Introduction
                Tandem Duplication
                 Mirror Duplication




Whole Mirror Duplication Random Loss Model and
        Pattern Avoiding Permutations

             Jean-Luc Baril and R´mi Vernay
                                    e
                   barjl@u-bourgogne.fr
               http://jl.baril.u-bourgogne.fr

         Laboratory LE2I – University of Burgundy – Dijon




                     Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                        The Genome - Definition
                  Tandem Duplication
                                        Pattern in permutations
                   Mirror Duplication


Some definitions and notations
   genome = set of chromosomes
   chromosome = sequence of genes
   gene = sequence of Ad´nine, Guanine, Cytosine, Thynmine
                          e
   (AGCT)
   genome → n-length permutation σ = σ1 σ2 σ3 . . . σn
   Sn = the set of n-length permutations
Graphical representation of the permutation
σ=84 6 2 5 71 3
                           8
                           7
                           6
                           5
                           4
                           3
                           2
                           1
                               1 2 3 4 5 6 7 8


                           8 4 6 2 5 WM1 3
                       Jean-Luc Baril
                                     7 Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Let σ = σ1 σ2 . . . σn be a permutation:
    ascent → σi < σi +1
    run up → σi < σi +1 < · · · < σj
    descent, run-down
    valley → σi −1 > σi < σi +1
    Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · ·

                             8
                             7
                             6
                             5
                             4
                             3
                             2
                             1
                                 1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Let σ = σ1 σ2 . . . σn be a permutation:
    ascent → σi < σi +1
    run up → σi < σi +1 < · · · < σj
    descent, run-down
    valley → σi −1 > σi < σi +1
    Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · ·

                             8
                             7
                             6
                             5
                             4
                             3
                             2
                             1
                                 1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Let σ = σ1 σ2 . . . σn be a permutation:
    ascent → σi < σi +1
    run up → σi < σi +1 < · · · < σj
    descent, run-down
    valley → σi −1 > σi < σi +1
    Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · ·

                             8
                             7
                             6
                             5
                             4
                             3
                             2
                             1
                                 1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Let σ = σ1 σ2 . . . σn be a permutation:
    ascent → σi < σi +1
    run up → σi < σi +1 < · · · < σj
    descent, run-down
    valley → σi −1 > σi < σi +1
    Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · ·

                             8
                             7
                             6
                             5
                             4
                             3
                             2
                             1
                                 1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Let σ = σ1 σ2 . . . σn be a permutation:
    ascent → σi < σi +1
    run up → σi < σi +1 < · · · < σj
    descent, run-down
    valley → σi −1 > σi < σi +1
    Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · ·

                             8
                             7
                             6
                             5
                             4
                             3
                             2
                             1
                                 1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                               The Genome - Definition
                      Tandem Duplication
                                               Pattern in permutations
                       Mirror Duplication


Definition:
σ ∈ Sn contains the pattern π ∈ Sk (π σ) if:
∃1 ≤ i1 < i2 < · · · < ik ≤ n such that σi1 σi2 . . . σik is
order-isomorphic to π, i.e.,

              ∀1 ≤ u, v ≤ k,                σi u < σi v ⇔ π u < π v .

Example: σ = 8 4 6 2 5 7 1 3 contains the pattern π = 4132
                               8
                               7
                               6
                               5
                               4
                               3
                               2
                               1
                                   1 2 3 4 5 6 7 8



                               84625713

                           Jean-Luc Baril      WM Duplication Random Loss Model
Introduction
                                          The Genome - Definition
                    Tandem Duplication
                                          Pattern in permutations
                     Mirror Duplication




Class of permutations
C is a class of permutations if C is stable for the relation

                    σ ∈ C and π           σ ⇒ π ∈ C.

Basis for a class of permutations
A class C of permutations is characterized by its basis B:

             B = {σ ∈ C, ∀π ≺ σ with π = σ, π ∈ C}
                    /

We have C = S(B) where S(B) is the class of permutations
avoiding all patterns in B.




                         Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                               Model
                        Tandem Duplication
                                               References - known results
                         Mirror Duplication



The tandem duplication random-loss process
* This model is well-known in the evolutionary biology literature.
* Used for vertebrate mitochondrial genomes

      12345678                   1234567812345678


                                 1234567812345678


                                              12457368
  8
  7
  6
  5
  4
  3
  2
  1
      1 2 3 4 5 6 7 8
                             Jean-Luc Baril    WM Duplication Random Loss Model
Introduction
                                               Model
                        Tandem Duplication
                                               References - known results
                         Mirror Duplication



The tandem duplication random-loss process
* This model is well-known in the evolutionary biology literature.
* Used for vertebrate mitochondrial genomes

      12345678                        1234567812345678
                                               (duplication)
                                      1234567812345678


                                              12457368
  8                               8
  7                               7
  6                               6
  5                               5
  4                               4
  3                               3
  2                               2
  1                               1
      1 2 3 4 5 6 7 8                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
                             Jean-Luc Baril    WM Duplication Random Loss Model
Introduction
                                               Model
                        Tandem Duplication
                                               References - known results
                         Mirror Duplication



The tandem duplication random-loss process
* This model is well-known in the evolutionary biology literature.
* Used for vertebrate mitochondrial genomes

      12345678                        1234567812345678
                                               (duplication)
                                      1234567812345678
                                              (random loss)
                                              12457368
  8                               8
  7                               7
  6                               6
  5                               5
  4                               4
  3                               3
  2                               2
  1                               1
      1 2 3 4 5 6 7 8                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
                             Jean-Luc Baril    WM Duplication Random Loss Model
Introduction
                                              Model
                        Tandem Duplication
                                              References - known results
                         Mirror Duplication



The tandem duplication random-loss process
* This model is well-known in the evolutionary biology literature.
* Used for vertebrate mitochondrial genomes

      12345678                        1234567812345678
                                              (duplication)
                                      1234567812345678
                                              (random loss)
                                              12457368
  8                               8         8
  7                               7         7
  6                               6         6
  5                               5         5
  4                               4         4
  3                               3         3
  2                               2         2
  1                               1         1
      1 2 3 4 5 6 7 8                 1 2 3 4 1 2 3 4 5 6 7 8 5 14 15 16
                             Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                     Model
               Tandem Duplication
                                     References - known results
                Mirror Duplication




2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao
     On the tandem duplication-random loss model
     of genome rearrangement,SODA
     Tandem duplication random-loss process of an
     interval of size K ;
     Efficient algorithm for the distance between 2
     genomes




                    Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                               Model
                        Tandem Duplication
                                               References - known results
                         Mirror Duplication




 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao
      On the tandem duplication-random loss model of genome rearrangement,SODA

2009 M. Bouvel and D. Rossin
     A variant of the tandem duplication-random loss
     model of genome rearrangement, TCS
     Permutations obtained after p duplications of an
     interval of size K define a class of permutations
     avoiding some patterns in B.
     B = set of minimal permutations with d = 2p
     descents.




                             Jean-Luc Baril    WM Duplication Random Loss Model
Introduction
                                                 Model
                         Tandem Duplication
                                                 References - known results
                          Mirror Duplication




 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao
      On the tandem duplication-random loss model of genome rearrangement,SODA
 2009 M. Bouvel and D. Rossin

       A variant of the tandem duplication-random loss model of genome rearrangement, TCS

2010 M. Bouvel and E. Pergola
     Posets and permutations in the duplication-loss
     model: minimal permutations with d descents,
     Theoretical Computer Science
     enumeration minimal permutations of size
     n = d + 1, d + 2, 2d;




                                Jean-Luc Baril   WM Duplication Random Loss Model
Introduction
                                                  Model
                         Tandem Duplication
                                                  References - known results
                          Mirror Duplication




 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao
      On the tandem duplication-random loss model of genome rearrangement,SODA
 2009 M. Bouvel and D. Rossin
      A variant of the tandem duplication-random loss model of genome rearrangement, TCS
 2010 M. Bouvel and E. Pergola
      Posets and permutations in the duplication-loss model: minimal permutations with d
      descents, Theoretical Computer Science

2010 T. Mansour and S. H.F. Yan
     Minimal permutations with d descents, European
     Journal of Combinatorics
     enumeration minimal permutations of size
     n = 2d − 1




                               Jean-Luc Baril     WM Duplication Random Loss Model
Introduction
                                                  Model
                         Tandem Duplication
                                                  References - known results
                          Mirror Duplication




 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao
      On the tandem duplication-random loss model of genome rearrangement,SODA
 2009 M. Bouvel and D. Rossin
      A variant of the tandem duplication-random loss model of genome rearrangement, TCS
 2010 M. Bouvel and E. Pergola
      Posets and permutations in the duplication-loss model: minimal permutations with d
      descents, Theoretical Computer Science
 2010 T. Mansour and S. H.F. Yan

       Minimal permutations with d descents, European Journal of Combinatorics

2010 M. Bouvel and L. Ferrari
     On the enumeration of d-minimal permutations,
     Arxiv
     prove that the number of minimal permutations with
     d descents can be obtained by computing some
     determinants, but they cannot provide a general
     closed formula


                               Jean-Luc Baril     WM Duplication Random Loss Model
Model
                              Introduction
                                              Theorems
                       Tandem Duplication
                                              Algo σ → 12 · · · n
                        Mirror Duplication
                                              Algo 12 · · · n → σ



The whole mirror duplication random-loss process

     12345678                   1234567887654321


                                1234567887654321


                                             14578632
 8
 7
 6
 5
 4
 3
 2
 1
     1 2 3 4 5 6 7 8




                            Jean-Luc Baril    WM Duplication Random Loss Model
Model
                              Introduction
                                                Theorems
                       Tandem Duplication
                                                Algo σ → 12 · · · n
                        Mirror Duplication
                                                Algo 12 · · · n → σ



The whole mirror duplication random-loss process

     12345678                        1234567887654321
                                             (mirror duplication)
                                     1234567887654321


                                               14578632
 8                               8
 7                               7
 6                               6
 5                               5
 4                               4
 3                               3
 2                               2
 1                               1
     1 2 3 4 5 6 7 8                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16




                            Jean-Luc Baril      WM Duplication Random Loss Model
Model
                              Introduction
                                                Theorems
                       Tandem Duplication
                                                Algo σ → 12 · · · n
                        Mirror Duplication
                                                Algo 12 · · · n → σ



The whole mirror duplication random-loss process

     12345678                        1234567887654321
                                             (mirror duplication)
                                     1234567887654321
                                               (random loss)
                                               14578632
 8                               8
 7                               7
 6                               6
 5                               5
 4                               4
 3                               3
 2                               2
 1                               1
     1 2 3 4 5 6 7 8                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16




                            Jean-Luc Baril      WM Duplication Random Loss Model
Model
                              Introduction
                                                Theorems
                       Tandem Duplication
                                                Algo σ → 12 · · · n
                        Mirror Duplication
                                                Algo 12 · · · n → σ



The whole mirror duplication random-loss process

     12345678                        1234567887654321
                                             (mirror duplication)
                                     1234567887654321
                                               (random loss)
                                               14578632
 8                               8         8
 7                               7         7
 6                               6         6
 5                               5         5
 4                               4         4
 3                               3         3
 2                               2         2
 1                               1         1
     1 2 3 4 5 6 7 8                 1 2 3 4 1 2 3 4 5 6 7 8 13 14 15 16




                            Jean-Luc Baril      WM Duplication Random Loss Model
Model
                             Introduction
                                            Theorems
                      Tandem Duplication
                                            Algo σ → 12 · · · n
                       Mirror Duplication
                                            Algo 12 · · · n → σ




Theorem 1
The class C(p) of permutations obtained from the identity after a
given number p of whole mirror duplications is the class of
permutations with at most 2p−1 − 1 valleys.




   2p−2 − 1 valleys



                           Jean-Luc Baril   WM Duplication Random Loss Model
Model
                          Introduction
                                         Theorems
                   Tandem Duplication
                                         Algo σ → 12 · · · n
                    Mirror Duplication
                                         Algo 12 · · · n → σ




Theorem 1
The class C(p) of permutations obtained from the identity after a
given number p of whole mirror duplications is the class of
permutations with at most 2p−1 − 1 valleys.




           2p−1 − 1 = 2p−2 − 1 + 2p−2 − 1 + 1 valleys



                        Jean-Luc Baril   WM Duplication Random Loss Model
Model
       Introduction
                      Theorems
Tandem Duplication
                      Algo σ → 12 · · · n
 Mirror Duplication
                      Algo 12 · · · n → σ




    2p−2 − 1 < k valleys ≤ 2p−1 − 1




     Jean-Luc Baril   WM Duplication Random Loss Model
Model
         Introduction
                        Theorems
  Tandem Duplication
                        Algo σ → 12 · · · n
   Mirror Duplication
                        Algo 12 · · · n → σ




2p−2 − 1 valleys




       Jean-Luc Baril   WM Duplication Random Loss Model
Model
       Introduction
                      Theorems
Tandem Duplication
                      Algo σ → 12 · · · n
 Mirror Duplication
                      Algo 12 · · · n → σ




     Jean-Luc Baril   WM Duplication Random Loss Model
Model
       Introduction
                      Theorems
Tandem Duplication
                      Algo σ → 12 · · · n
 Mirror Duplication
                      Algo 12 · · · n → σ




     Jean-Luc Baril   WM Duplication Random Loss Model
Model
       Introduction
                      Theorems
Tandem Duplication
                      Algo σ → 12 · · · n
 Mirror Duplication
                      Algo 12 · · · n → σ




     Jean-Luc Baril   WM Duplication Random Loss Model
Model
                            Introduction
                                           Theorems
                     Tandem Duplication
                                           Algo σ → 12 · · · n
                      Mirror Duplication
                                           Algo 12 · · · n → σ




Theorem 2
The class C(p) of permutations obtained after a given number p of
whole mirror duplications is the class of permutations avoiding the
alternating permutations of length 2p + 1.

For p = 1, C(1) = S(213, 312)
For p = 2, C(2) =
S(21435, 31425, 41325, 32415, 42315, 21534, 31524, 51324, 32514,
52314, 41523, 51423, 42513, 52413, 43512, 53412)
|C(p)| given by the generating function:


 1           1   1                                                          1
        1−     +       y − 1 · tan x          y − 1 + arctan           √
1−y          y   y                                                         y −1


                          Jean-Luc Baril   WM Duplication Random Loss Model
Model
                               Introduction
                                              Theorems
                        Tandem Duplication
                                              Algo σ → 12 · · · n
                         Mirror Duplication
                                              Algo 12 · · · n → σ


Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn .

  8
  7
  6
  5
  4
  3
  2
  1
      1 2 3 4 5 6 7 8
         13625748




                            Complexity: O(n · log val(σ)) < O(n · log n)

                             Jean-Luc Baril   WM Duplication Random Loss Model
Model
                               Introduction
                                              Theorems
                        Tandem Duplication
                                              Algo σ → 12 · · · n
                         Mirror Duplication
                                              Algo 12 · · · n → σ


Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn .

  8                                                     8
  7                                                     7
  6                                                     6
  5                                                     5
  4                                                     4
  3                                                     3
  2                                                     2
  1                                                     1
      1 2 3 4 5 6 7 8                                       1 2 3 4 5 6 7 8
         13625748                                               134678




                            Complexity: O(n · log val(σ)) < O(n · log n)

                             Jean-Luc Baril   WM Duplication Random Loss Model
Model
                               Introduction
                                              Theorems
                        Tandem Duplication
                                              Algo σ → 12 · · · n
                         Mirror Duplication
                                              Algo 12 · · · n → σ


Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn .

  8                                                     8
  7                                                     7
  6                                                     6
  5                                                     5
  4                                                     4
  3                                                     3
  2                                                     2
  1                                                     1
      1 2 3 4 5 6 7 8                                       1 2 3 4 5 6 7 8
         13625748                                              13467852




                            Complexity: O(n · log val(σ)) < O(n · log n)

                             Jean-Luc Baril   WM Duplication Random Loss Model
Model
                               Introduction
                                                Theorems
                        Tandem Duplication
                                                Algo σ → 12 · · · n
                         Mirror Duplication
                                                Algo 12 · · · n → σ


Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn .

  8                                                       8
  7                                                       7
  6                                                       6
  5                                                       5
  4                                                       4
  3                                                       3
  2                                                       2
  1                                                       1
      1 2 3 4 5 6 7 8                                         1 2 3 4 5 6 7 8
         13625748
                                              ⇒ O(n)             13684257

  8
  7
  6
  5
  4
  3
  2
  1
      1 2 3 4 5 6 7 8
         12345678
                            Complexity: O(n · log val(σ)) < O(n · log n)

                             Jean-Luc Baril     WM Duplication Random Loss Model
Model
                          Introduction
                                         Theorems
                   Tandem Duplication
                                         Algo σ → 12 · · · n
                    Mirror Duplication
                                         Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                    Bn = 0Bn−1 ◦ 1Bn−1
                                                           000
                                                           001
                                                           011
                                                           010
                                                           110
                                                           111
                                                           101
                                                           100


                        Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6
   5                                                             011
   4                                                             010
   3
   2                                                             110
   1
       1 2 3 4 5 6 7 8
                                                                 111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6                                   136 000
   5                                                             011
   4                                                             010
   3
   2                                                             110
   1
       1 2 3 4 5 6 7 8
                                                                 111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6                                   136 000
   5                                                             011
                                         2 001
   4                                                             010
   3
   2                                                             110
   1
       1 2 3 4 5 6 7 8
                                                                 111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6                                   136 000
   5                                                             011
                                         2 001
   4                                                             010
   3                                    57 011
   2                                                             110
   1
       1 2 3 4 5 6 7 8
                                                                 111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6                                   136     000
   5                                                             011
                                         2     001
   4                                                             010
   3                                    57     011
   2
                                         4     010               110
   1
       1 2 3 4 5 6 7 8
                                                                 111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                                Introduction
                                               Theorems
                         Tandem Duplication
                                               Algo σ → 12 · · · n
                          Mirror Duplication
                                               Algo 12 · · · n → σ



Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn .

Step 1 – We label the runs up and runs down with the Binary
Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold
[1976])

                                                          Bn = 0Bn−1 ◦ 1Bn−1
   8
                                                                 000
   7                                                             001
   6                                   136     000
   5                                                             011
                                         2     001
   4                                                             010
   3                                    57     011
   2
                                         4     010               110
   1
       1 2 3 4 5 6 7 8                   8     110               111
                                                                 101
                                                                 100


                              Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8
                     7
                     6
                     5
     136   000       4
       2   001       3
                     2
      57   011       1
       4   010           1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
             ⇓       6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
            ⇓        6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8
                     7
                     6
                     5
                     4
                     3
                     2
                     1
                         1 2 3 4 5 6 7 8
                            13625784




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
           ⇓         6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
                     4                                 4
                     3                                 3
                     2                                 2
                     1                                 1
                         1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            13625784




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
           ⇓         6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
                     4                                 4
                     3                                 3
                     2                                 2
                     1                                 1
                         1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            13625784




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
           ⇓         6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
                     4                                 4
                     3                                 3
                     2                                 2
                     1                                 1
                         1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            13625784




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                         Introduction
                                          Theorems
                  Tandem Duplication
                                          Algo σ → 12 · · · n
                   Mirror Duplication
                                          Algo 12 · · · n → σ


Step 2 – We construct the path

                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
     136   000       4                                 4
       2   001       3                                 3
                     2                                 2
      57   011       1                                 1
       4   010           1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            12345678                          13468752
       8   110
                     8                                 8
                     7                                 7
                     6                                 6
                     5                                 5
                     4                                 4
                     3                                 3
                     2                                 2
                     1                                 1
                         1 2 3 4 5 6 7 8                   1 2 3 4 5 6 7 8
                            13625784                          13625748




                         Jean-Luc Baril   WM Duplication Random Loss Model
Model
                          Introduction
                                         Theorems
                   Tandem Duplication
                                         Algo σ → 12 · · · n
                    Mirror Duplication
                                         Algo 12 · · · n → σ




Complexity
One step requires : O(n)
Whole process : O(n · log val(σ)) < O(n · log n)




                        Jean-Luc Baril   WM Duplication Random Loss Model
AlgoPerm2012 - 14 Jean-Luc Baril

AlgoPerm2012 - 14 Jean-Luc Baril

  • 1.
    Introduction Tandem Duplication Mirror Duplication Whole Mirror Duplication Random Loss Model and Pattern Avoiding Permutations Jean-Luc Baril and R´mi Vernay e barjl@u-bourgogne.fr http://jl.baril.u-bourgogne.fr Laboratory LE2I – University of Burgundy – Dijon Jean-Luc Baril WM Duplication Random Loss Model
  • 2.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Some definitions and notations genome = set of chromosomes chromosome = sequence of genes gene = sequence of Ad´nine, Guanine, Cytosine, Thynmine e (AGCT) genome → n-length permutation σ = σ1 σ2 σ3 . . . σn Sn = the set of n-length permutations Graphical representation of the permutation σ=84 6 2 5 71 3 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 8 4 6 2 5 WM1 3 Jean-Luc Baril 7 Duplication Random Loss Model
  • 3.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Let σ = σ1 σ2 . . . σn be a permutation: ascent → σi < σi +1 run up → σi < σi +1 < · · · < σj descent, run-down valley → σi −1 > σi < σi +1 Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · · 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 4.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Let σ = σ1 σ2 . . . σn be a permutation: ascent → σi < σi +1 run up → σi < σi +1 < · · · < σj descent, run-down valley → σi −1 > σi < σi +1 Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · · 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 5.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Let σ = σ1 σ2 . . . σn be a permutation: ascent → σi < σi +1 run up → σi < σi +1 < · · · < σj descent, run-down valley → σi −1 > σi < σi +1 Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · · 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 6.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Let σ = σ1 σ2 . . . σn be a permutation: ascent → σi < σi +1 run up → σi < σi +1 < · · · < σj descent, run-down valley → σi −1 > σi < σi +1 Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · · 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 7.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Let σ = σ1 σ2 . . . σn be a permutation: ascent → σi < σi +1 run up → σi < σi +1 < · · · < σj descent, run-down valley → σi −1 > σi < σi +1 Alternating permutation → σ1 > σ2 < σ3 > σ4 < σ5 > · · · 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 8.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Definition: σ ∈ Sn contains the pattern π ∈ Sk (π σ) if: ∃1 ≤ i1 < i2 < · · · < ik ≤ n such that σi1 σi2 . . . σik is order-isomorphic to π, i.e., ∀1 ≤ u, v ≤ k, σi u < σi v ⇔ π u < π v . Example: σ = 8 4 6 2 5 7 1 3 contains the pattern π = 4132 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 84625713 Jean-Luc Baril WM Duplication Random Loss Model
  • 9.
    Introduction The Genome - Definition Tandem Duplication Pattern in permutations Mirror Duplication Class of permutations C is a class of permutations if C is stable for the relation σ ∈ C and π σ ⇒ π ∈ C. Basis for a class of permutations A class C of permutations is characterized by its basis B: B = {σ ∈ C, ∀π ≺ σ with π = σ, π ∈ C} / We have C = S(B) where S(B) is the class of permutations avoiding all patterns in B. Jean-Luc Baril WM Duplication Random Loss Model
  • 10.
    Introduction Model Tandem Duplication References - known results Mirror Duplication The tandem duplication random-loss process * This model is well-known in the evolutionary biology literature. * Used for vertebrate mitochondrial genomes 12345678 1234567812345678 1234567812345678 12457368 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 11.
    Introduction Model Tandem Duplication References - known results Mirror Duplication The tandem duplication random-loss process * This model is well-known in the evolutionary biology literature. * Used for vertebrate mitochondrial genomes 12345678 1234567812345678 (duplication) 1234567812345678 12457368 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 12.
    Introduction Model Tandem Duplication References - known results Mirror Duplication The tandem duplication random-loss process * This model is well-known in the evolutionary biology literature. * Used for vertebrate mitochondrial genomes 12345678 1234567812345678 (duplication) 1234567812345678 (random loss) 12457368 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 13.
    Introduction Model Tandem Duplication References - known results Mirror Duplication The tandem duplication random-loss process * This model is well-known in the evolutionary biology literature. * Used for vertebrate mitochondrial genomes 12345678 1234567812345678 (duplication) 1234567812345678 (random loss) 12457368 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8 5 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 14.
    Introduction Model Tandem Duplication References - known results Mirror Duplication 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao On the tandem duplication-random loss model of genome rearrangement,SODA Tandem duplication random-loss process of an interval of size K ; Efficient algorithm for the distance between 2 genomes Jean-Luc Baril WM Duplication Random Loss Model
  • 15.
    Introduction Model Tandem Duplication References - known results Mirror Duplication 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao On the tandem duplication-random loss model of genome rearrangement,SODA 2009 M. Bouvel and D. Rossin A variant of the tandem duplication-random loss model of genome rearrangement, TCS Permutations obtained after p duplications of an interval of size K define a class of permutations avoiding some patterns in B. B = set of minimal permutations with d = 2p descents. Jean-Luc Baril WM Duplication Random Loss Model
  • 16.
    Introduction Model Tandem Duplication References - known results Mirror Duplication 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao On the tandem duplication-random loss model of genome rearrangement,SODA 2009 M. Bouvel and D. Rossin A variant of the tandem duplication-random loss model of genome rearrangement, TCS 2010 M. Bouvel and E. Pergola Posets and permutations in the duplication-loss model: minimal permutations with d descents, Theoretical Computer Science enumeration minimal permutations of size n = d + 1, d + 2, 2d; Jean-Luc Baril WM Duplication Random Loss Model
  • 17.
    Introduction Model Tandem Duplication References - known results Mirror Duplication 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao On the tandem duplication-random loss model of genome rearrangement,SODA 2009 M. Bouvel and D. Rossin A variant of the tandem duplication-random loss model of genome rearrangement, TCS 2010 M. Bouvel and E. Pergola Posets and permutations in the duplication-loss model: minimal permutations with d descents, Theoretical Computer Science 2010 T. Mansour and S. H.F. Yan Minimal permutations with d descents, European Journal of Combinatorics enumeration minimal permutations of size n = 2d − 1 Jean-Luc Baril WM Duplication Random Loss Model
  • 18.
    Introduction Model Tandem Duplication References - known results Mirror Duplication 2006 K. Chaudhuri, K. Chen, R. Mihaescu and S. Rao On the tandem duplication-random loss model of genome rearrangement,SODA 2009 M. Bouvel and D. Rossin A variant of the tandem duplication-random loss model of genome rearrangement, TCS 2010 M. Bouvel and E. Pergola Posets and permutations in the duplication-loss model: minimal permutations with d descents, Theoretical Computer Science 2010 T. Mansour and S. H.F. Yan Minimal permutations with d descents, European Journal of Combinatorics 2010 M. Bouvel and L. Ferrari On the enumeration of d-minimal permutations, Arxiv prove that the number of minimal permutations with d descents can be obtained by computing some determinants, but they cannot provide a general closed formula Jean-Luc Baril WM Duplication Random Loss Model
  • 19.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ The whole mirror duplication random-loss process 12345678 1234567887654321 1234567887654321 14578632 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 20.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ The whole mirror duplication random-loss process 12345678 1234567887654321 (mirror duplication) 1234567887654321 14578632 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 21.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ The whole mirror duplication random-loss process 12345678 1234567887654321 (mirror duplication) 1234567887654321 (random loss) 14578632 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 22.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ The whole mirror duplication random-loss process 12345678 1234567887654321 (mirror duplication) 1234567887654321 (random loss) 14578632 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8 13 14 15 16 Jean-Luc Baril WM Duplication Random Loss Model
  • 23.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Theorem 1 The class C(p) of permutations obtained from the identity after a given number p of whole mirror duplications is the class of permutations with at most 2p−1 − 1 valleys. 2p−2 − 1 valleys Jean-Luc Baril WM Duplication Random Loss Model
  • 24.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Theorem 1 The class C(p) of permutations obtained from the identity after a given number p of whole mirror duplications is the class of permutations with at most 2p−1 − 1 valleys. 2p−1 − 1 = 2p−2 − 1 + 2p−2 − 1 + 1 valleys Jean-Luc Baril WM Duplication Random Loss Model
  • 25.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ 2p−2 − 1 < k valleys ≤ 2p−1 − 1 Jean-Luc Baril WM Duplication Random Loss Model
  • 26.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ 2p−2 − 1 valleys Jean-Luc Baril WM Duplication Random Loss Model
  • 27.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Jean-Luc Baril WM Duplication Random Loss Model
  • 28.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Jean-Luc Baril WM Duplication Random Loss Model
  • 29.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Jean-Luc Baril WM Duplication Random Loss Model
  • 30.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Theorem 2 The class C(p) of permutations obtained after a given number p of whole mirror duplications is the class of permutations avoiding the alternating permutations of length 2p + 1. For p = 1, C(1) = S(213, 312) For p = 2, C(2) = S(21435, 31425, 41325, 32415, 42315, 21534, 31524, 51324, 32514, 52314, 41523, 51423, 42513, 52413, 43512, 53412) |C(p)| given by the generating function: 1 1 1 1 1− + y − 1 · tan x y − 1 + arctan √ 1−y y y y −1 Jean-Luc Baril WM Duplication Random Loss Model
  • 31.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn . 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 13625748 Complexity: O(n · log val(σ)) < O(n · log n) Jean-Luc Baril WM Duplication Random Loss Model
  • 32.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn . 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625748 134678 Complexity: O(n · log val(σ)) < O(n · log n) Jean-Luc Baril WM Duplication Random Loss Model
  • 33.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn . 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625748 13467852 Complexity: O(n · log val(σ)) < O(n · log n) Jean-Luc Baril WM Duplication Random Loss Model
  • 34.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 1 for a shortest path from 12 · · · n to σ ∈ Sn . 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625748 ⇒ O(n) 13684257 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 12345678 Complexity: O(n · log val(σ)) < O(n · log n) Jean-Luc Baril WM Duplication Random Loss Model
  • 35.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 000 001 011 010 110 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 36.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 5 011 4 010 3 2 110 1 1 2 3 4 5 6 7 8 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 37.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 136 000 5 011 4 010 3 2 110 1 1 2 3 4 5 6 7 8 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 38.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 136 000 5 011 2 001 4 010 3 2 110 1 1 2 3 4 5 6 7 8 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 39.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 136 000 5 011 2 001 4 010 3 57 011 2 110 1 1 2 3 4 5 6 7 8 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 40.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 136 000 5 011 2 001 4 010 3 57 011 2 4 010 110 1 1 2 3 4 5 6 7 8 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 41.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Algorithm 2 for a shortest path from 12 · · · n to σ ∈ Sn . Step 1 – We label the runs up and runs down with the Binary Reflected Gray Code (F. Gray [1953], Bitner, Ehrlich, Reingold [1976]) Bn = 0Bn−1 ◦ 1Bn−1 8 000 7 001 6 136 000 5 011 2 001 4 010 3 57 011 2 4 010 110 1 1 2 3 4 5 6 7 8 8 110 111 101 100 Jean-Luc Baril WM Duplication Random Loss Model
  • 42.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 7 6 5 136 000 4 2 001 3 2 57 011 1 4 010 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 43.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 44.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 45.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 46.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 47.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 48.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 49.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 50.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 51.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 Jean-Luc Baril WM Duplication Random Loss Model
  • 52.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 53.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 54.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 55.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 56.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 57.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 58.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 59.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Jean-Luc Baril WM Duplication Random Loss Model
  • 60.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 13625784 Jean-Luc Baril WM Duplication Random Loss Model
  • 61.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625784 Jean-Luc Baril WM Duplication Random Loss Model
  • 62.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625784 Jean-Luc Baril WM Duplication Random Loss Model
  • 63.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 ⇓ 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625784 Jean-Luc Baril WM Duplication Random Loss Model
  • 64.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Step 2 – We construct the path 8 8 7 7 6 6 5 5 136 000 4 4 2 001 3 3 2 2 57 011 1 1 4 010 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12345678 13468752 8 110 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 13625784 13625748 Jean-Luc Baril WM Duplication Random Loss Model
  • 65.
    Model Introduction Theorems Tandem Duplication Algo σ → 12 · · · n Mirror Duplication Algo 12 · · · n → σ Complexity One step requires : O(n) Whole process : O(n · log val(σ)) < O(n · log n) Jean-Luc Baril WM Duplication Random Loss Model