SlideShare a Scribd company logo
1 of 103
Download to read offline
Geometrical Representation of
    Complex Numbers
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y




                                            x
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                         z  x  iy


                                            x
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                         z  x  iy


                                            x
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy
                                                         A vector always

                                               x           represents
                                                     HEAD minus TAIL


The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Addition / Subtraction
Addition / Subtraction

            y




                         x
Addition / Subtraction

            y


                         z1

                              x
Addition / Subtraction

            y
                z2

                         z1

                              x
Addition / Subtraction

             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2

                           z1

                                x
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2

                           z1

                                x
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2
                                              NOTE :
                           z1                 the parallelogram formed by adding
                                              vectors has two diagonals;
                                x
                                              z1  z2 and z1  z2
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2
                                              NOTE :
                           z1                 the parallelogram formed by adding
                                              vectors has two diagonals;
                                x
                                              z1  z2 and z1  z2
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
                 (equality occurs when AC is a straight line)
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
                 (equality occurs when AC is a straight line)

                                 z1  z2  z1  z2
Addition
 If a point A represents z1 and point B
 represents z 2 then point C representing
  z1  z2 is such that the points OACB
 form a parallelogram.
Addition
 If a point A represents z1 and point B
 represents z 2 then point C representing
  z1  z2 is such that the points OACB
 form a parallelogram.



 Subtraction
 If a point D represents  z1
 and point E represents z2  z1
 then the points ODEB form a
 parallelogram.
 Note: AB  z2  z1
        arg z2  z1   
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
  The length of OQ is w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
  The length of OQ is w
  The length of PQ is z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
                            Using the triangula r inequality on OPQ
  The length of OQ is w
                                          zw  z  w
  The length of PQ is z  w
e.g.1995                      y

                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
e.g.1995                    R y
                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
e.g.1995                    R y
                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
                       OPRQ is a parallelogram
w
iii  If z  w  z  w , what can be said about ?
                                                z
w
iii  If z  w  z  w , what can be said about ?
                                                z
          zw  zw
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                 w 
              arg 
                 z 2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                 w            w
                               is purely imaginary
              arg 
                 z 2           z
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
      z1 z2  z1 z2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
      z1 z2  z1 z2           arg z1 z2  arg z1  arg z2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w                  w
                                    is purely imaginary
             arg 
                z 2                 z
Multiplication
      z1 z2  z1 z2               arg z1 z2  arg z1  arg z2

                 r1cis1  r2cis 2  r1r2cis1   2 
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                          
        arg w  arg z 
                          2
                w                   w
                                     is purely imaginary
             arg 
                z 2                  z
Multiplication
      z1 z2  z1 z2                arg z1 z2  arg z1  arg z2

                  r1cis1  r2cis 2  r1r2cis1   2 
 i.e. if we multiply z1 by z2 , the vector z1 is rotated anticlockwise by  2
    and its length is multiplied by r2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2

                                                                 
           Multiplica tion by i is a rotation anticlockwise by
                                                                 2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2

                                                                 
           Multiplica tion by i is a rotation anticlockwise by
                                                                 2


          REMEMBER:          A vector is HEAD minus TAIL
y
    B
               A 
C
O       D(1)    x
y                      DC  DA  i
    B
               A 
C
O       D(1)    x
y                       DC  DA  i
    B
                       C  1    1 i
               A 
C
O       D(1)    x
y                       DC  DA  i
    B
                       C  1    1 i
               A 
C                         C  1    1 i
O               x             1  i   i
        D(1)
y                        DC  DA  i
             B
                                C  1    1 i
                        A 
       C                           C  1    1 i
        O                x             1  i   i
                 D(1)


B  A  DC
y                        DC  DA  i
             B
                                C  1    1 i
                        A 
        C                          C  1    1 i
         O               x             1  i   i
                 D(1)


B  A  DC
B    C 1
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
B  C  DA
y                           DC  DA  i
                B
                                      C  1    1 i
                              A 
          C                              C  1    1 i
            O                  x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
B  C  DA
B  1  i   i  (  1)
y                          DC  DA  i
                B
                                      C  1    1 i
                              A 
          C                              C  1    1 i
            O                  x             1  i   i
                       D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                               DC  DA  i
                B
                                           C  1    1 i
                              A 
          C                                   C  1    1 i
            O                  x                  1  i   i
                       D(1)
                                      OR
B  A  DC
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                        
                               B  1  2  cos  i sin  (  1)
B      1 i                            4       4
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                          OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR                                1  i  i  1

B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                               C  1    1 i
            O                  x                             1  i   i
                       D(1)
                                          OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR                                1  i  i  1
                                       i  1  i  
B  C  DA
B  1  i   i  (  1)
    i  1  i  
e.g.2000        B
                            y
              C
                                  A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
   OC  OA  2i
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
   OC  OA  2i
    C  2i
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
 D  midpoint of AC
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
 D  midpoint of AC
         AC
    D
           2
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
                                             2i
 diagonals bisect in a rectangle      D
                                              2
 D  midpoint of AC
         AC
    D
           2
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
                                             2i
 diagonals bisect in a rectangle      D
                                              2
 D  midpoint of AC
         AC                                1 
    D                               D    i 
           2                                2 
Examples
Examples




                
 OB  OA cis
                3
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
              3
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
   D  iB
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
   D  iB
        3 1
   D    i
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
   D  iB
        3 1
   D    i
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
                         1  3    3 1 
   D  iB             C    i   i
   D
        3 1
          i             2 2   2 2 
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
                         1    3      3 1 
   D  iB             C       i      i
   D
        3 1
          i             2 2   2 2 
       2 2               1  3  1  3 
                      C             i
                          2   2 
(i)   AP  AO  i
(i)     AP  AO  i
      P  A  i  O  A
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)   QB  BO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2    M
                                                            PQ
          P  1  i z1                                     2
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2     M
                                                                PQ
          P  1  i z1                                            2
                                                            1  i z1  1  i z2
                                                         M
                                                                       2
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2     M
                                                                  PQ
          P  1  i z1                                            2
                                                            1  i z1  1  i z2
                                                         M
                                                                       2
                                                              z1  z2    z1  z2 i
                                                         M
                                                                         2
Exercise 4K; 1 to 8, 11, 12, 13

      Exercise 4L; odd

   Terry Lee: Exercise 2.6

More Related Content

What's hot

Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Matthew Leingang
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsMatthew Leingang
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Matthew Leingang
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 SlidesMatthew Leingang
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflectionTarun Gehlot
 

What's hot (18)

Session 20
Session 20Session 20
Session 20
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
 
Higham
HighamHigham
Higham
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Day 01
Day 01Day 01
Day 01
 
Integration
IntegrationIntegration
Integration
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Business math
Business mathBusiness math
Business math
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 Slides
 
Algo Final
Algo FinalAlgo Final
Algo Final
 
Partitions
PartitionsPartitions
Partitions
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
Linear (in)dependence
Linear (in)dependenceLinear (in)dependence
Linear (in)dependence
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
 

Viewers also liked

X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)Nigel Simmons
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)Nigel Simmons
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (7)

X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 

X2 T01 09 geometrical representation (2010)

  • 2. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors.
  • 3. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y x
  • 4. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 5. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 6. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 7. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 8. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 9. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy A vector always x represents HEAD minus TAIL The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 14. Addition / Subtraction y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 15. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 16. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 17. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 18. Addition / Subtraction z1  z2 y z2 z1 x z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 19. Addition / Subtraction z1  z2 y z2 z1 x z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 20. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 21. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 22. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides
  • 23. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC
  • 24. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC (equality occurs when AC is a straight line)
  • 25. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC (equality occurs when AC is a straight line) z1  z2  z1  z2
  • 26. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z2 is such that the points OACB form a parallelogram.
  • 27. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z2 is such that the points OACB form a parallelogram. Subtraction If a point D represents  z1 and point E represents z2  z1 then the points ODEB form a parallelogram. Note: AB  z2  z1 arg z2  z1   
  • 28. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 29. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 30. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z
  • 31. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w
  • 32. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w The length of PQ is z  w
  • 33. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w
  • 34. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 35. e.g.1995 R y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 36. e.g.1995 R y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ? OPRQ is a parallelogram
  • 37. w iii  If z  w  z  w , what can be said about ? z
  • 38. w iii  If z  w  z  w , what can be said about ? z zw  zw
  • 39. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are =
  • 40. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle
  • 41. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2
  • 42. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  arg  z 2
  • 43. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z
  • 44. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication
  • 45. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2
  • 46. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2
  • 47. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2 r1cis1  r2cis 2  r1r2cis1   2 
  • 48. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2 r1cis1  r2cis 2  r1r2cis1   2  i.e. if we multiply z1 by z2 , the vector z1 is rotated anticlockwise by  2 and its length is multiplied by r2
  • 49. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r
  • 50. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2
  • 51. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2  Multiplica tion by i is a rotation anticlockwise by 2
  • 52. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2  Multiplica tion by i is a rotation anticlockwise by 2 REMEMBER: A vector is HEAD minus TAIL
  • 53. y B A  C O D(1) x
  • 54. y DC  DA  i B A  C O D(1) x
  • 55. y DC  DA  i B C  1    1 i A  C O D(1) x
  • 56. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1)
  • 57. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC
  • 58. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1
  • 59. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i  
  • 60. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR
  • 61. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA
  • 62. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)
  • 63. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 64. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 65. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 66. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 67. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 68. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR    1  i  i  1 B  C  DA B  1  i   i  (  1)  i  1  i  
  • 69. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR    1  i  i  1  i  1  i   B  C  DA B  1  i   i  (  1)  i  1  i  
  • 70. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number 
  • 71. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?
  • 72. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i
  • 73. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i
  • 74. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?
  • 75. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle
  • 76. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC
  • 77. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC AC D 2
  • 78. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i diagonals bisect in a rectangle D 2  D  midpoint of AC AC D 2
  • 79. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i diagonals bisect in a rectangle D 2  D  midpoint of AC AC 1  D  D    i  2 2 
  • 81. Examples  OB  OA cis 3
  • 82. Examples  OB  OA cis 3  B  1cis 3
  • 83. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2
  • 84. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i
  • 85. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i D  iB
  • 86. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i D  iB 3 1 D  i 2 2
  • 87. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i D  iB 3 1 D  i 2 2
  • 88. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i 1 3   3 1  D  iB C   i  i D 3 1  i 2 2   2 2  2 2
  • 89. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i 1 3   3 1  D  iB C   i  i D 3 1  i 2 2   2 2  2 2 1  3  1  3  C   i  2   2 
  • 90.
  • 91. (i) AP  AO  i
  • 92. (i) AP  AO  i P  A  i  O  A
  • 93. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1 
  • 94. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1
  • 95. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 96. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 97. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 98. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 P  1  i z1
  • 99. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 P  1  i z1
  • 100. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2
  • 101. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2 1  i z1  1  i z2 M 2
  • 102. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2 1  i z1  1  i z2 M 2  z1  z2    z1  z2 i M 2
  • 103. Exercise 4K; 1 to 8, 11, 12, 13 Exercise 4L; odd Terry Lee: Exercise 2.6