SlideShare a Scribd company logo
1 of 57
Download to read offline
nth Roots Of Unity  z

n

 1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
5
5
5
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
5
5
5
5

cis 0
x
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
cis
5
5
5
5
5
cis 0
x
2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution

Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5

 1
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

sum of the roots 



 1
 NOTE :

 n

 1  0


  11     2     n1   0


5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

sum of the roots 

5



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 



a  r n  1
r 1
1 5  1

 1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5

0



5

1  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 1
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 equation is x 2  x  1  0
 1
5
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   



2 3

3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   

3

  3
 1



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
  3
 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0

z  z  z  z  z 1  0
z3  2z 2  2z 1  0
3

2

2



1  

2
2
 2

1
d) Solve z 5  z 4  z 3  z 2  z  1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1


2
2
z  cis , cis  , cis
, cis 
, cis
3
3
3
3
1
3 1
3
1
3
1
3
z 
i, 
i,  
i,  
i, 1
2 2 2 2
2 2
2 2
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 


k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 

z  k

k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 

   2   3   4   5   6   7   8  1


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1




2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1


Let z  i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i


2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8
Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11
Patel: Exercise 4I; 1, 3, 5 (need 4b), 7
Patel: Exercise 4J; 1 to 4, 7ac

More Related Content

What's hot

8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harder
MsKendall
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูล
Pom Piyatip
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT Prep
JTKnull
 

What's hot (20)

Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
 
Expanding
ExpandingExpanding
Expanding
 
1. complex numbers
1. complex numbers1. complex numbers
1. complex numbers
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
 
Expressions
Expressions Expressions
Expressions
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
 
3. apply distance and midpoint
3.  apply distance and midpoint3.  apply distance and midpoint
3. apply distance and midpoint
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions
 
Jeopardy review
Jeopardy reviewJeopardy review
Jeopardy review
 
8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harder
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
8.1 8.4 quizzo
8.1 8.4 quizzo8.1 8.4 quizzo
8.1 8.4 quizzo
 
#125 documented
#125 documented#125 documented
#125 documented
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูล
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT Prep
 
Algebra
AlgebraAlgebra
Algebra
 
Alg1 lesson 7-1
Alg1 lesson 7-1Alg1 lesson 7-1
Alg1 lesson 7-1
 
Alg2 lesson 8-1
Alg2 lesson 8-1Alg2 lesson 8-1
Alg2 lesson 8-1
 

Viewers also liked

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Viewers also liked (6)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Similar to X2 t01 11 nth roots of unity (2012)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
Nigel Simmons
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptest
Garden City
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)
Nigel Simmons
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
Nigel Simmons
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unity
Nigel Simmons
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)
Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
Nigel Simmons
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies pp
collins1156
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
Nigel Simmons
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equations
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 

Similar to X2 t01 11 nth roots of unity (2012) (16)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptest
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unity
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies pp
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equations
 
EKR for Matchings
EKR for MatchingsEKR for Matchings
EKR for Matchings
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
0913 ch 9 day 13
0913 ch 9 day 130913 ch 9 day 13
0913 ch 9 day 13
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
Nigel Simmons
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
 

Recently uploaded

Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Recently uploaded (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 

X2 t01 11 nth roots of unity (2012)

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis 0 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 cis 5 5 5 5 5 cis 0 x 2 cis  5
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 11. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 12. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 13. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1
  • 14. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 18. ii  Prove that 1     2   3   4  0
  • 19. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5  1
  • 20. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 sum of the roots    1  NOTE :   n   1  0     11     2     n1   0   5
  • 21. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 sum of the roots  5  5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4   a  r n  1 r 1 1 5  1  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5 0  5 1  0
  • 22. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 5
  • 23. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  1 5
  • 24. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  equation is x 2  x  1  0  1 5
  • 25. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 26. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1        2 3 3
  • 27. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1       3   3  1  2 3
  • 28. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3       3  1
  • 29. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2
  • 30. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2 2  2  1
  • 31. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  1   2 2  2  1
  • 32. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  1   2 2  2  1
  • 33. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0  1   2 2  2  1
  • 34. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0 z  z  z  z  z 1  0 z3  2z 2  2z 1  0 3 2 2  1   2 2  2  1
  • 35. d) Solve z 5  z 4  z 3  z 2  z  1  0
  • 36. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
  • 37. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6 
  • 38. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0
  • 39. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1
  • 40. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3 1 3 1 3 1 3 1 3 z  i,  i,   i,   i, 1 2 2 2 2 2 2 2 2
  • 41. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer
  • 42. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1
  • 43. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   k  0,1,2,3,4,5,6,7,8
  • 44. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   z  k k  0,1,2,3,4,5,6,7,8
  • 45. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0
  • 46. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots 
  • 47. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots     2   3   4   5   6   7   8  1
  • 48.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8
  • 49.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
  • 50.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1  
  • 51.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1   Let z  i 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 52. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 53. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   4  i 
  • 54. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 4  i 
  • 55. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  i 
  • 56. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8  i 
  • 57. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i  2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8 Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11 Patel: Exercise 4I; 1, 3, 5 (need 4b), 7 Patel: Exercise 4J; 1 to 4, 7ac