SlideShare a Scribd company logo
A branch and bound method
to compute a median permutation

      Irène Charon, Olivier Hudry

          Télécom ParisTech

   olivier.hudry@telecom-paristech.fr
A permutation problem in voting theory

   Given a profile Π = (σ1, σ2, …, σm) of m permutations
    (i.e. linear orders) σi (1 ≤ i ≤ m) on a set X of n = |X|
    elements, how to aggregate them into a unique
    permutation which summarizes Π as accurately as
    possible?
   In voting theory (Condorcet, 1784): we want to rank n
    candidates from the rankings provided by m voters.
Example


   X = {a, b, c, d, e, f}, m = 5

    voter 1: σ1 = a > b > c > f > d > e

    voter 2: σ2 = a > c > f > b > d > e

    voter 3: σ3 = e > d > a > f > b > c

    voter 4: σ4 = b > c > d > e > f > a

    voter 5: σ5 = c > f > b > e > a > d.
A combinatorial optimization problem

   Symmetric difference distance d between R and R′ :
    d(R, R′ ) = |{(x, y)Œ X2 with [xRy and not xR′ y]
                        ∈
                            or [not xRy and xR′ y]}|.
   Let Σ be the set of all the permutations defined on X.
    Then, for Π = (σ1, σ2, …, σm):
                               m
         Minimize ρΠ(σ) =      ∑      d (σ , σ i ) for σ ŒΣ
                                                         ∈
                               i= 1


(cf. J.-P. Barthélemy, B. Monjardet, 1981)
   d(R, R′ ) measures the number of disagreements
    between R and R′.
   ρΠ(σ) (= remoteness of σ from Π) measures the total
    number of disagreements between σ and Π.
   σ* minimizing ρΠ over Σ is called a median
    permutation (or a median linear order) of Π.
   Theorem (J.J. Bartholdi III et alii, 1989;
       O. Hudry, 1989; C. Dwork et alii, 2001):
          The computation of σ* is NP-hard.
A 0-1 linear programming problem
   σ = (σxy)(x, y)∈Œ with σxy = 1 if σ ranks x better than y (x >σ y)
                    X2

    and σxy = 0 otherwise.

   mxy = m – 2|{i: 1 ≤ i ≤ m and x >σi y}| = –myx

 Then: ρΠ(σ) = C +      ∑ mxy σ xy
                 ( x, y )∈ X 2
with :
    ∀ x ŒX, σxx = 1
        ∈                                (reflexivity)
    ∀ (x, y) ŒX2, x ≠ y, σxy + σyx = 1 (antisymmetry)
             ∈
    ∀ (x, y, z) ∈Œ3, σxy + σyz – σxz ≤ 1 (transitivity)
                 X
    ∀ (x, y) ŒX2, σxy Œ{0, 1}
             ∈        ∈                  (binarity)
Lagrangean relaxation
   Relaxation of the transitivity constraints:

                 ∀ (x, y, z) ŒX3, σxy + σyz – σxz ≤ 1
                             ∈

   Lagrangean function L for σ = (σxy)(x, y)∈X2 with σxy ∈ {0, 1}, σxx
    = 1, σxy + σyx = 1, and Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0:
                            ∑    λ xyz ( σ xy + σ yz − σ xz − 1)
    L(σ, Λ) = ρΠ(σ) +
                      ( x, y , z )∈ X 3

                      ∑   a xy (Λ )σ xy −          ∑    λ xyz
             = C +x, y )∈ X 2
                 (                           ( x, y , z )∈ X 3

    with    a xy (Λ ) = mxy +        ∑    (λ xyz + λ zxy − λ xzy )
                                    z∈ X
Lagrangean relaxation (end)
   Dual function for Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0:

                      D(Λ) = min{L(σ, Λ) with σ ∈ A}

    with A = {reflexive and antisymmetric relations defined on X}.

   Dual problem: maximize D(Λ) for Λ ≥ 0.

   The maximum of D gives a lower bound of the minimum of ρΠ.

   Computation of D(Λ) for a given Λ:
                 if axy ≥ 0, set σxy = 0, and σxy = 1 otherwise.

   Resolution of the dual problem by subgradient methods.
The components of the BB algorithm
   Initial bound: found by a metaheuristic (a self-tuned noising method; I.
    Charon and O. Hudry, 1993, 2009)
   Evaluation function: provided by the Lagrangean relaxation.
    Branching rule (J.-P. Barthélemy, A. Guénoche, O. Hudry, 1989;
     I. Charon, A. Guénoche, O. Hudry, F. Woirgard, 1996):
The root of the BB-tree contains all the permutations defined on X.
A node of the BB-tree contains the permutations sharing a given beginning
     section S (i.e. a permutation of a subset of X):
                     S(xj1, xj2, …, xjp) = xj1 >σ xj2 >σ … >σ xjp.
The branching principle consists in expanding this beginning section:
                   S(xj1, xj2, …, xjp, x) = xj1 >σ xj2 >σ … xjp >σ x
with x ∉{xj1, xj2, …, xjp}.
Shape of the BB-tree

                  x1                                 xj                xn–1           xn
                                   x 2   …                1   …
                                             …   …
                   …           …                                      …           …


                                                     xj > xj > …>x
                                                       1    2      jp – 1


                                             …        …

                                                     xj > xj > …>x
                                                       1    2      jp – 1 > x jp

xj > xj > …>x
  1    2      jp – 1 > x j p > x h 1
                                                 …                    x j > x j > …> x
                                                                                       jp – 1 >x jp > h n – p
                                                                                                     x
                                                                         1     2



                                  …                               …
Other components to prune the BB-tree
   Hamiltonian permutations.
* We may summarize a profile Π of permutations by a tournament
   T (weighted by –mxy > 0): there is an arc (x, y) if a majority of
   voters prefer x to y (we assume that there is no tie).
* We say that a permutation σ is Hamiltonian if it induces a
   Hamiltonian path in T.

* Theorem (R. Remage and W.A. Thompson, 1966): a median
    permutation is Hamiltonian.
→ xj1 >σ xj2 >σ … >σ xjp is expanded into xj1 >σ … >σ xjp >σ x only
    if a majority of voters prefer xjp to x.
Example
   X = {a, b, c, d, e, f}

                                                       1
σ1 = a > b > c > f > d > e                 a                               b
                                                       1
σ2 = a > c > f > b > d > e             1                                       1

σ3 = e > d > a > f > b > c        f        1           1                           c
                                                               3
σ4 = b > c > d > e > f > a                     1   3
σ5 = c > f > b > e > a > d.            1                   3       3       3
                                                           1
                                           e                           d
Here, a > c > f > b > d > e                            1
is a median permutation and
induces a Hamiltonian path.
Other components to prune the BB-tree

   We compute the variation of ρΠ when, from a permutation σ
    beginning with S = xj1 >σ xj2 >σ … >σ xjp, we take an interval
    xjh >σ … >σ xjp (1 ≤ h ≤ p) and we shift it at the end of σ,
    after the elements of X – S (= OS = « out of section »):
        σ = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ (OS)
becomes
      σ′ = xj1 >σ′ xj2 >σ′ … xjh–1 >σ′ (OS) >σ′ xjh >σ′ … >σ′ xjp.
If ρΠ decreases, we do not keep the node associated with S.

OSmoves will count this kind of cuts.
Other components to prune the BB-tree (end)

    When we deal with a new beginning section

          S = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ x,

we consider the beginning sections that we can get by moving,
    inside S, an “interval” of S including x, i.e., the beginning
    sections with the following shape:

           xjh >σ′ … >σ′ xjp >σ′ x >σ′ xj1 >σ′ xj2 >σ′ … xjh–1.

If ρΠ decreases, we do not keep the node associated with S.

Smoves will count this kind of cuts.
An experimental result on the efficiency of
        the branch and bound components
   Numbers of cuts for an instance on 39 candidates
    n u m b er o f n o d es
    80000
                                                          n u m b e r o f s e p a r a t e d n o d e s : 2 1 ,3 2 3
    70000                                                 n u m b e r o f c u t n o d e s : 6 8 7 ,2 3 0
    60000                                                                         h a m : 2 8 8 ,3 8 8
                                                                                  O S m o v e s : 2 0 7 ,0 2 2
    50000
                                                                                  S m o v e s : 9 3 ,2 9 6
    40000                                                                         l e x : 2 ,3 7 7
                                                                                  B e g S e c : 3 ,2 1 2
    30000
                                                                                  r e l a x : 9 2 ,9 3 5
    20000

    10000
                                                                                                           d e p th -le v e l
         0
             1        2       3   4   5   6   7   8   9   10       11      12          13            1 4 ... 2 8
CPU times for m ∈ {3, 4, 100, 101}
   CPU times in seconds (Rk: order = n).
      a v erag e C .P .U . tim e
      1000

                              3 : 0 .8 0
                              4 : 0 .6 0
        100
                              1 0 0 : 0 .6 7
                              1 0 1 : 0 .6 8
         10



           1



                                                                             o rd e r
        0 ,1
               15            20                25   30   35   40   45   50          55
Number of median permutations
     versus number of Hamiltonian permutations
   Let M(n) and H(n) denote respectively the maximum number of
    median permutations or of Hamiltonian permutations for
    instances on n candidates.
   If n is even with n ≥ 2: M(n) = n!
   If n is odd: M(n) ≤ H(n).
   Theorem (N. Alon, 1990): H(n) ≤ (c × n1.5 × n!)/2n where c is a
    constant.
   Theorem (I. Charon, O. Hudry, 2000): for n = 3k,
                          30.75(n – 1)/n2 ≤ M(n).
Thank you for your attention!

             

More Related Content

What's hot

58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
alg1testreview
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
Matthew Leingang
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
Sporsho
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
Eko Wijayanto
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
Matthew Leingang
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Jayanshu Gundaniya
 
Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
Prathab Harinathan
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
Kuan-Lun Wang
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
Keigo Nitadori
 
Derivadas
DerivadasDerivadas
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTION
Nikhil Pandit
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
Matthew Leingang
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
Matthew Leingang
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
Dr. Nirav Vyas
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
Prathab Harinathan
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
Dr. Nirav Vyas
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
Sanre Tambunan
 

What's hot (19)

58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
 
Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 
Derivadas
DerivadasDerivadas
Derivadas
 
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTION
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Derivatives
DerivativesDerivatives
Derivatives
 
Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
 

Similar to AlgoPerm2012 - 03 Olivier Hudry

ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
CrackDSE
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
Department of Education
 
1010n3a
1010n3a1010n3a
1010n3a
Faiza Saher
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
OchiriaEliasonyait
 
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite series
Alaa Mohammed
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
dionesioable
 
AP Calculus - Tutorial
AP Calculus - TutorialAP Calculus - Tutorial
AP Calculus - Tutorial
Chris Wilson
 
Difference quotient algebra
Difference quotient algebraDifference quotient algebra
Difference quotient algebra
math260
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
The chain rule
The chain ruleThe chain rule
The chain rule
J M
 
Section5 stochastic
Section5 stochasticSection5 stochastic
Section5 stochastic
cairo university
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
Mari Carmen Perez Mañez
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
NoorYassinHJamel
 
Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
Hoàng Đức
 
Interpolation
InterpolationInterpolation
Interpolation
Dmytro Mitin
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
LAGRANGE_MULTIPLIER.ppt
LAGRANGE_MULTIPLIER.pptLAGRANGE_MULTIPLIER.ppt
LAGRANGE_MULTIPLIER.ppt
MSPrasad7
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
AryanMishra860130
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
Statistics Assignment Help
 

Similar to AlgoPerm2012 - 03 Olivier Hudry (20)

ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 
1010n3a
1010n3a1010n3a
1010n3a
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite series
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
AP Calculus - Tutorial
AP Calculus - TutorialAP Calculus - Tutorial
AP Calculus - Tutorial
 
Difference quotient algebra
Difference quotient algebraDifference quotient algebra
Difference quotient algebra
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Section5 stochastic
Section5 stochasticSection5 stochastic
Section5 stochastic
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
 
Interpolation
InterpolationInterpolation
Interpolation
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
LAGRANGE_MULTIPLIER.ppt
LAGRANGE_MULTIPLIER.pptLAGRANGE_MULTIPLIER.ppt
LAGRANGE_MULTIPLIER.ppt
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 

More from AlgoPerm 2012

AlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc BarilAlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm 2012
 
AlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent BulteauAlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm 2012
 
AlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony LabarreAlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony Labarre
AlgoPerm 2012
 
AlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique RossinAlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique Rossin
AlgoPerm 2012
 
AlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier GoaocAlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm 2012
 
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent PilaudAlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm 2012
 
AlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean CardinalAlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean Cardinal
AlgoPerm 2012
 
AlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde BouvelAlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm 2012
 
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-MélouAlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm 2012
 
AlgoPerm2012 - 05 Ioan Todinca
AlgoPerm2012 - 05 Ioan TodincaAlgoPerm2012 - 05 Ioan Todinca
AlgoPerm2012 - 05 Ioan Todinca
AlgoPerm 2012
 
AlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe PaulAlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe Paul
AlgoPerm 2012
 
AlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf NiedermeierAlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm 2012
 
AlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida LarakiAlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida Laraki
AlgoPerm 2012
 

More from AlgoPerm 2012 (13)

AlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc BarilAlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc Baril
 
AlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent BulteauAlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent Bulteau
 
AlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony LabarreAlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony Labarre
 
AlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique RossinAlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique Rossin
 
AlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier GoaocAlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier Goaoc
 
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent PilaudAlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent Pilaud
 
AlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean CardinalAlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean Cardinal
 
AlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde BouvelAlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde Bouvel
 
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-MélouAlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
 
AlgoPerm2012 - 05 Ioan Todinca
AlgoPerm2012 - 05 Ioan TodincaAlgoPerm2012 - 05 Ioan Todinca
AlgoPerm2012 - 05 Ioan Todinca
 
AlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe PaulAlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe Paul
 
AlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf NiedermeierAlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf Niedermeier
 
AlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida LarakiAlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida Laraki
 

Recently uploaded

Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
IreneSebastianRueco1
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
Kavitha Krishnan
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 

Recently uploaded (20)

Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 

AlgoPerm2012 - 03 Olivier Hudry

  • 1. A branch and bound method to compute a median permutation Irène Charon, Olivier Hudry Télécom ParisTech olivier.hudry@telecom-paristech.fr
  • 2. A permutation problem in voting theory  Given a profile Π = (σ1, σ2, …, σm) of m permutations (i.e. linear orders) σi (1 ≤ i ≤ m) on a set X of n = |X| elements, how to aggregate them into a unique permutation which summarizes Π as accurately as possible?  In voting theory (Condorcet, 1784): we want to rank n candidates from the rankings provided by m voters.
  • 3. Example  X = {a, b, c, d, e, f}, m = 5 voter 1: σ1 = a > b > c > f > d > e voter 2: σ2 = a > c > f > b > d > e voter 3: σ3 = e > d > a > f > b > c voter 4: σ4 = b > c > d > e > f > a voter 5: σ5 = c > f > b > e > a > d.
  • 4. A combinatorial optimization problem  Symmetric difference distance d between R and R′ : d(R, R′ ) = |{(x, y)Œ X2 with [xRy and not xR′ y] ∈ or [not xRy and xR′ y]}|.  Let Σ be the set of all the permutations defined on X. Then, for Π = (σ1, σ2, …, σm): m Minimize ρΠ(σ) = ∑ d (σ , σ i ) for σ ŒΣ ∈ i= 1 (cf. J.-P. Barthélemy, B. Monjardet, 1981)
  • 5. d(R, R′ ) measures the number of disagreements between R and R′.  ρΠ(σ) (= remoteness of σ from Π) measures the total number of disagreements between σ and Π.  σ* minimizing ρΠ over Σ is called a median permutation (or a median linear order) of Π.  Theorem (J.J. Bartholdi III et alii, 1989; O. Hudry, 1989; C. Dwork et alii, 2001): The computation of σ* is NP-hard.
  • 6. A 0-1 linear programming problem  σ = (σxy)(x, y)∈Œ with σxy = 1 if σ ranks x better than y (x >σ y) X2 and σxy = 0 otherwise.  mxy = m – 2|{i: 1 ≤ i ≤ m and x >σi y}| = –myx  Then: ρΠ(σ) = C + ∑ mxy σ xy ( x, y )∈ X 2 with : ∀ x ŒX, σxx = 1 ∈ (reflexivity) ∀ (x, y) ŒX2, x ≠ y, σxy + σyx = 1 (antisymmetry) ∈ ∀ (x, y, z) ∈Œ3, σxy + σyz – σxz ≤ 1 (transitivity) X ∀ (x, y) ŒX2, σxy Œ{0, 1} ∈ ∈ (binarity)
  • 7. Lagrangean relaxation  Relaxation of the transitivity constraints: ∀ (x, y, z) ŒX3, σxy + σyz – σxz ≤ 1 ∈  Lagrangean function L for σ = (σxy)(x, y)∈X2 with σxy ∈ {0, 1}, σxx = 1, σxy + σyx = 1, and Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0: ∑ λ xyz ( σ xy + σ yz − σ xz − 1) L(σ, Λ) = ρΠ(σ) + ( x, y , z )∈ X 3 ∑ a xy (Λ )σ xy − ∑ λ xyz = C +x, y )∈ X 2 ( ( x, y , z )∈ X 3 with a xy (Λ ) = mxy + ∑ (λ xyz + λ zxy − λ xzy ) z∈ X
  • 8. Lagrangean relaxation (end)  Dual function for Λ = (λxyz)(x, y, z)∈X3 with λxyz ≥ 0: D(Λ) = min{L(σ, Λ) with σ ∈ A} with A = {reflexive and antisymmetric relations defined on X}.  Dual problem: maximize D(Λ) for Λ ≥ 0.  The maximum of D gives a lower bound of the minimum of ρΠ.  Computation of D(Λ) for a given Λ: if axy ≥ 0, set σxy = 0, and σxy = 1 otherwise.  Resolution of the dual problem by subgradient methods.
  • 9. The components of the BB algorithm  Initial bound: found by a metaheuristic (a self-tuned noising method; I. Charon and O. Hudry, 1993, 2009)  Evaluation function: provided by the Lagrangean relaxation.  Branching rule (J.-P. Barthélemy, A. Guénoche, O. Hudry, 1989; I. Charon, A. Guénoche, O. Hudry, F. Woirgard, 1996): The root of the BB-tree contains all the permutations defined on X. A node of the BB-tree contains the permutations sharing a given beginning section S (i.e. a permutation of a subset of X): S(xj1, xj2, …, xjp) = xj1 >σ xj2 >σ … >σ xjp. The branching principle consists in expanding this beginning section: S(xj1, xj2, …, xjp, x) = xj1 >σ xj2 >σ … xjp >σ x with x ∉{xj1, xj2, …, xjp}.
  • 10. Shape of the BB-tree x1 xj xn–1 xn x 2 … 1 … … … … … … … xj > xj > …>x 1 2 jp – 1 … … xj > xj > …>x 1 2 jp – 1 > x jp xj > xj > …>x 1 2 jp – 1 > x j p > x h 1 … x j > x j > …> x jp – 1 >x jp > h n – p x 1 2 … …
  • 11. Other components to prune the BB-tree  Hamiltonian permutations. * We may summarize a profile Π of permutations by a tournament T (weighted by –mxy > 0): there is an arc (x, y) if a majority of voters prefer x to y (we assume that there is no tie). * We say that a permutation σ is Hamiltonian if it induces a Hamiltonian path in T. * Theorem (R. Remage and W.A. Thompson, 1966): a median permutation is Hamiltonian. → xj1 >σ xj2 >σ … >σ xjp is expanded into xj1 >σ … >σ xjp >σ x only if a majority of voters prefer xjp to x.
  • 12. Example  X = {a, b, c, d, e, f} 1 σ1 = a > b > c > f > d > e a b 1 σ2 = a > c > f > b > d > e 1 1 σ3 = e > d > a > f > b > c f 1 1 c 3 σ4 = b > c > d > e > f > a 1 3 σ5 = c > f > b > e > a > d. 1 3 3 3 1 e d Here, a > c > f > b > d > e 1 is a median permutation and induces a Hamiltonian path.
  • 13. Other components to prune the BB-tree  We compute the variation of ρΠ when, from a permutation σ beginning with S = xj1 >σ xj2 >σ … >σ xjp, we take an interval xjh >σ … >σ xjp (1 ≤ h ≤ p) and we shift it at the end of σ, after the elements of X – S (= OS = « out of section »): σ = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ (OS) becomes σ′ = xj1 >σ′ xj2 >σ′ … xjh–1 >σ′ (OS) >σ′ xjh >σ′ … >σ′ xjp. If ρΠ decreases, we do not keep the node associated with S. OSmoves will count this kind of cuts.
  • 14. Other components to prune the BB-tree (end)  When we deal with a new beginning section S = xj1 >σ xj2 >σ … xjh–1 >σ xjh >σ … >σ xjp >σ x, we consider the beginning sections that we can get by moving, inside S, an “interval” of S including x, i.e., the beginning sections with the following shape: xjh >σ′ … >σ′ xjp >σ′ x >σ′ xj1 >σ′ xj2 >σ′ … xjh–1. If ρΠ decreases, we do not keep the node associated with S. Smoves will count this kind of cuts.
  • 15. An experimental result on the efficiency of the branch and bound components  Numbers of cuts for an instance on 39 candidates n u m b er o f n o d es 80000 n u m b e r o f s e p a r a t e d n o d e s : 2 1 ,3 2 3 70000 n u m b e r o f c u t n o d e s : 6 8 7 ,2 3 0 60000 h a m : 2 8 8 ,3 8 8 O S m o v e s : 2 0 7 ,0 2 2 50000 S m o v e s : 9 3 ,2 9 6 40000 l e x : 2 ,3 7 7 B e g S e c : 3 ,2 1 2 30000 r e l a x : 9 2 ,9 3 5 20000 10000 d e p th -le v e l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 ... 2 8
  • 16. CPU times for m ∈ {3, 4, 100, 101}  CPU times in seconds (Rk: order = n). a v erag e C .P .U . tim e 1000 3 : 0 .8 0 4 : 0 .6 0 100 1 0 0 : 0 .6 7 1 0 1 : 0 .6 8 10 1 o rd e r 0 ,1 15 20 25 30 35 40 45 50 55
  • 17. Number of median permutations versus number of Hamiltonian permutations  Let M(n) and H(n) denote respectively the maximum number of median permutations or of Hamiltonian permutations for instances on n candidates.  If n is even with n ≥ 2: M(n) = n!  If n is odd: M(n) ≤ H(n).  Theorem (N. Alon, 1990): H(n) ≤ (c × n1.5 × n!)/2n where c is a constant.  Theorem (I. Charon, O. Hudry, 2000): for n = 3k, 30.75(n – 1)/n2 ≤ M(n).
  • 18. Thank you for your attention! 