Modeling Dynamic Systems
• Basic Quantities From Earthquake Records
• Fourier Transform, Frequency Domain
• Single Degree of Freedom Systems (SDOF)
Elastic Response Spectra
• Multi-Degree of Freedom Systems, (MDOF)
Modal Analysis
• Dynamic Analysis by Modal Methods
• Method of Complex Response
Earthquake Records
Numerical Concept
Acceleration vs. Time
Acceleration vs. Time

4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
0.00

10.00

20.00

30.00

40.00

50.00

Time (sec)

60.00

70.00

80.00

90.00
Acceleration vs. Time, t=16.00 tot=16 to 20 sec
vs Time 20.00 seconds
Acceleration
4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
16.00

16.50

17.00

17.50

18.00
Time (sec)

18.50

19.00

19.50

20.00
Harmonic Motion
t = time

A = amplitude of wave
ω = frequency (radians / sec) SDOF Response
1.00E-02
8.00E-03
6.00E-03

X=A sin(ωt-φ)

Displ. (m)

4.00E-03
Amplitude

2.00E-03
0.00E+00

φ = phase lag (radians )
Mass = 10.132 kg
Damping = 0.00
Spring = 1.0 N/m
ωn=√k/m=0.314 r/s
Drive Freq = 0.0
Drive Force = 0.0 N
Initial Vel. = 0.0
m/s
Initial Disp. = 0.01 m

-2.00E-03
-4.00E-03
-6.00E-03
Period=1/Frequency

-8.00E-03
-1.00E-02
0.000

5.000

10.000

15.000

20.000
time (sec)

25.000

30.000

35.000

40.000
Fourier Transform
2π s
ωS =
N ∆t

N /2


(t ) = Re ∑ X s e iωS t
x
s =0

1 N −1  e −iωS k∆t

,
∑ xk
 N k =0
 = 
X S  N −1
−iω k∆t
2
k e S ,
x
N∑
 k =0

e

− iωS k∆t

N
s = 0,1, 2,...,
2

N
2


N 
for 1 ≤ s <
2 


for s = 0, s =

= cos(ωS k∆t ) − i sin(ωS k∆t )




Mag X S = ℜX + ℑX
2
S

2
S


 ℑX S
φ = tan 
 ℜX

S

−1





Fourier Transform; El Centro
Fourier Transform of El Centro Accleration Record

0.008
0.007
0.006

Magnitude

0.005
0.004
0.003
0.002
0.001
0
0

20

40

60
Circular Frequency, v

80

100

120
Earthquake Elastic Response Spectra
P0 sin(ωt )
x

xt

m
c

k/2

m

x
k/2

c

k/2

k/2

xg

(a)

m + cx + kx = P0 sin(ω t )
x 

m + mg + cx + kx = 0 or
x
x
ωn =

k
m

(b)

D = c / ccrit

c crit = km

m + cx + kx = − mg = Pearthquake (t )
x 
x

undamped systems; ωd =

k
(1 − D 2 ) damped systems
m
Duhamel's Integral
t

p(τ)

dx (t ) = e

−ξ (1) ( t −τ )

t

1
x(t ) =
mω D

 p (τ )dτ

sin ω D (t − τ )

 mω D


p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ
∫
0

x(t ) = A(t ) sin ω D t − B(t ) cos ω D t
t

t

1
eξωτ
1
eξωτ
A(t ) =
∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ
mωD 0
0
A
∆τ 1 A
 A

A(t ) =

∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ )
mωD ζ ζ
2
 2

exp(−ξω∆τ ) + p(t ) cos ωD t
Elastic Response Spectrum
7.00E-02

Displacement Response Spectrum
El Centro, 1940 E-W

6.00E-02

Displacement (m)

5.00E-02
D=0.0
4.00E-02

D=0.02
D=0.05

3.00E-02

2.00E-02

1.00E-02

0.00E+00
1.00E-01

1.00E+00

1.00E+01
Frequency (rad/sec)

1.00E+02
Multi-Degree of Freedom
x3

m3
c3

k3 /2

x2

k1/2

k3/2

c2

k2/2

m1
c1

k1/2

y3

y2

m + cx + kx = p(t)
x 

y4

y1

y5

θ1
(a)

k12  k1N   x1 
k 22  k 2 N   x2 
 
 
  
  
 
ki 2  kiN   xi 

kij = force corresponding to coordinate i
due to unit displacement of coordinate j
cij = force corresponding to coordinate i
due to unit velocity of coordinate j
mij = force corresponding to coordinate i
due to unit acceleration of coordinate j

m2

k2/2

x1

 f S 1   k11
 f  k
 S 2   21
 =
   
 f Si   ki1
  

θ2

θ3
(b)

θ4

θ5
Modal Analysis

m + kx = p(t)
x

mΦX + kΦX = p(t )

T
T
T

φ n mΦX + φ n kΦX = φ n p(t)
T
T
T

φ n mφ n X n + φ n kφ n X n = φ n p(t)


M n X n + K n X n = Pn (t )
Modal Damping


M n X n + C n X n + K n X n = Pn (t )
 + 2ξ ω X + K X = Pn (t )

Xn
n n
n
n
n
Mn
T
M n ≡ φ n mφ n

T
C n ≡ φ n cφ n

T
K n ≡ φ n kφ n

c = a 0 m + a1k
C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n
n
n

T
Pn (t ) ≡ φ n p(t )
FEM Frequency Domain


[ M ]{ u} + [ K ]{ u} = { p} e

iωt

{ u} = { U} e then
{[ K ] − ω 2 [ M ]}{ U} = {p}
i ωt
Finite Elements
u1

u7
G1,ρ1,ν1

u2

u8

[ K1 ] = fn(G1 , ρ1 ,ν 1 )
[ m1 ] = fn( ρ1 )
ui = ai x + bi y + c

 k1,1
k
 2,1


k
 7 ,1
k8,1


k1, 2
k 2, 2

k1, 7
k 2, 7

k7, 2
k8, 2

k7,7
k8, 7

k1,8 u1 
k 2,8 u2 
 
 
 
k7 ,8 u7 
 
k8,8 u8 
 

ε = constant
σ = constant

[ M ]{ u} + [ K ]{ u} = { p} eiωt
m1

m2







m3
m4


  u1   k1,1 k1, 2
 u   k

k
  2   2,1 2, 2
 
 u3  +  k3,1 k3, 2

  

k 4, 2
 u4  
m5  u5  
    

k1,3
k 2,3

k 2, 4

k 3, 3

k 3, 4

k 4,3

k 4, 4

k 5, 3

k 5, 4

  u1   p1 
   
 u2   p2 
   
k3,5  u3  =  p3 eiωt

k 4,5  u4   p4 
   
k5,5  u5   p5 
   


if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and

{[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U}
2

[ K ], { U} are complex − valued

(

G* = G 1 − 2 D 2 + 2iD 1 − D 2

)
Method of Complex Response
• Given earthquake acceleration vs. time, ü(t)
• FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n
N /2

• Recall that


(t ) = Re ∑ X s e iωS t
x
s =0

{ [ K ] − ω [ M ] } { U} = {p}
2

• Solve
• FFT-1 => ü (t)
212,428 nodes, 189,078 brick elements and 1500 shell elements
Circular boundary to reduce reflections
Finite Element Model of Three-Bent Bridge
Zoom 1

Zoom 2
002 ray modeling dynamic systems
002 ray modeling dynamic systems

002 ray modeling dynamic systems

  • 1.
    Modeling Dynamic Systems •Basic Quantities From Earthquake Records • Fourier Transform, Frequency Domain • Single Degree of Freedom Systems (SDOF) Elastic Response Spectra • Multi-Degree of Freedom Systems, (MDOF) Modal Analysis • Dynamic Analysis by Modal Methods • Method of Complex Response
  • 2.
  • 3.
  • 4.
    Acceleration vs. Time Accelerationvs. Time 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 0.00 10.00 20.00 30.00 40.00 50.00 Time (sec) 60.00 70.00 80.00 90.00
  • 5.
    Acceleration vs. Time,t=16.00 tot=16 to 20 sec vs Time 20.00 seconds Acceleration 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 16.00 16.50 17.00 17.50 18.00 Time (sec) 18.50 19.00 19.50 20.00
  • 6.
    Harmonic Motion t =time A = amplitude of wave ω = frequency (radians / sec) SDOF Response 1.00E-02 8.00E-03 6.00E-03 X=A sin(ωt-φ) Displ. (m) 4.00E-03 Amplitude 2.00E-03 0.00E+00 φ = phase lag (radians ) Mass = 10.132 kg Damping = 0.00 Spring = 1.0 N/m ωn=√k/m=0.314 r/s Drive Freq = 0.0 Drive Force = 0.0 N Initial Vel. = 0.0 m/s Initial Disp. = 0.01 m -2.00E-03 -4.00E-03 -6.00E-03 Period=1/Frequency -8.00E-03 -1.00E-02 0.000 5.000 10.000 15.000 20.000 time (sec) 25.000 30.000 35.000 40.000
  • 7.
    Fourier Transform 2π s ωS= N ∆t N /2  (t ) = Re ∑ X s e iωS t x s =0 1 N −1  e −iωS k∆t  , ∑ xk  N k =0  =  X S  N −1 −iω k∆t 2 k e S , x N∑  k =0 e − iωS k∆t N s = 0,1, 2,..., 2 N 2   N  for 1 ≤ s < 2   for s = 0, s = = cos(ωS k∆t ) − i sin(ωS k∆t )    Mag X S = ℜX + ℑX 2 S 2 S   ℑX S φ = tan   ℜX  S  −1    
  • 8.
    Fourier Transform; ElCentro Fourier Transform of El Centro Accleration Record 0.008 0.007 0.006 Magnitude 0.005 0.004 0.003 0.002 0.001 0 0 20 40 60 Circular Frequency, v 80 100 120
  • 9.
    Earthquake Elastic ResponseSpectra P0 sin(ωt ) x xt m c k/2 m x k/2 c k/2 k/2 xg (a) m + cx + kx = P0 sin(ω t ) x   m + mg + cx + kx = 0 or x x ωn = k m (b) D = c / ccrit c crit = km m + cx + kx = − mg = Pearthquake (t ) x  x undamped systems; ωd = k (1 − D 2 ) damped systems m
  • 10.
    Duhamel's Integral t p(τ) dx (t) = e −ξ (1) ( t −τ ) t 1 x(t ) = mω D  p (τ )dτ  sin ω D (t − τ )   mω D  p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ ∫ 0 x(t ) = A(t ) sin ω D t − B(t ) cos ω D t t t 1 eξωτ 1 eξωτ A(t ) = ∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ mωD 0 0 A ∆τ 1 A  A  A(t ) =  ∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ ) mωD ζ ζ 2  2  exp(−ξω∆τ ) + p(t ) cos ωD t
  • 11.
    Elastic Response Spectrum 7.00E-02 DisplacementResponse Spectrum El Centro, 1940 E-W 6.00E-02 Displacement (m) 5.00E-02 D=0.0 4.00E-02 D=0.02 D=0.05 3.00E-02 2.00E-02 1.00E-02 0.00E+00 1.00E-01 1.00E+00 1.00E+01 Frequency (rad/sec) 1.00E+02
  • 12.
    Multi-Degree of Freedom x3 m3 c3 k3/2 x2 k1/2 k3/2 c2 k2/2 m1 c1 k1/2 y3 y2 m + cx + kx = p(t) x  y4 y1 y5 θ1 (a) k12  k1N   x1  k 22  k 2 N   x2              ki 2  kiN   xi  kij = force corresponding to coordinate i due to unit displacement of coordinate j cij = force corresponding to coordinate i due to unit velocity of coordinate j mij = force corresponding to coordinate i due to unit acceleration of coordinate j m2 k2/2 x1  f S 1   k11  f  k  S 2   21  =      f Si   ki1    θ2 θ3 (b) θ4 θ5
  • 13.
    Modal Analysis m +kx = p(t) x  mΦX + kΦX = p(t ) T T T  φ n mΦX + φ n kΦX = φ n p(t) T T T  φ n mφ n X n + φ n kφ n X n = φ n p(t)  M n X n + K n X n = Pn (t )
  • 14.
    Modal Damping   M nX n + C n X n + K n X n = Pn (t )  + 2ξ ω X + K X = Pn (t )  Xn n n n n n Mn T M n ≡ φ n mφ n T C n ≡ φ n cφ n T K n ≡ φ n kφ n c = a 0 m + a1k C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n n n T Pn (t ) ≡ φ n p(t )
  • 15.
    FEM Frequency Domain  [M ]{ u} + [ K ]{ u} = { p} e iωt { u} = { U} e then {[ K ] − ω 2 [ M ]}{ U} = {p} i ωt
  • 16.
    Finite Elements u1 u7 G1,ρ1,ν1 u2 u8 [ K1] = fn(G1 , ρ1 ,ν 1 ) [ m1 ] = fn( ρ1 ) ui = ai x + bi y + c  k1,1 k  2,1   k  7 ,1 k8,1  k1, 2 k 2, 2 k1, 7 k 2, 7 k7, 2 k8, 2 k7,7 k8, 7 k1,8 u1  k 2,8 u2        k7 ,8 u7    k8,8 u8    ε = constant σ = constant
  • 17.
     [ M ]{u} + [ K ]{ u} = { p} eiωt m1  m2       m3 m4    u1   k1,1 k1, 2  u   k  k   2   2,1 2, 2    u3  +  k3,1 k3, 2      k 4, 2  u4   m5  u5        k1,3 k 2,3 k 2, 4 k 3, 3 k 3, 4 k 4,3 k 4, 4 k 5, 3 k 5, 4   u1   p1       u2   p2      k3,5  u3  =  p3 eiωt  k 4,5  u4   p4      k5,5  u5   p5       if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and {[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U} 2 [ K ], { U} are complex − valued ( G* = G 1 − 2 D 2 + 2iD 1 − D 2 )
  • 18.
    Method of ComplexResponse • Given earthquake acceleration vs. time, ü(t) • FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n N /2 • Recall that  (t ) = Re ∑ X s e iωS t x s =0 { [ K ] − ω [ M ] } { U} = {p} 2 • Solve • FFT-1 => ü (t)
  • 19.
    212,428 nodes, 189,078brick elements and 1500 shell elements Circular boundary to reduce reflections
  • 21.
    Finite Element Modelof Three-Bent Bridge
  • 22.