1
Name:Viral J. Prajapati
Sem: I
Branch: Electrical
Enrol No:150140109101
Sub: Calculus
Topic:Triple Integrals in Spherical Coordinates
Triple Integrals in Spherical
Coordinates
• In spherical cordinates a point in xyz space characterized by
the three coordinates rho, theta, and phi. These are related to
x,y, and z by the equations
• Type equation here.
2
𝝆 ≥ 𝟎 𝟎≤ 𝜽 ≤ 𝟐𝝅 𝟎 ≤ 𝝋 ≤ 𝝅
Recall that
Triple Integrals in Spherical Coordinates
•  Switch to spherical coordinates: radius, longitude,
latitude
3
2 2 2 2
sin cos
sin sin
cos
x
y
z
x y z
  
  
 




 
  
Switch to rectangular coordinates
4
2 2 2
1
2 2 2
1
cos
tan
x y z
z
x y z
y
x






   

  
      

      
5
 2
sindV d d d    
A typical triple integral in
spherical coordinates has
the form
 
    
 
 
 2 2
1 1
,
2
,
, ,
, , sin
G
h g
h g
f x y z dV
f d d d
   
   
       

  
Triple integrals in spherical coordinates

Triple integrals in spherical coordinates

  • 1.
    1 Name:Viral J. Prajapati Sem:I Branch: Electrical Enrol No:150140109101 Sub: Calculus Topic:Triple Integrals in Spherical Coordinates
  • 2.
    Triple Integrals inSpherical Coordinates • In spherical cordinates a point in xyz space characterized by the three coordinates rho, theta, and phi. These are related to x,y, and z by the equations • Type equation here. 2 𝝆 ≥ 𝟎 𝟎≤ 𝜽 ≤ 𝟐𝝅 𝟎 ≤ 𝝋 ≤ 𝝅 Recall that
  • 3.
    Triple Integrals inSpherical Coordinates •  Switch to spherical coordinates: radius, longitude, latitude 3 2 2 2 2 sin cos sin sin cos x y z x y z                 
  • 4.
    Switch to rectangularcoordinates 4 2 2 2 1 2 2 2 1 cos tan x y z z x y z y x                             
  • 5.
    5  2 sindV dd d     A typical triple integral in spherical coordinates has the form             2 2 1 1 , 2 , , , , , sin G h g h g f x y z dV f d d d                    