SlideShare a Scribd company logo
1 of 60
Download to read offline
Complex Numbers
Solving Quadratics
Complex Numbers
Solving Quadratics
              x2 1  0
Complex Numbers
Solving Quadratics
                 x2 1  0
                x 2  1
           no real solutions
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                     i   1 or i 2  1
                   i is an imaginary number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                     i   1 or i 2  1
                   i is an imaginary number

                         x 2  1
                          x   1
                          x  i
e.g . x 2  3 x  7  0
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
       3  19i
    
           2
e.g . x 2  3 x  7  0

       3  9  28
  x
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0          x 2  3x  7  0

       3  9  28
  x                        OR
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2                            2
       3   19                  x  3  19 i 2
                                              0
           2                          2    4
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                       x  3  19 i 2
                                                   0
           2                               2    4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                       x  3  19 i 2
                                                   0
           2                               2    4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x                 3  19           3  19
        2                 2      x     i or x       i
                                    2  2            2  2
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3   Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i               z  2  7i
Complex Numbers
     x + iy
Complex Numbers
     x + iy

             Real Numbers
                  y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
       Pure           Fractions      Integers
Imaginary Numbers                    Naturals
    x  0, y  0
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                      x + iy
   Imaginary Numbers            Real Numbers
         y0                         y=0
                             Rational Numbers
          Pure            Fractions      Integers
   Imaginary Numbers                     Naturals
       x  0, y  0
                                               Zero

                             Negatives
NOTE: Imaginary numbers
   cannot be ordered

                             Irrational Numbers
Basic Operations
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i        4  3i     8  2i 
         32  8i  24i  6i 2               
                                    8  2i   8  2i 
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
                                     38  16i
                                  
                                        68
                                     19 8
                                         i
                                     34 34
Exercise 4A; 1 to 16 evens

More Related Content

What's hot

X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grauWollker Colares
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Joseph Eulo
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalitiesguestcc333c
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate PlaneRudy Alfonso
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Functionguestcc333c
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing EquationsRudy Alfonso
 
Hitting a home run factorising
Hitting a home run factorisingHitting a home run factorising
Hitting a home run factorisingAngela Phillips
 

What's hot (16)

0307 ch 3 day 7
0307 ch 3 day 70307 ch 3 day 7
0307 ch 3 day 7
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 
Real for student
Real for studentReal for student
Real for student
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2Sulalgtrig7e Isg 1 2
Sulalgtrig7e Isg 1 2
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalities
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Function
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
Hitting a home run factorising
Hitting a home run factorisingHitting a home run factorising
Hitting a home run factorising
 

Viewers also liked

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)Nigel Simmons
 
X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)Nigel Simmons
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)Nigel Simmons
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)Nigel Simmons
 
4CSPDuploadpdf.pdf
4CSPDuploadpdf.pdf4CSPDuploadpdf.pdf
4CSPDuploadpdf.pdfgrssieee
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
Modulus and argand diagram
Modulus and argand diagramModulus and argand diagram
Modulus and argand diagramTarun Gehlot
 

Viewers also liked (15)

X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)X2 T01 06 conjugate properties (2010)
X2 T01 06 conjugate properties (2010)
 
X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)X2 T01 03 argand diagram (2010)
X2 T01 03 argand diagram (2010)
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
 
4CSPDuploadpdf.pdf
4CSPDuploadpdf.pdf4CSPDuploadpdf.pdf
4CSPDuploadpdf.pdf
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
Modulus and argand diagram
Modulus and argand diagramModulus and argand diagram
Modulus and argand diagram
 

Similar to X2 T01 01 definitions (2010)

X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.Daniela Vélez
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresarialesDaniela Vélez
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxG8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxCatherineGanLabaro
 

Similar to X2 T01 01 definitions (2010) (20)

X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresariales
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxG8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

X2 T01 01 definitions (2010)

  • 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  • 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i   1 or i 2  1 i is an imaginary number
  • 6. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i   1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 7. e.g . x 2  3 x  7  0
  • 8. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2
  • 9. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2
  • 10. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 11. e.g . x 2  3 x  7  0 x 2  3x  7  0  3  9  28 x OR 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 12. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 13. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  2  3  19i  3  19i x or x  2 2
  • 14. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  2 2
  • 15. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  x  3  19 i 2     0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  3 19 3 19 2 2 x  i or x    i 2 2 2 2
  • 16. All complex numbers (z) can be written as; z = x + iy
  • 17. All complex numbers (z) can be written as; z = x + iy Definitions;
  • 18. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 19. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 20. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 21. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3
  • 22. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 23. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number
  • 24. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 25. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number
  • 26. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 27. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate
  • 28. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 29. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i
  • 30. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i z  2  7i
  • 31. Complex Numbers x + iy
  • 32. Complex Numbers x + iy Real Numbers y=0
  • 33. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0
  • 34. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers
  • 35. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Irrational Numbers
  • 36. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Irrational Numbers
  • 37. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 38. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Irrational Numbers
  • 39. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 40. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 41. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives Irrational Numbers
  • 42. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 44. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  • 45. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition
  • 46. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i 
  • 47. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 48. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i   4  i
  • 49. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i
  • 50. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 51. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication
  • 52. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 53. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 54. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6
  • 55. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 56. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 57. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  26  32i
  • 58. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4
  • 59. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4  38  16i  68  19 8   i 34 34
  • 60. Exercise 4A; 1 to 16 evens