Upcoming SlideShare
×

# 11X1 T01 09 completing the square (2011)

782 views

Published on

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
782
On SlideShare
0
From Embeds
0
Number of Embeds
110
Actions
Shares
0
8
0
Likes
0
Embeds 0
No embeds

No notes for slide

### 11X1 T01 09 completing the square (2011)

1. 1. Completing the Square
2. 2. Completing the Squaree.g. (i ) x 2  6 x  7  0
3. 3. Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant
4. 4. Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared
5. 5. Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square
6. 6. Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square x  3  4
7. 7. Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square x  3  4 x  3  4 x  7 or x  1
8. 8. (ii ) ax 2  bx  c  0
9. 9. (ii ) ax 2  bx  c  0 b c x2  x   0 a a
10. 10. (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a
11. 11. (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a 
12. 12. (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2
13. 13. (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2 b b 2  4ac x  2a 2a
14. 14. (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2 b b 2  4ac x  2a 2a b  b 2  4ac x 2a
15. 15. (iii ) x 2  6 x  6  0
16. 16. (iii ) x 2  6 x  6  0  x  3 0 2
17. 17. (iii ) x 2  6 x  6  0  x  3 3  0 2
18. 18. (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0
19. 19. (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0x  3  3 or x  3  3
20. 20. (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0x  3  3 or x  3  3 Exercise 1I; 1adh, 2ch, 3adg, 4bdfh, 5bdf, 6adg, 7bc, 8*