Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Warm Inflation
Leandro Alexandre da Silva
1
Rio de Janeiro State University
Department of Theoretical Physics
XXXI Encontro Nacional de F´ısica de Part´ıculas e Campos
01/09/2010
1
in collaboration with R.O. Ramos
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
1 Stochastic Approach to Inflation
2 Warm Inflation
3 Stochastic approach to Warm Inflation
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
When?
Stochastic Inflation: ∼ 1987
Why?
Exponentially rapid expansion → “freeze” of inflaton quantum
fluctuations on super-horizon scales
⇓
Inflaton fluctuations behave effectivelly as classical fluctuation
modes with random amplitudes
⇓
Emulates the growth of vacuum fluctuations by an effective
stochastic noise field which drives the dynamics of the
volume-smoothed inflaton → effective dynamics for
coarse-grained field φ
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
How?
Usual approach → decomposition of φ in a classical,
coarse-grained component and in a quantum fluctuation part:
Φ(x, t) → φ(x, t) + q(x, t) .
φ → coarse-grained scalar field averaged over approximatelly
all de Sitter horizon size 1/χ
q(x, t) → summarizes high frequency (k kh ≈ χ) quantum
fluctuations.
q(x, t) aproximated as a free, massless scalar field.
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
de Sitter metric:
ds2
= dxµ
dxν
gµν = −dt2
+ e2χt
dx2
,
Lagrangian density:
L =
1
2
√
−g [gµν
∂µΦ∂νφ − 2V (Φ)]
Equation of motion(EoM):
−3χ
∂
∂t
−
∂2
∂t2
+ e−2χt 2
Φ(x, t) −
∂V (Φ)
∂Φ
= 0
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
Making the field decomposition (slow-roll: ¨φ(x, t) ≈ 0):
3χ
∂
∂t
− e−2χt 2
[φ(x, t) + q(x, t)] +
∂V (φ)
∂φ
= 0
3χ
∂
∂t
− e−2χt 2
φ(x, t) +
∂V (φ)
∂φ
= 3χη(x, t) ,
Noise term:
η(x, t) ≡ −
∂
∂t
+
e−2χt
3χ
2
q(x, t)
Fourier mode expansion in de Sitter background:
q(x, t) ≡ d3
kWχ(k) σk
(t)e−ik·x
ˆak
+ σ∗
k
(t)eik·x
ˆa†
k
.
Wχ(k) → filter or window function. Sharp momentum cutoff
implementation: Wχ(k) ≡ θ(k − χeχt).
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
σk
(t) ≡
1
2k(2π)3
χτ − i
χ
k
e−ikτ
.
Commutator:
[η(x, τ), η(y, τ)] = 0
⇓
Classical behaviour of quantum noise!
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic Approach to Inflation
σk
(t) ≡
1
2k(2π)3
χτ − i
χ
k
e−ikτ
.
Commutator:
[η(x, τ), η(y, τ)] = 0
⇓
Classical behaviour of quantum noise!
Propagator:
0 | η(x, t)η(y, t ) | 0 =
χ3
4π2
δ(t − t )
sin τ | x − y |
τ | x − y |
.
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Warm Inflation
Same basic ideas of cold inflation
Inflaton interacts with other fields → radiation production
A reheating process is no more necessary
Smooth transition to the radiation dominated regime
Thermal origin for the density perturbations
A. Berera and L. Z. Fang,Phys. Rev. Lett. 74, 1912 (1995):
Inflaton dynamics → Langevin-like equation
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Microscopic motivation to Warm Inflation
Example:
S[φ, χ, σ] = d4
x
1
2
(∂µφ)2
−
1
2
m2
φφ2
−
λ
4!
φ4
+
1
2
(∂µχ)2
−
1
2
m2
χχ2
+
1
2
(∂µσ)2
−
1
2
m2
σσ2
−
g2
2
φ2
χ2
− f χσ2
.
φ → classical field in which dynamics we are interested in
χ → intermediate field that couples to σ and φ
σ → Thermally equilibrated field at temperature T
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Microscopic motivation to Warm Inflation
Detailed calculation: Berera and Ramos, PRD63, 103509
(2001),Gleiser and Ramos, PRD50, 2441 (1994):
General Effective Equation of Motion (Homogeneous
approximation)
d2φ(t)
dt2
= −
dVeff(φ)
dφ
− φn
(t)
t
−∞
dt φn
(t ) ˙φ(t )Kχ(t − t )
+ φn
(t) ξ (t) ,
n = 0: additive noise→ φχ2 interaction
n = 1: multiplicative noise → φ2χ2 interaction
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Markovian Approximation
Non-Markovian Equation of Motion:
∂2
t + m2
φ +
λ
3!
φ(t)2
φ(t) + φn
(t)
t
t0
dt K(t − t )φn
(t ) ˙φ(t )
= φn
(t)ξ(t) .
Markovian Approximation:
φn
(t)
t
t0
dt K(t − t )φn
(t ) ˙φ(t ) φ2n
(t) ˙φ(t)
t
t0→−∞
dt K(t − t )
→ Υ φ2n
(t) ˙φ(t) .
Markovian Equation of Motion:
¨φ + Υ φ2n ˙φ + m2
φφ +
λ
6
φ3
= φn
(t) ξ(t)
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Markovian Approximation
Figure: (a) mχ = 50H(0), (b) mχ = 150H(0) and (c) mχ = 250H(0)
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Markovian Approximation
More details about Markovian dynamics reliability:
R. L. S. Farias, R. O. Ramos and L. A. da Silva, Nonlinear
effects in the dynamics governed by non-Markovian stochastic
Langevin-like equations, JPCS, in press
R. L. S. Farias, R. O. Ramos and L. A. da Silva, Numerical
Solutions for non-Markovian Stochastic Equations of Motion
Comp. Phys. Comm. 180, 574 (2009).
R. L. S. Farias, L. A. da Silva and R. O. Ramos,
Non-Markovian stochastic Langevin equations: Markovian and
non-Markovian dynamics, Phys. Rev. E 80, 031143 (2009)
R. L. S. Farias, R. O. Ramos and L. A. da Silva,Langevin
Simulations with Colored Noise and Non-Markovian
Dissipation Brazilian Journal of Physics, vol. 38 , no. 3B,
(2008)
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Markovian Approximation
Considering the additive case:
¨φ + [3H + Υ] ˙φ + V (φ) = ξ ,
¨a = −
8π
3m2
pl
ρr + ˙φ2
− V (φ) a ,
˙ρφ = −3
˙a
a
˙φ2
− Υ ˙φ2
+ ν ˙φ , ˙ρr = −4
˙a
a
ρr + Υ ˙φ2
− ξ ˙φ .
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
Back to stochastic approach: implement Warm Inflation
Modification of EoM:
∂φ(x, t)
∂t
=
1
3χ + Υ
e−2χt 2
φ(x, t) −
∂V (φ)
∂φ
+η(x, t)+ξ(x, t) .
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
Back to stochastic approach: implement Warm Inflation
Modification of EoM:
∂φ(x, t)
∂t
=
1
3χ + Υ
e−2χt 2
φ(x, t) −
∂V (φ)
∂φ
+η(x, t)+ξ(x, t) .
Global analysis:
∂φ(t)
∂t
= −
1
3χ + Υ
∂V (φ)
∂φ
+ η(t) + ξ(t) ,
η(t)η(t ) =
χ3
4π2
δ(t − t )
ξ(t)ξ(t ) = βδ(t − t ) .
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
Considering a general SDE of the form
˙φ = h(φ, t) + g(φ, t)η(t) + f (φ, t)ξ(t) ,
we obtain a Fokker-Planck equation for η(t)ξ(t ) = 0 of the form
∂P(φ, t)
∂t
= −
∂
∂φ
D(1)
+
∂2
∂φ2
D(2)
P(φ, t) .
where the Kramers-Moyal coefficients are:
D(1)
(φ, t) = h(φ, t) +
α
2
∂g(φ, t)
∂φ
g(φ, t) +
β
2
∂f (φ, t)
∂φ
f (φ, t)
D(2)
(φ, t) =
α
2
g(φ, t)2
+
β
2
f (φ, t)2
.
(1)
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
In our particular case:
∂P(φ, t)
∂t
= −
∂
∂φ
−
1
3χ + Υ
∂V (φ)
∂φ
+
∂2
∂φ2
χ3
4π2
+
β
2
P(φ, t) .
A trick to obtain φn(t) :
∂
∂t
φn
(t) ≡
∞
−∞
dφφn ∂
∂t
P(φ, t) .
∂
∂t
φn
(t) =
χ3
8π2
+
β
2
n(n−1) φn−2
(t) −
n
3χ + Υ
φn−1
(t)
∂V (φ)
∂t
.
φ2
(t) =
3χ + Υ
2m2
φ
χ3
4π2
+ β 1 − exp −
2m2
φ
3χ + Υ
t .
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
The Fokker-Planck operator
LFP ≡ −
∂
∂φ
−
1
3χ + Υ
∂V (φ)
∂φ
+
∂2
∂φ2
χ3
4π2
+
β
2
,
is so that LFP = L†
FP.
⇒ Transformation of variables:
t → (3χ + Υ)t
φ → (3χ + Υ)
χ3
4π2
+
β
ψ
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
The Fokker-Planck becomes:
∂P(ψ, t )
∂t
=
2
∂2P(ψ, t )
∂ψ2
+
∂
∂ψ
∂ ˜V (ψ)
∂ψ
P(ψ, t ) ,
where
˜V (ψ) ≡ (3χ + Υ)
χ3
4π2
+
β
−1
V φ = (3χ + Υ)
χ3
4π2
+
β
ψ
One more transformation
P(ψ, t ) = exp
1 ˜V (0) − ˜V (ψ) F(ψ, t ) ,
and then the Fokker-Planck equation becomes...
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
...a Schr¨odinger-like equation with imaginary time:
−
2
∂2
∂ψ2
+ U(ψ) F(ψ, t ) = −
∂F(ψ, t )
∂t
, (2)
with
U(ψ) ≡
1
2

 ∂ ˜V (ψ)
∂ψ
2
−
∂2 ˜V (ψ)
∂ψ2

 . (3)
Analogy with quantum mechanics:
ψ | α, t =
λ
ψ | λ λ | α, t → F(ψ, t ) =
λ
cλe− i
Eλt
ϕλ(ψ) ,
with
Hϕλ(ψ) = Eλϕλ(ψ) , H ≡ −
2
∂2
∂ψ2
+ U(ψ) , t →
i
t
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Stochastic approach to Warm Inflation
Then using standard operator techniques and recovering the
original variables φ and t, we get:
P(φ, t) =
λ
cλe−m2
φσ−1
λt
×
Λ
1
2
π
1
4
√
2λλ!
m2
φ
(λ
2 − 3
4 )
m2
φΛ−1
φ −
∂
∂φ
λ
exp
m2
φΛ−1
φ2
,
And the propagator K(φ2, t2; φ1, t1):
K(φ2, t2; φ1, t1) = 1 − e−2m2
φσ−1
(t2−t1)
− 1
2
×
exp



−
m2
φΛ−1
φ2
2 + φ2
1 − 2φ2φ1e−m2
φσ−1
(t2−t1)
1 − e−2m2
φσ−1(t2−t1)



with Λ ≡ (3χ + Υ) χ3
4π2 + β
and σ ≡ 3χ + Υ
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Discussions and perspectives
Planck energy scale at V (φ = φmax ) → breakdown of
semiclassical picture of spacetime
⇓
P(φmax ) = 0
⇓
Bounded from above eigenvalues
H eigenvalues ∈ N → LFP eingenvalues ∈ Z−
⇓
Highest eigenvalue (˜λmax ) of volume-weighted FP equation
(LFP → LFP + 3H) can be negative or positive: warm inflation
→ ˜λmax > 0 → number of inflating domains increases without
limit. (to appear in JCAP)
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Discussions and perspectives
Work out the local (φ(x, t)) analysis
Study the pathway to classicalization: when the thermal
fluctuations overcome the quantum ones?
Better quantify eternal inflation based on Warm Inflation
Outline Stochastic Approach to Inflation Warm Inflation Stochastic approach to Warm Inflation
Thanks for your attention!!!

ENFPC 2010

  • 1.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Warm Inflation Leandro Alexandre da Silva 1 Rio de Janeiro State University Department of Theoretical Physics XXXI Encontro Nacional de F´ısica de Part´ıculas e Campos 01/09/2010 1 in collaboration with R.O. Ramos
  • 2.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation 1 Stochastic Approach to Inflation 2 Warm Inflation 3 Stochastic approach to Warm Inflation
  • 3.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation When? Stochastic Inflation: ∼ 1987 Why? Exponentially rapid expansion → “freeze” of inflaton quantum fluctuations on super-horizon scales ⇓ Inflaton fluctuations behave effectivelly as classical fluctuation modes with random amplitudes ⇓ Emulates the growth of vacuum fluctuations by an effective stochastic noise field which drives the dynamics of the volume-smoothed inflaton → effective dynamics for coarse-grained field φ
  • 4.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation How? Usual approach → decomposition of φ in a classical, coarse-grained component and in a quantum fluctuation part: Φ(x, t) → φ(x, t) + q(x, t) . φ → coarse-grained scalar field averaged over approximatelly all de Sitter horizon size 1/χ q(x, t) → summarizes high frequency (k kh ≈ χ) quantum fluctuations. q(x, t) aproximated as a free, massless scalar field.
  • 5.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation de Sitter metric: ds2 = dxµ dxν gµν = −dt2 + e2χt dx2 , Lagrangian density: L = 1 2 √ −g [gµν ∂µΦ∂νφ − 2V (Φ)] Equation of motion(EoM): −3χ ∂ ∂t − ∂2 ∂t2 + e−2χt 2 Φ(x, t) − ∂V (Φ) ∂Φ = 0
  • 6.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation Making the field decomposition (slow-roll: ¨φ(x, t) ≈ 0): 3χ ∂ ∂t − e−2χt 2 [φ(x, t) + q(x, t)] + ∂V (φ) ∂φ = 0 3χ ∂ ∂t − e−2χt 2 φ(x, t) + ∂V (φ) ∂φ = 3χη(x, t) , Noise term: η(x, t) ≡ − ∂ ∂t + e−2χt 3χ 2 q(x, t) Fourier mode expansion in de Sitter background: q(x, t) ≡ d3 kWχ(k) σk (t)e−ik·x ˆak + σ∗ k (t)eik·x ˆa† k . Wχ(k) → filter or window function. Sharp momentum cutoff implementation: Wχ(k) ≡ θ(k − χeχt).
  • 7.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation σk (t) ≡ 1 2k(2π)3 χτ − i χ k e−ikτ . Commutator: [η(x, τ), η(y, τ)] = 0 ⇓ Classical behaviour of quantum noise!
  • 8.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic Approach to Inflation σk (t) ≡ 1 2k(2π)3 χτ − i χ k e−ikτ . Commutator: [η(x, τ), η(y, τ)] = 0 ⇓ Classical behaviour of quantum noise! Propagator: 0 | η(x, t)η(y, t ) | 0 = χ3 4π2 δ(t − t ) sin τ | x − y | τ | x − y | .
  • 9.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Warm Inflation Same basic ideas of cold inflation Inflaton interacts with other fields → radiation production A reheating process is no more necessary Smooth transition to the radiation dominated regime Thermal origin for the density perturbations A. Berera and L. Z. Fang,Phys. Rev. Lett. 74, 1912 (1995): Inflaton dynamics → Langevin-like equation
  • 10.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Microscopic motivation to Warm Inflation Example: S[φ, χ, σ] = d4 x 1 2 (∂µφ)2 − 1 2 m2 φφ2 − λ 4! φ4 + 1 2 (∂µχ)2 − 1 2 m2 χχ2 + 1 2 (∂µσ)2 − 1 2 m2 σσ2 − g2 2 φ2 χ2 − f χσ2 . φ → classical field in which dynamics we are interested in χ → intermediate field that couples to σ and φ σ → Thermally equilibrated field at temperature T
  • 11.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Microscopic motivation to Warm Inflation Detailed calculation: Berera and Ramos, PRD63, 103509 (2001),Gleiser and Ramos, PRD50, 2441 (1994): General Effective Equation of Motion (Homogeneous approximation) d2φ(t) dt2 = − dVeff(φ) dφ − φn (t) t −∞ dt φn (t ) ˙φ(t )Kχ(t − t ) + φn (t) ξ (t) , n = 0: additive noise→ φχ2 interaction n = 1: multiplicative noise → φ2χ2 interaction
  • 12.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Markovian Approximation Non-Markovian Equation of Motion: ∂2 t + m2 φ + λ 3! φ(t)2 φ(t) + φn (t) t t0 dt K(t − t )φn (t ) ˙φ(t ) = φn (t)ξ(t) . Markovian Approximation: φn (t) t t0 dt K(t − t )φn (t ) ˙φ(t ) φ2n (t) ˙φ(t) t t0→−∞ dt K(t − t ) → Υ φ2n (t) ˙φ(t) . Markovian Equation of Motion: ¨φ + Υ φ2n ˙φ + m2 φφ + λ 6 φ3 = φn (t) ξ(t)
  • 13.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Markovian Approximation Figure: (a) mχ = 50H(0), (b) mχ = 150H(0) and (c) mχ = 250H(0)
  • 14.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Markovian Approximation More details about Markovian dynamics reliability: R. L. S. Farias, R. O. Ramos and L. A. da Silva, Nonlinear effects in the dynamics governed by non-Markovian stochastic Langevin-like equations, JPCS, in press R. L. S. Farias, R. O. Ramos and L. A. da Silva, Numerical Solutions for non-Markovian Stochastic Equations of Motion Comp. Phys. Comm. 180, 574 (2009). R. L. S. Farias, L. A. da Silva and R. O. Ramos, Non-Markovian stochastic Langevin equations: Markovian and non-Markovian dynamics, Phys. Rev. E 80, 031143 (2009) R. L. S. Farias, R. O. Ramos and L. A. da Silva,Langevin Simulations with Colored Noise and Non-Markovian Dissipation Brazilian Journal of Physics, vol. 38 , no. 3B, (2008)
  • 15.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Markovian Approximation Considering the additive case: ¨φ + [3H + Υ] ˙φ + V (φ) = ξ , ¨a = − 8π 3m2 pl ρr + ˙φ2 − V (φ) a , ˙ρφ = −3 ˙a a ˙φ2 − Υ ˙φ2 + ν ˙φ , ˙ρr = −4 ˙a a ρr + Υ ˙φ2 − ξ ˙φ .
  • 16.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation Back to stochastic approach: implement Warm Inflation Modification of EoM: ∂φ(x, t) ∂t = 1 3χ + Υ e−2χt 2 φ(x, t) − ∂V (φ) ∂φ +η(x, t)+ξ(x, t) .
  • 17.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation Back to stochastic approach: implement Warm Inflation Modification of EoM: ∂φ(x, t) ∂t = 1 3χ + Υ e−2χt 2 φ(x, t) − ∂V (φ) ∂φ +η(x, t)+ξ(x, t) . Global analysis: ∂φ(t) ∂t = − 1 3χ + Υ ∂V (φ) ∂φ + η(t) + ξ(t) , η(t)η(t ) = χ3 4π2 δ(t − t ) ξ(t)ξ(t ) = βδ(t − t ) .
  • 18.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation Considering a general SDE of the form ˙φ = h(φ, t) + g(φ, t)η(t) + f (φ, t)ξ(t) , we obtain a Fokker-Planck equation for η(t)ξ(t ) = 0 of the form ∂P(φ, t) ∂t = − ∂ ∂φ D(1) + ∂2 ∂φ2 D(2) P(φ, t) . where the Kramers-Moyal coefficients are: D(1) (φ, t) = h(φ, t) + α 2 ∂g(φ, t) ∂φ g(φ, t) + β 2 ∂f (φ, t) ∂φ f (φ, t) D(2) (φ, t) = α 2 g(φ, t)2 + β 2 f (φ, t)2 . (1)
  • 19.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation In our particular case: ∂P(φ, t) ∂t = − ∂ ∂φ − 1 3χ + Υ ∂V (φ) ∂φ + ∂2 ∂φ2 χ3 4π2 + β 2 P(φ, t) . A trick to obtain φn(t) : ∂ ∂t φn (t) ≡ ∞ −∞ dφφn ∂ ∂t P(φ, t) . ∂ ∂t φn (t) = χ3 8π2 + β 2 n(n−1) φn−2 (t) − n 3χ + Υ φn−1 (t) ∂V (φ) ∂t . φ2 (t) = 3χ + Υ 2m2 φ χ3 4π2 + β 1 − exp − 2m2 φ 3χ + Υ t .
  • 20.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation The Fokker-Planck operator LFP ≡ − ∂ ∂φ − 1 3χ + Υ ∂V (φ) ∂φ + ∂2 ∂φ2 χ3 4π2 + β 2 , is so that LFP = L† FP. ⇒ Transformation of variables: t → (3χ + Υ)t φ → (3χ + Υ) χ3 4π2 + β ψ
  • 21.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation The Fokker-Planck becomes: ∂P(ψ, t ) ∂t = 2 ∂2P(ψ, t ) ∂ψ2 + ∂ ∂ψ ∂ ˜V (ψ) ∂ψ P(ψ, t ) , where ˜V (ψ) ≡ (3χ + Υ) χ3 4π2 + β −1 V φ = (3χ + Υ) χ3 4π2 + β ψ One more transformation P(ψ, t ) = exp 1 ˜V (0) − ˜V (ψ) F(ψ, t ) , and then the Fokker-Planck equation becomes...
  • 22.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation ...a Schr¨odinger-like equation with imaginary time: − 2 ∂2 ∂ψ2 + U(ψ) F(ψ, t ) = − ∂F(ψ, t ) ∂t , (2) with U(ψ) ≡ 1 2   ∂ ˜V (ψ) ∂ψ 2 − ∂2 ˜V (ψ) ∂ψ2   . (3) Analogy with quantum mechanics: ψ | α, t = λ ψ | λ λ | α, t → F(ψ, t ) = λ cλe− i Eλt ϕλ(ψ) , with Hϕλ(ψ) = Eλϕλ(ψ) , H ≡ − 2 ∂2 ∂ψ2 + U(ψ) , t → i t
  • 23.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Stochastic approach to Warm Inflation Then using standard operator techniques and recovering the original variables φ and t, we get: P(φ, t) = λ cλe−m2 φσ−1 λt × Λ 1 2 π 1 4 √ 2λλ! m2 φ (λ 2 − 3 4 ) m2 φΛ−1 φ − ∂ ∂φ λ exp m2 φΛ−1 φ2 , And the propagator K(φ2, t2; φ1, t1): K(φ2, t2; φ1, t1) = 1 − e−2m2 φσ−1 (t2−t1) − 1 2 × exp    − m2 φΛ−1 φ2 2 + φ2 1 − 2φ2φ1e−m2 φσ−1 (t2−t1) 1 − e−2m2 φσ−1(t2−t1)    with Λ ≡ (3χ + Υ) χ3 4π2 + β and σ ≡ 3χ + Υ
  • 24.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Discussions and perspectives Planck energy scale at V (φ = φmax ) → breakdown of semiclassical picture of spacetime ⇓ P(φmax ) = 0 ⇓ Bounded from above eigenvalues H eigenvalues ∈ N → LFP eingenvalues ∈ Z− ⇓ Highest eigenvalue (˜λmax ) of volume-weighted FP equation (LFP → LFP + 3H) can be negative or positive: warm inflation → ˜λmax > 0 → number of inflating domains increases without limit. (to appear in JCAP)
  • 25.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Discussions and perspectives Work out the local (φ(x, t)) analysis Study the pathway to classicalization: when the thermal fluctuations overcome the quantum ones? Better quantify eternal inflation based on Warm Inflation
  • 26.
    Outline Stochastic Approachto Inflation Warm Inflation Stochastic approach to Warm Inflation Thanks for your attention!!!