussian elimination
 
shanza project maths.pptx
shanza project maths.pptxshanza project maths.pptx
shanza project maths.pptx
 
Gauss Jordan
Gauss JordanGauss Jordan
Gauss Jordan
 
0903 ch 9 day 3
0903 ch 9 day 30903 ch 9 day 3
0903 ch 9 day 3
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Maths portffolio sequences (2)
Maths portffolio   sequences (2)Maths portffolio   sequences (2)
Maths portffolio sequences (2)
 
Mathematics 8 Systems of Linear Inequalities
Mathematics 8 Systems of Linear InequalitiesMathematics 8 Systems of Linear Inequalities
Mathematics 8 Systems of Linear Inequalities
 

More from festivalelmo

0101 ch 1 day 1
0101 ch 1 day 10101 ch 1 day 1
0101 ch 1 day 1
festivalelmo
 
1204 ch 12 day 4
1204 ch 12 day 41204 ch 12 day 4
1204 ch 12 day 4
festivalelmo
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
festivalelmo
 
1201 ch 12 day 1
1201 ch 12 day 11201 ch 12 day 1
1201 ch 12 day 1
festivalelmo
 
1202 ch 12 day 2
1202 ch 12 day 21202 ch 12 day 2
1202 ch 12 day 2
festivalelmo
 
1104 ch 11 day 4
1104 ch 11 day 41104 ch 11 day 4
1104 ch 11 day 4
festivalelmo
 
1114 ch 11 day 14
1114 ch 11 day 141114 ch 11 day 14
1114 ch 11 day 14
festivalelmo
 
1113 ch 11 day 13
1113 ch 11 day 131113 ch 11 day 13
1113 ch 11 day 13
festivalelmo
 
1112 ch 11 day 12
1112 ch 11 day 121112 ch 11 day 12
1112 ch 11 day 12
festivalelmo
 
1110 ch 11 day 10
1110 ch 11 day 101110 ch 11 day 10
1110 ch 11 day 10
festivalelmo
 
1109 ch 11 day 9
1109 ch 11 day 91109 ch 11 day 9
1109 ch 11 day 9
festivalelmo
 
1108 ch 11 day 8
1108 ch 11 day 81108 ch 11 day 8
1108 ch 11 day 8
festivalelmo
 
1107 ch 11 day 7
1107 ch 11 day 71107 ch 11 day 7
1107 ch 11 day 7
festivalelmo
 
1106 ch 11 day 6
1106 ch 11 day 61106 ch 11 day 6
1106 ch 11 day 6
festivalelmo
 
1105 ch 11 day 5
1105 ch 11 day 51105 ch 11 day 5
1105 ch 11 day 5
festivalelmo
 
1115 ch 11 day 15
1115 ch 11 day 151115 ch 11 day 15
1115 ch 11 day 15
festivalelmo
 
1007 ch 10 day 7
1007 ch 10 day 71007 ch 10 day 7
1007 ch 10 day 7
festivalelmo
 
1006 ch 10 day 6
1006 ch 10 day 61006 ch 10 day 6
1006 ch 10 day 6
festivalelmo
 
1005 ch 10 day 5
1005 ch 10 day 51005 ch 10 day 5
1005 ch 10 day 5
festivalelmo
 
1004 ch 10 day 4
1004 ch 10 day 41004 ch 10 day 4
1004 ch 10 day 4
festivalelmo
 

More from festivalelmo (20)

0101 ch 1 day 1
0101 ch 1 day 10101 ch 1 day 1
0101 ch 1 day 1
 
1204 ch 12 day 4
1204 ch 12 day 41204 ch 12 day 4
1204 ch 12 day 4
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
 
1201 ch 12 day 1
1201 ch 12 day 11201 ch 12 day 1
1201 ch 12 day 1
 
1202 ch 12 day 2
1202 ch 12 day 21202 ch 12 day 2
1202 ch 12 day 2
 
1104 ch 11 day 4
1104 ch 11 day 41104 ch 11 day 4
1104 ch 11 day 4
 
1114 ch 11 day 14
1114 ch 11 day 141114 ch 11 day 14
1114 ch 11 day 14
 
1113 ch 11 day 13
1113 ch 11 day 131113 ch 11 day 13
1113 ch 11 day 13
 
1112 ch 11 day 12
1112 ch 11 day 121112 ch 11 day 12
1112 ch 11 day 12
 
1110 ch 11 day 10
1110 ch 11 day 101110 ch 11 day 10
1110 ch 11 day 10
 
1109 ch 11 day 9
1109 ch 11 day 91109 ch 11 day 9
1109 ch 11 day 9
 
1108 ch 11 day 8
1108 ch 11 day 81108 ch 11 day 8
1108 ch 11 day 8
 
1107 ch 11 day 7
1107 ch 11 day 71107 ch 11 day 7
1107 ch 11 day 7
 
1106 ch 11 day 6
1106 ch 11 day 61106 ch 11 day 6
1106 ch 11 day 6
 
1105 ch 11 day 5
1105 ch 11 day 51105 ch 11 day 5
1105 ch 11 day 5
 
1115 ch 11 day 15
1115 ch 11 day 151115 ch 11 day 15
1115 ch 11 day 15
 
1007 ch 10 day 7
1007 ch 10 day 71007 ch 10 day 7
1007 ch 10 day 7
 
1006 ch 10 day 6
1006 ch 10 day 61006 ch 10 day 6
1006 ch 10 day 6
 
1005 ch 10 day 5
1005 ch 10 day 51005 ch 10 day 5
1005 ch 10 day 5
 
1004 ch 10 day 4
1004 ch 10 day 41004 ch 10 day 4
1004 ch 10 day 4
 

Recently uploaded

Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
National Information Standards Organization (NISO)
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
National Information Standards Organization (NISO)
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
melliereed
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
Nguyen Thanh Tu Collection
 
Bonku-Babus-Friend by Sathyajith Ray (9)
Bonku-Babus-Friend by Sathyajith Ray  (9)Bonku-Babus-Friend by Sathyajith Ray  (9)
Bonku-Babus-Friend by Sathyajith Ray (9)
nitinpv4ai
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
nitinpv4ai
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
 
Educational Technology in the Health Sciences
Educational Technology in the Health SciencesEducational Technology in the Health Sciences
Educational Technology in the Health Sciences
Iris Thiele Isip-Tan
 
Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10
nitinpv4ai
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
A Visual Guide to 1 Samuel | A Tale of Two Hearts
A Visual Guide to 1 Samuel | A Tale of Two HeartsA Visual Guide to 1 Samuel | A Tale of Two Hearts
A Visual Guide to 1 Samuel | A Tale of Two Hearts
Steve Thomason
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
JomonJoseph58
 
Bossa N’ Roll Records by Ismael Vazquez.
Bossa N’ Roll Records by Ismael Vazquez.Bossa N’ Roll Records by Ismael Vazquez.
Bossa N’ Roll Records by Ismael Vazquez.
IsmaelVazquez38
 

Recently uploaded (20)

Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
 
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
Jemison, MacLaughlin, and Majumder "Broadening Pathways for Editors and Authors"
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
Nutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour TrainingNutrition Inc FY 2024, 4 - Hour Training
Nutrition Inc FY 2024, 4 - Hour Training
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
 
Bonku-Babus-Friend by Sathyajith Ray (9)
Bonku-Babus-Friend by Sathyajith Ray  (9)Bonku-Babus-Friend by Sathyajith Ray  (9)
Bonku-Babus-Friend by Sathyajith Ray (9)
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
 
Educational Technology in the Health Sciences
Educational Technology in the Health SciencesEducational Technology in the Health Sciences
Educational Technology in the Health Sciences
 
Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10Haunted Houses by H W Longfellow for class 10
Haunted Houses by H W Longfellow for class 10
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
A Visual Guide to 1 Samuel | A Tale of Two Hearts
A Visual Guide to 1 Samuel | A Tale of Two HeartsA Visual Guide to 1 Samuel | A Tale of Two Hearts
A Visual Guide to 1 Samuel | A Tale of Two Hearts
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
 
Bossa N’ Roll Records by Ismael Vazquez.
Bossa N’ Roll Records by Ismael Vazquez.Bossa N’ Roll Records by Ismael Vazquez.
Bossa N’ Roll Records by Ismael Vazquez.
 

0908 ch 9 day 8

  • 1. 9.4 Systems of Linear Equations Matrices Matthew 6:14 "For if you forgive others their trespasses, your heavenly Father will also forgive you,"
  • 2. Let’s take a closer look at using a matrix ...
  • 3. Let’s take a closer look at using a matrix ... ⎡ a11 a12 a13 a14 ⎤ ⎢ ⎥ A = ⎢ a21 a22 a23 a24 ⎥ ⎢ a a32 a33 a34 ⎥ 31 ⎣ ⎦
  • 4. Let’s take a closer look at using a matrix ... ⎡ a11 a12 a13 a14 ⎤ ⎢ ⎥ A = ⎢ a21 a22 a23 a24 ⎥ ⎢ a a32 a33 a34 ⎥ 31 ⎣ ⎦ So, b25 is the value of the element in the B matrix occupying the 2nd row & 5th column position.
  • 5. Here is a slightly different way of representing a linear system with a matrix ... called putting it into Augmented Form
  • 6. Here is a slightly different way of representing a linear system with a matrix ... called putting it into Augmented Form ⎧ 7x − 2y − z = 4 ⎪ Given this system: ⎨ x + 3z = 6 ⎪ 4y + z = 7 ⎩
  • 7. Here is a slightly different way of representing a linear system with a matrix ... called putting it into Augmented Form ⎧ 7x − 2y − z = 4 ⎪ Given this system: ⎨ x + 3z = 6 ⎪ 4y + z = 7 ⎩ ⎡ 7 −2 −1 4 ⎤ written in Augmented Form: ⎢ ⎥ ⎢ 1 0 3 6 ⎥ ⎢ 0 4 1 7 ⎥ ⎣ ⎦
  • 8. Here is a slightly different way of representing a linear system with a matrix ... called putting it into Augmented Form ⎧ 7x − 2y − z = 4 ⎪ Given this system: ⎨ x + 3z = 6 ⎪ 4y + z = 7 ⎩ ⎡ 7 −2 −1 4 ⎤ written in Augmented Form: ⎢ ⎥ ⎢ 1 0 3 6 ⎥ ⎢ 0 4 1 7 ⎥ ⎣ ⎦ it simply includes the constants as well ...
  • 9. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows
  • 10. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation:
  • 11. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1
  • 12. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1 The result of adding Row 1 to 3 times Row 3 is placed into Row 1
  • 13. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1 The result of adding Row 1 to 3 times Row 3 is placed into Row 1 −2R3 → R3
  • 14. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1 The result of adding Row 1 to 3 times Row 3 is placed into Row 1 −2R3 → R3 Replace Row 3 with -2 times Row 3
  • 15. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1 The result of adding Row 1 to 3 times Row 3 is placed into Row 1 −2R3 → R3 Replace Row 3 with -2 times Row 3 R2 ↔ R3
  • 16. Matrix Row Operations: We can ... 1) Add a multiple of one row to another 2) Multiply a row by a nonzero constant 3) Interchange two rows Matrix Row Operation Notation: R1 + 3R3 → R1 The result of adding Row 1 to 3 times Row 3 is placed into Row 1 −2R3 → R3 Replace Row 3 with -2 times Row 3 R2 ↔ R3 Interchange rows 2 and 3
  • 17. Use Matrix Row Operation Notation when transforming a matrix in order to document what you are doing.
  • 18. A matrix is in Row-Echelon Form if:
  • 19. A matrix is in Row-Echelon Form if: 1) The leading entry in each row is 1
  • 20. A matrix is in Row-Echelon Form if: 1) The leading entry in each row is 1 2) The leading entry (of 1) in each row is to the right of the leading entry in the row above it
  • 21. A matrix is in Row-Echelon Form if: 1) The leading entry in each row is 1 2) The leading entry (of 1) in each row is to the right of the leading entry in the row above it 3) All rows consisting only of zeros is at the bottom
  • 22. A matrix is in Row-Echelon Form if: 1) The leading entry in each row is 1 2) The leading entry (of 1) in each row is to the right of the leading entry in the row above it 3) All rows consisting only of zeros is at the bottom ⎡ 1 2 −4 6 ⎤ Example: ⎢ ⎥ ⎢ 0 1 3 −7 ⎥ ⎢ 0 0 1 ⎣ 2 ⎥ ⎦
  • 23. A matrix is in Row-Echelon Form if: 1) The leading entry in each row is 1 2) The leading entry (of 1) in each row is to the right of the leading entry in the row above it 3) All rows consisting only of zeros is at the bottom ⎡ 1 2 −4 6 ⎤ Example: ⎢ ⎥ ⎢ 0 1 3 −7 ⎥ ⎢ 0 0 1 ⎣ 2 ⎥ ⎦ Notice this is just like Triangular Form ... in essence, z=2 and we could use back substitution to find y and x
  • 24. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎪ ⎨ x + 2y − 6z = 7 ⎪ 4x − y + 8z = 15 ⎩
  • 25. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦
  • 26. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎣ ⎥ ⎦
  • 27. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎣ ⎥ ⎦
  • 28. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ ⎢ ⎣ ⎥ ⎦
  • 29. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ −4R1 + R3 → R3 ⎢ ⎣ ⎥ ⎦
  • 30. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ −4R1 + R3 → R3 ⎢ 0 3 −12 3 ⎥ ⎣ ⎦
  • 31. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ −4R1 + R3 → R3 ⎢ 0 3 −12 3 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎣ ⎥ ⎦
  • 32. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ −4R1 + R3 → R3 ⎢ 0 3 −12 3 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ R2 ↔ R3 ⎢ ⎥ ⎢ ⎣ ⎥ ⎦
  • 33. Let’s use an Augmented Matrix and Gaussian Elimination to solve this system: ⎧ x − y + 5z = 3 ⎡ 1 −1 5 3 ⎤ ⎪ ⎢ ⎥ ⎨ x + 2y − 6z = 7 ⎢ 1 2 −6 7 ⎥ ⎪ 4x − y + 8z = 15 ⎢ 4 −1 8 15 ⎥ ⎩ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ R1 − R2 → R2 ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ −4R1 + R3 → R3 ⎢ 0 3 −12 3 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ R2 ↔ R3 ⎢ 0 3 −12 3 ⎥ ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦
  • 34. ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦
  • 35. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦
  • 36. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦
  • 37. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ ⎣ ⎥ ⎦
  • 38. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ 3R2 + R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ ⎣ ⎥ ⎦
  • 39. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ 3R2 + R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 −1 −1 ⎥ ⎦
  • 40. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ 3R2 + R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 −1 −1 ⎥ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ ⎣ ⎥ ⎦
  • 41. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ 3R2 + R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 −1 −1 ⎥ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ −1R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ ⎣ ⎥ ⎦
  • 42. ⎡ 1 −1 5 3 ⎤ R2 ⎢ ⎥ → R2 ⎢ 0 1 −4 1 ⎥ 3 ⎢ 0 −3 11 −4 ⎥ ⎣ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ 3R2 + R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 −1 −1 ⎥ ⎦ ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ −1R3 → R3 ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 1 1 ⎥ ⎦
  • 43. ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 1 1 ⎥ ⎦ This is now in Row-Echelon Form (REF)
  • 44. ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 1 1 ⎥ ⎦ This is now in Row-Echelon Form (REF) z =1 y − 4 (1) = 1 x − 1(5) + 5(1) = 3 y=5 x=3
  • 45. ⎡ 1 −1 5 3 ⎤ ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 ⎣ 0 1 1 ⎥ ⎦ This is now in Row-Echelon Form (REF) z =1 y − 4 (1) = 1 x − 1(5) + 5(1) = 3 y=5 x=3 ( 3, 5, 1)
  • 46. A matrix is in Reduced Row-Echelon Form (RREF) if it is in REF and every number above and below each leading term is a zero.
  • 47. A matrix is in Reduced Row-Echelon Form (RREF) if it is in REF and every number above and below each leading term is a zero. ⎡ 1 0 0 3 ⎤ RREF: ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 48. A matrix is in Reduced Row-Echelon Form (RREF) if it is in REF and every number above and below each leading term is a zero. ⎡ 1 0 0 3 ⎤ RREF: ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ Notice that this system is solved
  • 49. A matrix is in Reduced Row-Echelon Form (RREF) if it is in REF and every number above and below each leading term is a zero. ⎡ 1 0 0 3 ⎤ RREF: ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ Notice that this system is solved x=3 y=5 z =1
  • 50. A matrix is in Reduced Row-Echelon Form (RREF) if it is in REF and every number above and below each leading term is a zero. ⎡ 1 0 0 3 ⎤ RREF: ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ Notice that this system is solved x=3 y=5 z =1 So ... rather than back substitute when we get the matrix to REF, we could continue to use row operations in order to get it to RREF. (start at the bottom and work up)
  • 51. Let’s take the REF of that last problem and put it into RREF
  • 52. Let’s take the REF of that last problem and put it into RREF ⎡ 1 −1 5 3 ⎤ REF: ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 53. Let’s take the REF of that last problem and put it into RREF ⎡ 1 −1 5 3 ⎤ REF: ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ We need to get these 3 elements to be 0
  • 54. Let’s take the REF of that last problem and put it into RREF ⎡ 1 −1 5 3 ⎤ REF: ⎢ ⎥ ⎢ 0 1 −4 1 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ We need to get these 3 elements to be 0 ⎡ 1 −1 5 3 ⎤ 4R3 + R2 → R2 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 55. ⎡ 1 −1 5 3 ⎤ (from previous slide) ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 56. ⎡ 1 −1 5 3 ⎤ (from previous slide) ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ⎡ 1 0 5 8 ⎤ R2 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 57. ⎡ 1 −1 5 3 ⎤ (from previous slide) ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ⎡ 1 0 5 8 ⎤ R2 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ⎡ 1 0 0 3 ⎤ −5R3 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦
  • 58. ⎡ 1 −1 5 3 ⎤ (from previous slide) ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ⎡ 1 0 5 8 ⎤ R2 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ⎡ 1 0 0 3 ⎤ −5R3 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 5 ⎥ ⎢ 0 0 1 1 ⎥ ⎣ ⎦ ( 3, 5, 1)
  • 59. Solving a system of linear equations by putting an augmented matrix into reduced row-echelon form is called Gauss - Jordan Elimination
  • 60. Solving a system of linear equations by putting an augmented matrix into reduced row-echelon form is called Gauss - Jordan Elimination ⎧6x + 18y − 6z = 24 ⎪ Let’s do it with: ⎨5x + 15y + 3z = −20 ⎪−3x + y + 33z = −42 ⎩
  • 61. Solving a system of linear equations by putting an augmented matrix into reduced row-echelon form is called Gauss - Jordan Elimination ⎧6x + 18y − 6z = 24 ⎪ Let’s do it with: ⎨5x + 15y + 3z = −20 ⎪−3x + y + 33z = −42 ⎩ ⎡ 6 18 −6 24 ⎤ ⎢ ⎥ ⎢ 5 15 3 −20 ⎥ ⎢ −3 1 33 −42 ⎥ ⎣ ⎦
  • 62. ⎡ 1 3 −1 4 ⎤ R1 ⎢ ⎥ → R1 ⎢ 5 15 3 −20 ⎥ 6 ⎢ −3 1 33 −42 ⎥ ⎣ ⎦
  • 63. ⎡ 1 3 −1 4 ⎤ R1 ⎢ ⎥ → R1 ⎢ 5 15 3 −20 ⎥ 6 ⎢ −3 1 33 −42 ⎥ ⎣ ⎦ ⎡ 1 3 −1 4 ⎤ −5R1 + R2 → R2 ⎢ ⎥ ⎢ 0 0 8 −40 ⎥ 3R1 + R3 → R3 ⎢ 0 10 30 −30 ⎥ ⎣ ⎦
  • 64. ⎡ 1 3 −1 4 ⎤ R1 ⎢ ⎥ → R1 ⎢ 5 15 3 −20 ⎥ 6 ⎢ −3 1 33 −42 ⎥ ⎣ ⎦ ⎡ 1 3 −1 4 ⎤ −5R1 + R2 → R2 ⎢ ⎥ ⎢ 0 0 8 −40 ⎥ 3R1 + R3 → R3 ⎢ 0 10 30 −30 ⎥ ⎣ ⎦ ⎡ 1 3 −1 4 ⎤ R2 ↔ R3 ⎢ ⎥ ⎢ 0 10 30 −30 ⎥ ⎢ 0 0 8 −40 ⎥ ⎣ ⎦
  • 65. R2 ⎡ 1 3 −1 4 ⎤ → R2 10 ⎢ ⎥ ⎢ 0 1 3 −3 ⎥ REF R3 → R3 ⎢ 0 0 1 −5 ⎥ ⎣ ⎦ 8
  • 66. R2 ⎡ 1 3 −1 4 ⎤ → R2 10 ⎢ ⎥ ⎢ 0 1 3 −3 ⎥ REF R3 → R3 ⎢ 0 0 1 −5 ⎥ ⎣ ⎦ 8 ⎡ 1 3 0 −1 ⎤ R3 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 12 ⎥ −3R3 + R2 → R2 ⎢ 0 0 1 −5 ⎥ ⎣ ⎦
  • 67. R2 ⎡ 1 3 −1 4 ⎤ → R2 10 ⎢ ⎥ ⎢ 0 1 3 −3 ⎥ REF R3 → R3 ⎢ 0 0 1 −5 ⎥ ⎣ ⎦ 8 ⎡ 1 3 0 −1 ⎤ R3 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 12 ⎥ −3R3 + R2 → R2 ⎢ 0 0 1 −5 ⎥ ⎣ ⎦ ⎡ 1 0 0 −37 ⎤ −3R2 + R1 → R1 ⎢ ⎥ ⎢ 0 1 0 12 ⎥ RREF ⎢ 0 0 1 −5 ⎥ ⎣ ⎦ ( −37, 12, − 5 )
  • 68. HW #7 And in the end, it’s not the years in your life that count. It’s the life in your years. Abraham Lincoln

Editor's Notes

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n
  36. \n
  37. \n
  38. \n
  39. \n
  40. \n
  41. \n
  42. \n
  43. \n
  44. \n
  45. \n
  46. \n
  47. \n
  48. \n
  49. \n
  50. \n
  51. \n
  52. \n
  53. \n
  54. \n
  55. \n