SlideShare a Scribd company logo
1 of 60
Download to read offline
Complex Numbers
Solving Quadratics
Complex Numbers
Solving Quadratics
              x2 1  0
Complex Numbers
Solving Quadratics
                 x2 1  0
                x 2  1
           no real solutions
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                    i  1    or   i 2  1
                   i is an imaginary number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                    i  1    or    i 2  1
                   i is an imaginary number

                         x 2  1
                          x   1
                          x  i
e.g . x 2  3 x  7  0
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
       3  19i
    
           2
e.g . x 2  3 x  7  0

       3  9  28
  x
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0          x 2  3x  7  0

       3  9  28
  x                        OR
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2                            2
       3   19                   3  19 2
                                x   i  0
           2                       2   4
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                        3  19 2
                                     x   i  0
           2                            2   4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                        3  19 2
                                     x   i  0
           2                            2   4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x                 3  19           3  19
        2                 2      x     i or x       i
                                    2  2            2  2
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3   Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i               z  2  7i
Complex Numbers
     x + iy
Complex Numbers
     x + iy

             Real Numbers
                  y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
       Pure           Fractions      Integers
Imaginary Numbers                    Naturals
    x  0, y  0
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                      x + iy
   Imaginary Numbers            Real Numbers
         y0                         y=0
                             Rational Numbers
          Pure            Fractions      Integers
   Imaginary Numbers                     Naturals
       x  0, y  0
                                               Zero

                             Negatives
NOTE: Imaginary numbers
   cannot be ordered

                             Irrational Numbers
Basic Operations
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i        4  3i     8  2i 
         32  8i  24i  6i 2               
                                    8  2i   8  2i 
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
                                     38  16i
                                  
                                        68
                                     19 8
                                         i
                                     34 34
Exercise 4A; 1 to 16 evens

More Related Content

What's hot

What's hot (15)

09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Matematica
MatematicaMatematica
Matematica
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
0307 ch 3 day 7
0307 ch 3 day 70307 ch 3 day 7
0307 ch 3 day 7
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalities
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
Graphing y = ax^2 + c
Graphing y = ax^2 + cGraphing y = ax^2 + c
Graphing y = ax^2 + c
 
Ch02 31
Ch02 31Ch02 31
Ch02 31
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 

Similar to X2 T01 01 definitions (2011)

X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)Nigel Simmons
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.Daniela Vélez
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresarialesDaniela Vélez
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 

Similar to X2 T01 01 definitions (2011) (20)

X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresariales
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 

X2 T01 01 definitions (2011)

  • 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  • 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number
  • 6. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 7. e.g . x 2  3 x  7  0
  • 8. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2
  • 9. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2
  • 10. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 11. e.g . x 2  3 x  7  0 x 2  3x  7  0  3  9  28 x OR 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 12. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 13. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  2  3  19i  3  19i x or x  2 2
  • 14. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  2 2
  • 15. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  3 19 3 19 2 2 x  i or x    i 2 2 2 2
  • 16. All complex numbers (z) can be written as; z = x + iy
  • 17. All complex numbers (z) can be written as; z = x + iy Definitions;
  • 18. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 19. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 20. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 21. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3
  • 22. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 23. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number
  • 24. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 25. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number
  • 26. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 27. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate
  • 28. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 29. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i
  • 30. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i z  2  7i
  • 31. Complex Numbers x + iy
  • 32. Complex Numbers x + iy Real Numbers y=0
  • 33. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0
  • 34. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers
  • 35. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Irrational Numbers
  • 36. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Irrational Numbers
  • 37. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 38. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Irrational Numbers
  • 39. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 40. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 41. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives Irrational Numbers
  • 42. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 44. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  • 45. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition
  • 46. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i 
  • 47. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 48. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i   4  i
  • 49. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i
  • 50. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 51. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication
  • 52. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 53. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 54. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6
  • 55. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 56. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 57. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  26  32i
  • 58. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4
  • 59. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4  38  16i  68  19 8   i 34 34
  • 60. Exercise 4A; 1 to 16 evens