SlideShare a Scribd company logo
1 of 23
Download to read offline
Introduction    Optimization problems         Recognition         Encoding all realizers   Conclusion




               Permutation graphs — an introduction

                                         Ioan Todinca

                                    LIFO - Universit´ d’Orl´ans
                                                    e      e


                 Algorithms and permutations, february 2012




                                                                                                  1/14
Introduction          Optimization problems    Recognition       Encoding all realizers       Conclusion



                                      Permutation graphs



         1           2          3          4
         1
         0           1
                     0          1
                                0         11
                                          00
         1
         0           1
                     0          1
                                0         11
                                          00                 2
                                                                                      3   4
                                                       1
                1
                0        1
                         0                                   5
                1
                0        1
                         0                                           6
               5          6




           • Optimisation algorithms
                    use, as input, the intersection model (realizer)
           • Recognition algorithms
                    output the intersection(s) model(s)



                                                                                                     2/14
Introduction      Optimization problems    Recognition   Encoding all realizers   Conclusion



                                      Plan of the talk



          1. Relationship with other graph classes
          2. Optimisation problems :
             MaxIndependentSet/MaxClique/Coloring ;
             Treewidth
          3. Recognition algorithm
          4. Encoding all realizers via modular decomposition
          5. Conclusion




                                                                                         3/14
Introduction         Optimization problems    Recognition           Encoding all realizers           Conclusion



                             Definition and basic properties
                                                    2       1         6          5           4       3


         1          2          3          4                     2
         1
         0          1
                    0          1
                               0         11
                                         00
         1
         0          1
                    0          1
                               0         11
                                         00                                              3       4
                                                        1
                                                                5         6
                1
                0       1
                        0
                1
                0       1
                        0
               5         6                          1       5         6          3           2       4




           • Realizer : (π1 , π2 )
           • One can ”reverse” the realizer upside-down or right-left :
               (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 )
           • Complements of permutation graphs are permutation graphs.
               → Reverse the ordering of the bottoms of the segments :
               (π1 , π2 ) → (π1 , π2 )
                                                                                                            4/14
Introduction         Optimization problems    Recognition          Encoding all realizers       Conclusion



                             Definition and basic properties
                                                    2       1        6          5           4   3


         1          2          3          4
         1
         0          1
                    0          1
                               0         11
                                         00
         1
         0          1
                    0          1
                               0         11
                                         00

                1
                0       1
                        0
                1
                0       1
                        0
               5         6                          1       5        6          3           2   4




           • Realizer : (π1 , π2 )
           • One can ”reverse” the realizer upside-down or right-left :
               (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 )
           • Complements of permutation graphs are permutation graphs.
               → Reverse the ordering of the bottoms of the segments :
               (π1 , π2 ) → (π1 , π2 )
                                                                                                       4/14
Introduction         Optimization problems    Recognition          Encoding all realizers       Conclusion



                             Definition and basic properties
                                                    2       1        6          5           4   3



         1          2          3          4
         1
         0          1
                    0          1
                               0         11
                                         00
         1
         0          1
                    0          1
                               0         11
                                         00

                1
                0       1
                        0
                1
                0       1
                        0
               5         6                           4      2         3         6           5   1




           • Realizer : (π1 , π2 )
           • One can ”reverse” the realizer upside-down or right-left :
               (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 )
           • Complements of permutation graphs are permutation graphs.
               → Reverse the ordering of the bottoms of the segments :
               (π1 , π2 ) → (π1 , π2 )
                                                                                                       4/14
Introduction         Optimization problems    Recognition          Encoding all realizers       Conclusion



                             Definition and basic properties
                                                    2       1        6          5           4   3



         1          2          3          4
         1
         0          1
                    0          1
                               0         11
                                         00
         1
         0          1
                    0          1
                               0         11
                                         00

                1
                0       1
                        0
                1
                0       1
                        0
               5         6                           4      2         3         6           5   1




           • Realizer : (π1 , π2 )
           • One can ”reverse” the realizer upside-down or right-left :
               (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 )
           • Complements of permutation graphs are permutation graphs.
               → Reverse the ordering of the bottoms of the segments :
               (π1 , π2 ) → (π1 , π2 )
                                                                                                       4/14
Introduction         Optimization problems   Recognition     Encoding all realizers   Conclusion



                          More intersection graph classes




               Circle graphs                         Trapezoid graphs
       Books on graph classes : [Golumbic ’80 ; Brandst¨dt, Le, Spinrad
                                                       a
       ’99 ; Spinrad 2003]




                                                                                             5/14
Introduction        Optimization problems           Recognition          Encoding all realizers   Conclusion



      MaxIndependentSet via Dynamic Programming
                                 1          2   3           4       5         6




                                2           4   3           6       1        5



           • Dynamic programming from left to right :

                                      MIS[i] = 1 + max MIS[j]
                                                           j left to i

           • MaxIndependentSet corresponds to the longest increasing
               sequence in a permutation — O(n log n)
           • MaxClique : longest decreasing sequence
           • Coloring : chromatic number = max clique (perfect graphs)
                                                                                                         6/14
Introduction             Optimization problems         Recognition       Encoding all realizers       Conclusion



      Treewidth via dynamic programming on scanlines

               1          2            3          4
               1
               0
               1
               0          1
                          0
                          1
                          0            1
                                       0
                                       1
                                       0         11
                                                 00
                                                 11
                                                 00                  2   1          6         5   4         3

                     1
                     0          1
                                0
                     1
                     0          1
                                0
                    5            6



               12         256          23         34
                                                                     1   5          6         3   2         4




           • Minimal separators correspond to scanlines
           • Bags correspond to areas between two scanlines
           • Treewidth can be solved in polynomial time [Bodlaender,
                Kloks, Kratsch 95 ; Meister 2010]

                                                                                                             7/14
Introduction             Optimization problems         Recognition       Encoding all realizers       Conclusion



      Treewidth via dynamic programming on scanlines

               1          2            3          4
               1
               0
               1
               0          1
                          0
                          1
                          0            1
                                       0
                                       1
                                       0         11
                                                 00
                                                 11
                                                 00                  2   1          6         5   4         3

                     1
                     0          1
                                0
                     1
                     0          1
                                0
                    5            6



               12         256          23         34
                                                                     1   5          6         3   2         4




           • Minimal separators correspond to scanlines
           • Bags correspond to areas between two scanlines
           • Treewidth can be solved in polynomial time [Bodlaender,
                Kloks, Kratsch 95 ; Meister 2010]

                                                                                                             7/14
Introduction             Optimization problems         Recognition       Encoding all realizers       Conclusion



      Treewidth via dynamic programming on scanlines

               1          2            3          4
               1
               0
               1
               0          1
                          0
                          1
                          0            1
                                       0
                                       1
                                       0         11
                                                 00
                                                 11
                                                 00                  2   1          6         5   4         3

                     1
                     0          1
                                0
                     1
                     0          1
                                0
                    5            6



               12         256          23         34
                                                                     1   5          6         3   2         4




           • Minimal separators correspond to scanlines
           • Bags correspond to areas between two scanlines
           • Treewidth can be solved in polynomial time [Bodlaender,
                Kloks, Kratsch 95 ; Meister 2010]

                                                                                                             7/14
Introduction       Optimization problems   Recognition   Encoding all realizers   Conclusion



                                 Recognition algorithm



       Theorem ([Pnueli, Lempel, Even ’71], see also [Golumbic ’80])
       G is a permutation graph if and only if G and G are comparability
       graphs.

       Algorithm
          1. Find a transitive orientation of G and one of G
          2. Construct an intersection model for G
       In O(n + m) time by [McConnell, Spinrad ’99]




                                                                                         8/14
Introduction        Optimization problems    Recognition       Encoding all realizers       Conclusion



      permutation ⊆ comparability ∩ co-comparability


       Transitive orientation of a permutation graph G : orient edges
       according to the top endpoints of the segments.
                                                   2       1     6          5           4   3


         1          2         3          4
         1
         0          1
                    0         1
                              0         11
                                        00
         1
         0          1
                    0         1
                              0         11
                                        00

                1
                0
                1
                0       1
                        0
                        1
                        0
               5         6                         1       5     6          3           2   4




       If xy , yz ∈ E and π1 (x) < π1 (y ) < π1 (z) then xz ∈ E .



                                                                                                   9/14
Introduction        Optimization problems    Recognition       Encoding all realizers       Conclusion



      permutation ⊆ comparability ∩ co-comparability


       Transitive orientation of a permutation graph G : orient edges
       according to the top endpoints of the segments.
                                                   2       1     6          5           4   3


         1          2         3          4
         1
         0          1
                    0         1
                              0         11
                                        00
         1
         0          1
                    0         1
                              0         11
                                        00

                1
                0
                1
                0       1
                        0
                        1
                        0
               5         6                         1       5     6          3           2   4




       If xy , yz ∈ E and π1 (x) < π1 (y ) < π1 (z) then xz ∈ E .



                                                                                                   9/14
Introduction     Optimization problems       Recognition    Encoding all realizers   Conclusion



       comparability ∩ co-comparability ⊆ permutation

       Let Etr be a transitive orientation of G and Ftr a transitive
       orientation of its complement.

                                  1      2            3     4
                                  1
                                  0
                                  1
                                  0      1
                                         0
                                         1
                                         0            1
                                                      0
                                                      1
                                                      0    11
                                                           00
                                                           11
                                                           00




                                         1
                                         0            1
                                                      0
                                         1
                                         0            1
                                                      0
                                         5            6




       Lemma
       Etr ∪ Ftr induces a total ordering π1 (Etr ∪ Ftr ) on the vertex set.


                                                                                           10/14
Introduction      Optimization problems       Recognition    Encoding all realizers   Conclusion



       comparability ∩ co-comparability ⊆ permutation

       Let Etr be a transitive orientation of G and Ftr a transitive
       orientation of its complement.

                                   1      2            3     4
                                   1
                                   0
                                   1
                                   0      1
                                          0
                                          1
                                          0            1
                                                       0
                                                       1
                                                       0    11
                                                            00
                                                            11
                                                            00




                                          1
                                          0            1
                                                       0
                                          1
                                          0            1
                                                       0
                                          5            6




       Lemma
       Etr ∪ Ftr induces a total ordering π1 (Etr ∪ Ftr ) on the vertex set.
       rev (Etr ) ∪ Ftr induces another total ordering π2 (rev (Etr ) ∪ Ftr ).

                                                                                            10/14
Introduction        Optimization problems        Recognition       Encoding all realizers       Conclusion



                                            A realizer of G

       Permutations π1 (Etr ∪ Ftr ) and π2 (rev (Etr ) ∪ Ftr ) form a realizer
       of G .
           2    1         6         5        4    3


                                                               1           2                3    4
                                                               1
                                                               0           1
                                                                           0                1
                                                                                            0   11
                                                                                                00
                                                               1
                                                               0           1
                                                                           0                1
                                                                                            0   11
                                                                                                00

                                                                      1
                                                                      0
                                                                      1
                                                                      0          1
                                                                                 0
                                                                                 1
                                                                                 0
           1    5         6         3        2    4                  5            6




       Segments x and y intersect iff (xy ) ∈ Etr and (yx) ∈ rev (Etr ) or
       vice-versa ; equivalently, iff xy ∈ E .


                                                                                                      11/14
Introduction        Optimization problems   Recognition   Encoding all realizers   Conclusion



                         Modules and common intervals

           • Substituting a segment (vertex) by the realizer of a
               permutation graph (module) produces a new permutation
               graph.




                 • A common interval of π1 and π2 forms a module in G
                 • Strong modules correspond exactly to strong common
                   intervals [de Mongolfier 2003]
           • A graph is a permutation graphs iff all prime nodes in the
               modular decomposition are permutation graphs.

                                                                                         12/14
Introduction        Optimization problems   Recognition   Encoding all realizers   Conclusion



                         Modules and common intervals

           • Substituting a segment (vertex) by the realizer of a
               permutation graph (module) produces a new permutation
               graph.




                 • A common interval of π1 and π2 forms a module in G
                 • Strong modules correspond exactly to strong common
                   intervals [de Mongolfier 2003]
           • A graph is a permutation graphs iff all prime nodes in the
               modular decomposition are permutation graphs.

                                                                                         12/14
Introduction   Optimization problems     Recognition            Encoding all realizers            Conclusion



                                 Encoding realizers

                                                       1             2             3              4
                                                       1
                                                       0             1
                                                                     0             1
                                                                                   0             11
                                                                                                 00
                                                       1
                                                       0             1
                                                                     0             1
                                                                                   0             11
                                                                                                 00

                                                                 1
                                                                 0        1
                                                                          0
  Theorem ([Gallai ’67])                                         1
                                                                 0        1
                                                                          0
                                                                5          6
  A prime permutation graph has a
  unique realizer, up to reversals.                                                  prime
                                                                               1     2                4
                                                                                         3
  The modular decomposition tree
  + realizers of prime nodes
                                                            parallel                 2       3        4
  encode all possible realizers of G ,
  cf. [Crespelle, Paul 2010].
                                                       series              1


                                                       5        6



                                                                                                          13/14
Introduction        Optimization problems      Recognition   Encoding all realizers   Conclusion



                                            Conclusion

       Summary
           • Many optimization problems become polynomial on
               permutation graphs
           • Representations (intersection models) based on modular
               decompositions
       Some questions
           • Is Bandwidth polynomial or NP-complete on permutation
               graphs ?
           • What about subgraph isomorphism from parametrized point
               of view ?



                                                                                            14/14
Introduction        Optimization problems      Recognition   Encoding all realizers   Conclusion



                                            Conclusion

       Summary
           • Many optimization problems become polynomial on
               permutation graphs
           • Representations (intersection models) based on modular
               decompositions
       Some questions
           • Is Bandwidth polynomial or NP-complete on permutation
               graphs ?
           • What about subgraph isomorphism from parametrized point
               of view ?
       Thank you ! Your questions ?


                                                                                            14/14

More Related Content

More from AlgoPerm 2012

AlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc BarilAlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc BarilAlgoPerm 2012
 
AlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent BulteauAlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent BulteauAlgoPerm 2012
 
AlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony LabarreAlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony LabarreAlgoPerm 2012
 
AlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique RossinAlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique RossinAlgoPerm 2012
 
AlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier GoaocAlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier GoaocAlgoPerm 2012
 
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent PilaudAlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent PilaudAlgoPerm 2012
 
AlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean CardinalAlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean CardinalAlgoPerm 2012
 
AlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde BouvelAlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde BouvelAlgoPerm 2012
 
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-MélouAlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-MélouAlgoPerm 2012
 
AlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe PaulAlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe PaulAlgoPerm 2012
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm 2012
 
AlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf NiedermeierAlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf NiedermeierAlgoPerm 2012
 
AlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida LarakiAlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida LarakiAlgoPerm 2012
 

More from AlgoPerm 2012 (13)

AlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc BarilAlgoPerm2012 - 14 Jean-Luc Baril
AlgoPerm2012 - 14 Jean-Luc Baril
 
AlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent BulteauAlgoPerm2012 - 13 Laurent Bulteau
AlgoPerm2012 - 13 Laurent Bulteau
 
AlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony LabarreAlgoPerm2012 - 12 Anthony Labarre
AlgoPerm2012 - 12 Anthony Labarre
 
AlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique RossinAlgoPerm2012 - 11 Dominique Rossin
AlgoPerm2012 - 11 Dominique Rossin
 
AlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier GoaocAlgoPerm2012 - 10 Xavier Goaoc
AlgoPerm2012 - 10 Xavier Goaoc
 
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent PilaudAlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm2012 - 09 Vincent Pilaud
 
AlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean CardinalAlgoPerm2012 - 08 Jean Cardinal
AlgoPerm2012 - 08 Jean Cardinal
 
AlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde BouvelAlgoPerm2012 - 07 Mathilde Bouvel
AlgoPerm2012 - 07 Mathilde Bouvel
 
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-MélouAlgoPerm2012 - 06 Mireille Bousquet-Mélou
AlgoPerm2012 - 06 Mireille Bousquet-Mélou
 
AlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe PaulAlgoPerm2012 - 04 Christophe Paul
AlgoPerm2012 - 04 Christophe Paul
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
 
AlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf NiedermeierAlgoPerm2012 - 02 Rolf Niedermeier
AlgoPerm2012 - 02 Rolf Niedermeier
 
AlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida LarakiAlgoPerm2012 - 01 Rida Laraki
AlgoPerm2012 - 01 Rida Laraki
 

Recently uploaded

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 

Recently uploaded (20)

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 

AlgoPerm2012 - 05 Ioan Todinca

  • 1. Introduction Optimization problems Recognition Encoding all realizers Conclusion Permutation graphs — an introduction Ioan Todinca LIFO - Universit´ d’Orl´ans e e Algorithms and permutations, february 2012 1/14
  • 2. Introduction Optimization problems Recognition Encoding all realizers Conclusion Permutation graphs 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 2 3 4 1 1 0 1 0 5 1 0 1 0 6 5 6 • Optimisation algorithms use, as input, the intersection model (realizer) • Recognition algorithms output the intersection(s) model(s) 2/14
  • 3. Introduction Optimization problems Recognition Encoding all realizers Conclusion Plan of the talk 1. Relationship with other graph classes 2. Optimisation problems : MaxIndependentSet/MaxClique/Coloring ; Treewidth 3. Recognition algorithm 4. Encoding all realizers via modular decomposition 5. Conclusion 3/14
  • 4. Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 2 3 4 2 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 3 4 1 5 6 1 0 1 0 1 0 1 0 5 6 1 5 6 3 2 4 • Realizer : (π1 , π2 ) • One can ”reverse” the realizer upside-down or right-left : (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 ) • Complements of permutation graphs are permutation graphs. → Reverse the ordering of the bottoms of the segments : (π1 , π2 ) → (π1 , π2 ) 4/14
  • 5. Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 5 6 1 5 6 3 2 4 • Realizer : (π1 , π2 ) • One can ”reverse” the realizer upside-down or right-left : (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 ) • Complements of permutation graphs are permutation graphs. → Reverse the ordering of the bottoms of the segments : (π1 , π2 ) → (π1 , π2 ) 4/14
  • 6. Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 5 6 4 2 3 6 5 1 • Realizer : (π1 , π2 ) • One can ”reverse” the realizer upside-down or right-left : (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 ) • Complements of permutation graphs are permutation graphs. → Reverse the ordering of the bottoms of the segments : (π1 , π2 ) → (π1 , π2 ) 4/14
  • 7. Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 5 6 4 2 3 6 5 1 • Realizer : (π1 , π2 ) • One can ”reverse” the realizer upside-down or right-left : (π1 , π2 ) ∼ (π2 , π1 ) ∼ (π1 , π2 ) ∼ (π2 , π1 ) • Complements of permutation graphs are permutation graphs. → Reverse the ordering of the bottoms of the segments : (π1 , π2 ) → (π1 , π2 ) 4/14
  • 8. Introduction Optimization problems Recognition Encoding all realizers Conclusion More intersection graph classes Circle graphs Trapezoid graphs Books on graph classes : [Golumbic ’80 ; Brandst¨dt, Le, Spinrad a ’99 ; Spinrad 2003] 5/14
  • 9. Introduction Optimization problems Recognition Encoding all realizers Conclusion MaxIndependentSet via Dynamic Programming 1 2 3 4 5 6 2 4 3 6 1 5 • Dynamic programming from left to right : MIS[i] = 1 + max MIS[j] j left to i • MaxIndependentSet corresponds to the longest increasing sequence in a permutation — O(n log n) • MaxClique : longest decreasing sequence • Coloring : chromatic number = max clique (perfect graphs) 6/14
  • 10. Introduction Optimization problems Recognition Encoding all realizers Conclusion Treewidth via dynamic programming on scanlines 1 2 3 4 1 0 1 0 1 0 1 0 1 0 1 0 11 00 11 00 2 1 6 5 4 3 1 0 1 0 1 0 1 0 5 6 12 256 23 34 1 5 6 3 2 4 • Minimal separators correspond to scanlines • Bags correspond to areas between two scanlines • Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010] 7/14
  • 11. Introduction Optimization problems Recognition Encoding all realizers Conclusion Treewidth via dynamic programming on scanlines 1 2 3 4 1 0 1 0 1 0 1 0 1 0 1 0 11 00 11 00 2 1 6 5 4 3 1 0 1 0 1 0 1 0 5 6 12 256 23 34 1 5 6 3 2 4 • Minimal separators correspond to scanlines • Bags correspond to areas between two scanlines • Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010] 7/14
  • 12. Introduction Optimization problems Recognition Encoding all realizers Conclusion Treewidth via dynamic programming on scanlines 1 2 3 4 1 0 1 0 1 0 1 0 1 0 1 0 11 00 11 00 2 1 6 5 4 3 1 0 1 0 1 0 1 0 5 6 12 256 23 34 1 5 6 3 2 4 • Minimal separators correspond to scanlines • Bags correspond to areas between two scanlines • Treewidth can be solved in polynomial time [Bodlaender, Kloks, Kratsch 95 ; Meister 2010] 7/14
  • 13. Introduction Optimization problems Recognition Encoding all realizers Conclusion Recognition algorithm Theorem ([Pnueli, Lempel, Even ’71], see also [Golumbic ’80]) G is a permutation graph if and only if G and G are comparability graphs. Algorithm 1. Find a transitive orientation of G and one of G 2. Construct an intersection model for G In O(n + m) time by [McConnell, Spinrad ’99] 8/14
  • 14. Introduction Optimization problems Recognition Encoding all realizers Conclusion permutation ⊆ comparability ∩ co-comparability Transitive orientation of a permutation graph G : orient edges according to the top endpoints of the segments. 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 5 6 1 5 6 3 2 4 If xy , yz ∈ E and π1 (x) < π1 (y ) < π1 (z) then xz ∈ E . 9/14
  • 15. Introduction Optimization problems Recognition Encoding all realizers Conclusion permutation ⊆ comparability ∩ co-comparability Transitive orientation of a permutation graph G : orient edges according to the top endpoints of the segments. 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 5 6 1 5 6 3 2 4 If xy , yz ∈ E and π1 (x) < π1 (y ) < π1 (z) then xz ∈ E . 9/14
  • 16. Introduction Optimization problems Recognition Encoding all realizers Conclusion comparability ∩ co-comparability ⊆ permutation Let Etr be a transitive orientation of G and Ftr a transitive orientation of its complement. 1 2 3 4 1 0 1 0 1 0 1 0 1 0 1 0 11 00 11 00 1 0 1 0 1 0 1 0 5 6 Lemma Etr ∪ Ftr induces a total ordering π1 (Etr ∪ Ftr ) on the vertex set. 10/14
  • 17. Introduction Optimization problems Recognition Encoding all realizers Conclusion comparability ∩ co-comparability ⊆ permutation Let Etr be a transitive orientation of G and Ftr a transitive orientation of its complement. 1 2 3 4 1 0 1 0 1 0 1 0 1 0 1 0 11 00 11 00 1 0 1 0 1 0 1 0 5 6 Lemma Etr ∪ Ftr induces a total ordering π1 (Etr ∪ Ftr ) on the vertex set. rev (Etr ) ∪ Ftr induces another total ordering π2 (rev (Etr ) ∪ Ftr ). 10/14
  • 18. Introduction Optimization problems Recognition Encoding all realizers Conclusion A realizer of G Permutations π1 (Etr ∪ Ftr ) and π2 (rev (Etr ) ∪ Ftr ) form a realizer of G . 2 1 6 5 4 3 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 1 0 1 0 1 5 6 3 2 4 5 6 Segments x and y intersect iff (xy ) ∈ Etr and (yx) ∈ rev (Etr ) or vice-versa ; equivalently, iff xy ∈ E . 11/14
  • 19. Introduction Optimization problems Recognition Encoding all realizers Conclusion Modules and common intervals • Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph. • A common interval of π1 and π2 forms a module in G • Strong modules correspond exactly to strong common intervals [de Mongolfier 2003] • A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs. 12/14
  • 20. Introduction Optimization problems Recognition Encoding all realizers Conclusion Modules and common intervals • Substituting a segment (vertex) by the realizer of a permutation graph (module) produces a new permutation graph. • A common interval of π1 and π2 forms a module in G • Strong modules correspond exactly to strong common intervals [de Mongolfier 2003] • A graph is a permutation graphs iff all prime nodes in the modular decomposition are permutation graphs. 12/14
  • 21. Introduction Optimization problems Recognition Encoding all realizers Conclusion Encoding realizers 1 2 3 4 1 0 1 0 1 0 11 00 1 0 1 0 1 0 11 00 1 0 1 0 Theorem ([Gallai ’67]) 1 0 1 0 5 6 A prime permutation graph has a unique realizer, up to reversals. prime 1 2 4 3 The modular decomposition tree + realizers of prime nodes parallel 2 3 4 encode all possible realizers of G , cf. [Crespelle, Paul 2010]. series 1 5 6 13/14
  • 22. Introduction Optimization problems Recognition Encoding all realizers Conclusion Conclusion Summary • Many optimization problems become polynomial on permutation graphs • Representations (intersection models) based on modular decompositions Some questions • Is Bandwidth polynomial or NP-complete on permutation graphs ? • What about subgraph isomorphism from parametrized point of view ? 14/14
  • 23. Introduction Optimization problems Recognition Encoding all realizers Conclusion Conclusion Summary • Many optimization problems become polynomial on permutation graphs • Representations (intersection models) based on modular decompositions Some questions • Is Bandwidth polynomial or NP-complete on permutation graphs ? • What about subgraph isomorphism from parametrized point of view ? Thank you ! Your questions ? 14/14