SlideShare a Scribd company logo
1 of 70
Download to read offline
Factorising Complex
    Expressions
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
• factorised to n linear factors over the complex field
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2   x  12  1
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2   x  12  1
                          x  1  i  x  1  i 
ii  z 4  z 2  12  0
ii  z 4  z 2  12  0
    z   2
              3z 2  4   0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                 factorised over Real numbers
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
         z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2

 P    2    3    8    5
        1          1           1          1
                                   
    2  2                2          2
                 1 3
               45
                 4 4
            0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2

 P    2    3    8    5
        1           1           1           1
                                    
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2

 P    2    3    8    5
        1           1           1           1
                                    
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
                                     
                            2 x  1  x  1  4
                                             2
                                                      
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2

 P    2    3    8    5
        1           1           1           1
                                    
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
                                       
                            2 x  1  x  1  4
                                               2
                                                     
                            2 x  1 x  1  2i  x  1  2i 
iv  z 5  z 4  z 3  z 2  z  1  0
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
               z 6  1  0, z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
            z 6  1  0, z  1
                         2          2
  z  cis , cis  , cis        , cis     , cis
         3         3        3           3
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
            z 6  1  0, z  1
                         2          2
  z  cis , cis  , cis        , cis      , cis
         3         3        3           3
      1    3 1         3      1      3      1     3
  z         i,        i,          i,         i, 1
      2 2 2 2                 2 2           2 2
v 1996 HSC
                2          2
    Let   cos      i sin
                 9           9
a) Show that  k is a solution of z 9  1  0, where k is an integer
v 1996 HSC
                2          2
    Let   cos      i sin
                 9           9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
v 1996 HSC
                 2          2
    Let   cos       i sin
                   9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
             2k 
    z  cis           k  0,1,2,3,4,5,6,7,8
             9  
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0 sum of roots 
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
     z  cis            k  0,1,2,3,4,5,6,7,8
              9  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0 sum of roots 
         2   3   4   5   6   7   8  1
       2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B 
 sin A  sin B  2sin        cos       
                        2          2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos                  
                        2   2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                              (2 cos half sum
                                        
                        2   2                cos half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                              (2 cos half sum
                                        
                        2   2                cos half diff)

                       A B   A B 
cos A  cos B  2sin        sin   
                        2   2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B      (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2         cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                (2 cos half sum
                                        
                        2   2                  cos half diff)

                       A B   A B        (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                 sine half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4        6        8
           2cos       2cos     2cos     2cos     1
                  9          9         9         9
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4           6        8
           2cos       2cos       2cos      2cos      1
                   9          9           9         9
                  2       4         6       8     1
             cos      cos       cos     cos    
                   9        9          9        9     2
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4           6         8
           2cos       2cos       2cos       2cos      1
                   9          9           9          9
                  2       4         6        8     1
             cos      cos       cos      cos    
                   9        9          9         9     2
                      3                7           1
                 2cos cos  2cos             cos  
                       9      9           9      9     2
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7      1
    cos  cos     cos      
       9      9        9      4
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7      1
    cos  cos     cos      
       9      9        9      4
             5   2    1
     cos  2cos cos    
        9      9    9    4
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7          1
    cos  cos     cos          
       9      9        9          4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                        5         4
          But cos            cos
                         9          9
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                 5          4
          But cos      cos
                  9           9
               2      4      1
       cos cos     cos    
           9     9       9      8
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                 5          4
          But cos      cos
                  9           9
               2      4      1
       cos cos     cos    
           9     9       9      8
               2      4 1
        cos cos     cos     
            9    9       9 8
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                       2                  4      
  z  1  z 2  2cos    z  1 z 2  2cos    z  1
                        9                   9      
                  2        6         2        8       
                  z  2cos     z  1 z  2cos      z  1
                            9                   9       
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                       2                  4      
  z  1  z 2  2cos    z  1 z 2  2cos    z  1
                        9                   9      
                  2        6         2        8       
                  z  2cos     z  1 z  2cos      z  1
                            9                   9       
            2          2          2         4      
  z  1  z  2cos       z  1 z  2cos       z  1
                        9                     9      
                                          8      
                z 2  z  1  z 2  2cos
                                           9
                                              z  1
                                                   
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                       2                  4      
  z  1  z 2  2cos    z  1 z 2  2cos    z  1
                        9                   9      
                  2        6         2        8       
                  z  2cos     z  1 z  2cos      z  1
                            9                   9       
            2          2          2         4      
  z  1  z  2cos       z  1 z  2cos       z  1
                        9                     9      
                                          8      
                z 2  z  1  z 2  2cos
                                           9
                                              z  1
                                                   
  Let z  i
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                       2                  4      
  z  1  z 2  2cos    z  1 z 2  2cos    z  1
                        9                   9      
                  2        6         2        8       
                  z  2cos     z  1 z  2cos      z  1
                            9                   9       
            2          2          2         4      
  z  1  z  2cos       z  1 z  2cos       z  1
                        9                     9      
                                          8      
                z 2  z  1  z 2  2cos
                                           9
                                              z  1
                                                   
  Let z  i
                                 2            4                    8    
       i 9  1   i  1  2cos      i  2cos       i   i   2cos      i
                                  9             9                     9    
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2       4      8 
 i  1  i  i  1  2cos
          4
                                2cos     2cos 
                            9        9       9 
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2       4      8 
 i  1  i  i  1  2cos
          4
                                2cos     2cos 
                            9        9       9 
               2       4     8
   1  8cos       cos     cos
                9        9      9
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
           2     4 1
    cos cos    cos   
       9     9      9 8
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
           2     4 1
    cos cos    cos   
       9     9      9 8



                   Exercise 4J; 1 to 4, 7ac

More Related Content

Similar to Factorising Complex Expressions

X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)Nigel Simmons
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)Nigel Simmons
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)Nigel Simmons
 
11X1 T17 02 definite integral
11X1 T17 02 definite integral11X1 T17 02 definite integral
11X1 T17 02 definite integralNigel Simmons
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integralNigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 

Similar to Factorising Complex Expressions (20)

X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
1150 day 8
1150 day 81150 day 8
1150 day 8
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)
 
11X1 T17 02 definite integral
11X1 T17 02 definite integral11X1 T17 02 definite integral
11X1 T17 02 definite integral
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integral
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 

Factorising Complex Expressions

  • 1. Factorising Complex Expressions
  • 2. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs.
  • 3. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be;
  • 4. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field
  • 5. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field
  • 6. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root
  • 7. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2
  • 8. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1
  • 9. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1   x  1  i  x  1  i 
  • 10. ii  z 4  z 2  12  0
  • 11. ii  z 4  z 2  12  0 z 2  3z 2  4   0
  • 12. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2
  • 13. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers
  • 14. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0
  • 15. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
  • 16. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i
  • 17. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5
  • 18. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor
  • 19. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 P    2    3    8    5 1 1 1 1          2  2  2  2 1 3    45 4 4 0
  • 20. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 P    2    3    8    5 1 1 1 1          2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
  • 21. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 P    2    3    8    5 1 1 1 1          2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5   2 x  1  x  1  4 2 
  • 22. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 P    2    3    8    5 1 1 1 1          2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5   2 x  1  x  1  4 2   2 x  1 x  1  2i  x  1  2i 
  • 23. iv  z 5  z 4  z 3  z 2  z  1  0
  • 24. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
  • 25. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6 
  • 26. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0
  • 27. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1
  • 28. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1
  • 29. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3
  • 30. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3 1 3 1 3 1 3 1 3 z  i,  i,   i,   i, 1 2 2 2 2 2 2 2 2
  • 31. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer
  • 32. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1
  • 33. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9  
  • 34. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9 
  • 35. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k
  • 36. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1
  • 37. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0
  • 38. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0
  • 39. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots 
  • 40. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8  9   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots     2   3   4   5   6   7   8  1
  • 41. 2 4 1 c) Hence show that cos cos cos  9 9 9 8
  • 42.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  sin A  sin B  2sin   cos    2   2 
  • 43.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)
  • 44.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos     2   2 
  • 45.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)
  • 46.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  cos A  cos B  2sin   sin    2   2 
  • 47.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)
  • 48.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1
  • 49.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs
  • 50.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9
  • 51.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9 2 4 6 8 1 cos  cos  cos  cos  9 9 9 9 2
  • 52.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9 2 4 6 8 1 cos  cos  cos  cos  9 9 9 9 2 3  7  1 2cos cos  2cos cos   9 9 9 9 2
  • 53. 3  7  1 2cos cos  2cos cos   9 9 9 9 2
  • 54. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4
  • 55. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4
  • 56. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8
  • 57. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9
  • 58. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9  2 4 1  cos cos cos  9 9 9 8
  • 59. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9  2 4 1  cos cos cos  9 9 9 8  2 4 1 cos cos cos  9 9 9 8
  • 60. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
  • 61. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9 
  • 62. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1 
  • 63. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1  Let z  i
  • 64. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1  Let z  i  2  4   8  i 9  1   i  1  2cos i  2cos i   i   2cos i  9  9   9 
  • 65. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9 
  • 66. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9 
  • 67. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9
  • 68. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9
  • 69. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9  2 4 1 cos cos cos  9 9 9 8
  • 70. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9  2 4 1 cos cos cos  9 9 9 8 Exercise 4J; 1 to 4, 7ac