SlideShare a Scribd company logo
1 of 16
Download to read offline
Device Modeling Report



     COMPONENTS: TRANSISTOR
     PART NUMBER: 2SC4686A
     MANUFACTURER: TOSHIBA




              Bee Technologies Inc.




All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
TRANSISTOR MODEL

  PSpice
   model                                Model description
 parameter
    IS         Saturation Current
    BF         Ideal Maximum Forward Beta
    NF         Forward Current Emission Coefficient
   VAF         Forward Early Voltage
   IKF         Forward Beta Roll-off Knee Current
   ISE         Non-ideal Base-Emitter Diode Saturation Current
    NE         Non-ideal Base-Emitter Diode Emission Coefficient
    BR         Ideal Maximum Reverse Beta
   NR          Reverse Emission Coefficient
   VAR         Reverse Early Voltage
   IKR         Reverse Beta Roll-off Knee Current
   ISC         Non-ideal Base-Collector Diode Saturation Current
   NC          Non-ideal Base-Collector Diode Emission Coefficient
    NK         Forward Beta Roll-off Slope Exponent
    RE         Emitter Resistance
    RB         Base Resistance
   RC          Series Collector Resistance
   CJE         Zero-bias Emitter-Base Junction Capacitance
   VJE         Emitter-Base Junction Potential
   MJE         Emitter-Base Junction Grading Coefficient
   CJC         Zero-bias Collector-Base Junction Capacitance
   VJC         Collector-base Junction Potential
   MJC         Collector-base Junction Grading Coefficient
    FC         Coefficient for Onset of Forward-bias Depletion
               Capacitance
    TF         Forward Transit Time
   XTF         Coefficient for TF Dependency on Vce
   VTF         Voltage for TF Dependency on Vce
   ITF         Current for TF Dependency on Ic
   PTF         Excess Phase at f=1/2pi*TF
   TR          Reverse Transit Time
   EG          Activation Energy
   XTB         Forward Beta Temperature Coefficient
   XTI         Temperature Coefficient for IS




             All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Reverse

Reverse Early Voltage Characteristic




                                      Ic




                                                  VAR
                                                                   Vce



                                                    Y=aX+b
                                (X1,Y1)
                           (X2,Y2)




            All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Reverse DC Beta Characteristic (Ie vs. hFE)




                  Measurement
                  Simulation




                                    Emitter Current




            All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Forward
Forward Early Voltage Characteristic




                                Ic (X2,Y2)

             Y=aX+b                                         (X1,Y1)




                                                            Vce
                     VAF




           All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
C-B Capacitance Characteristics



                                                      Measurement
                                                      Simulation




E-B Capacitance Characteristics


                                                       Measurement
                                                       Simulation




          All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Transistor hFE-IC Characteristics

 Circuit Simulation Result

    100




     10




    1.0
     100uA                1.0mA                          10mA          100mA
         I(vsence)/ IB(Q1)
                                      I(vsence)


Evaluation Circuit


                                            v sence


                                     0Vdc



                                 Q1
                                Q2SC4686A
                                                            V1
                                                  6Vdc
               I1

              0Adc




                                 0




              All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Comparison Graph

 Circuit Simulation Result



    100
                    Measurement
                    Simulation




        10
  hFE




         1
        0.0001                   0.001               0.01                  0.1
                                            IC(A)



Simulation Result

                                     hFE
                 Ic(A)                                             Error(%)
                           Measurement   Simulation
                 0.0001                  11.500         11.293         -1.800
                 0.0002                  16.000         16.038          0.238
                 0.0005                  21.500         21.952          2.102
                  0.001                  25.500         25.779          1.094
                  0.002                  28.000         27.604         -1.414
                  0.005                  24.500         24.610          0.449
                   0.01                  18.000         18.164          0.911
                   0.02                  10.150         10.640          4.828




                  All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
VCE(Sat)-IC Characteristics

 Circuit Simulation Result

      50V




      10V




     1.0V




    100mV
       100uA                 1.0mA               10mA             100mA 300mA
           V(Q1:c)
                                        IC(Q1)


 Evaluation Circuit




                                                  VC




                                      Q1
                                     Q2SC4686A
                        F1
                        F
                   I1   5

                0Adc




               0




               All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Comparison Graph

 Circuit Simulation Result



                10
                             Measurement
                             Simulation
 VCE(SAT) (V)




                 1




                0.1
                 0.0001                   0.001               0.01                  0.1
                                                      IC(A)




Simulation Result



                                            VCE(sat)
                          IC(A)                                            Error(%)
                                    Measurement   Simulation
                          0.0001                  0.155         0.155            0.000
                          0.0005                  0.145         0.145            0.000
                           0.001                  0.145         0.145            0.000
                           0.005                  0.155         0.156            0.645
                            0.01                   0.17         0.171            0.588
                            0.02                    0.2         0.203            1.500




                           All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
VBE(Sat)-IC Characteristics

 Circuit Simulation Result


     10V




    1.0V




   200mV
      1.0mA                  10mA                     100mA              1.0A
          V(Q1:b)
                                       IC(Q1)



 Evaluation Circuit


                                                 VC




                                      Q1
                                     Q2SC4686A
                        F1
                        F
                   I1   5

               0Adc




               0




               All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Comparison Graph

 Circuit Simulation Result



                 10
                              Measurement
                              Simulation
  VBE(SAT) (V)




                  1




                 0.1
                  0.0001                   0.001               0.01                   0.1
                                                     IC(A)


Simulation Result



                                             VBE(sat)
                           IC(A)                                             Error(%)
                                     Measurement   Simulation
                           0.0001                  0.550           0.555          0.909
                           0.0005                  0.600           0.603          0.500
                            0.001                  0.630           0.624         -0.952
                            0.005                  0.690           0.684         -0.870
                             0.01                  0.720           0.720          0.000
                             0.05                  0.850           0.845         -0.588




                            All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Switching Characteristics

Circuit simulation result
       40mA         80mA
  1           2


       30mA         60mA


       20mA         40mA


       10mA         20mA


        0mA             0mA


      -10mA       -20mA


      -20mA       -40mA


      -30mA       -60mA

                     >>
      -40mA       -80mA
                      20us         30us 40us 50us 60us 70us 80us   90us 100us         120us
                        1           IC(Q1) 2     IB(Q1)
                                                        Time


Evaluation circuit

                                                                    L1          R3

                                            R1
                                                                    30nH    10k
                                                     L2
                                            95
                                                               Q1
                                            R2                Q2SC4686A
                                                     50nH
              V1 = -5
                              V1                                                       V2
              V2 = 6                         100.5                              250
              TD = 3us
              TR = 1us
              TF = 1uns
              PW = 35us
              PER = 500us

                                                              0



Simulation result

                                         Measurement        Simulation          %Error
                  tstg (us)                      14.000         14.051                 0.364
                   tf (us)                       15.500         15.418                -0.529



                   All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Switching Characteristics                                        Reference




          All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Output Characteristics

 Circuit Simulation Result

    50mA
                                                                        6

                                                                        5

    40mA                                                                4

                                                                        3


    30mA
                                                                        2




    20mA
                                                                      IB=1mA



    10mA




      0A
           0V          4V             8V         12V            16V   20V      24V
                            IC(Q1)
                                                 V_V1



Evaluation Circuit




                                      Q1
                                     Q2SC4686A

                                                        10Vdc
                 I1                                              V1

                0Adc




                                     0




                All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
Output Characteristics                                               Reference




          All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

More Related Content

What's hot

SPICE MODEL of 2SA1300 in SPICE PARK
SPICE MODEL of 2SA1300 in SPICE PARKSPICE MODEL of 2SA1300 in SPICE PARK
SPICE MODEL of 2SA1300 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5949 in SPICE PARK
SPICE MODEL of 2SC5949 in SPICE PARKSPICE MODEL of 2SC5949 in SPICE PARK
SPICE MODEL of 2SC5949 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARKSPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA968 in SPICE PARK
SPICE MODEL of 2SA968 in SPICE PARKSPICE MODEL of 2SA968 in SPICE PARK
SPICE MODEL of 2SA968 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA2121 in SPICE PARK
SPICE MODEL of 2SA2121 in SPICE PARKSPICE MODEL of 2SA2121 in SPICE PARK
SPICE MODEL of 2SA2121 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKSPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3328(Y) in SPICE PARK
SPICE MODEL of 2SC3328(Y) in SPICE PARKSPICE MODEL of 2SC3328(Y) in SPICE PARK
SPICE MODEL of 2SC3328(Y) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1837 in SPICE PARK
SPICE MODEL of 2SA1837 in SPICE PARKSPICE MODEL of 2SA1837 in SPICE PARK
SPICE MODEL of 2SA1837 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKSPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARKSPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKSPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARKSPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKSPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1790 in SPICE PARK
SPICE MODEL of 2SA1790 in SPICE PARKSPICE MODEL of 2SA1790 in SPICE PARK
SPICE MODEL of 2SA1790 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1532 in SPICE PARK
SPICE MODEL of 2SA1532 in SPICE PARKSPICE MODEL of 2SA1532 in SPICE PARK
SPICE MODEL of 2SA1532 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1298(Y) in SPICE PARK
SPICE MODEL of 2SA1298(Y) in SPICE PARKSPICE MODEL of 2SA1298(Y) in SPICE PARK
SPICE MODEL of 2SA1298(Y) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKSPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA2079 in SPICE PARK
SPICE MODEL of 2SA2079 in SPICE PARKSPICE MODEL of 2SA2079 in SPICE PARK
SPICE MODEL of 2SA2079 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARKSPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARKTsuyoshi Horigome
 

What's hot (20)

SPICE MODEL of 2SA1300 in SPICE PARK
SPICE MODEL of 2SA1300 in SPICE PARKSPICE MODEL of 2SA1300 in SPICE PARK
SPICE MODEL of 2SA1300 in SPICE PARK
 
SPICE MODEL of 2SC5949 in SPICE PARK
SPICE MODEL of 2SC5949 in SPICE PARKSPICE MODEL of 2SC5949 in SPICE PARK
SPICE MODEL of 2SC5949 in SPICE PARK
 
SPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARKSPICE MODEL of TG6064 in SPICE PARK
SPICE MODEL of TG6064 in SPICE PARK
 
SPICE MODEL of 2SA968 in SPICE PARK
SPICE MODEL of 2SA968 in SPICE PARKSPICE MODEL of 2SA968 in SPICE PARK
SPICE MODEL of 2SA968 in SPICE PARK
 
SPICE MODEL of 2SA2121 in SPICE PARK
SPICE MODEL of 2SA2121 in SPICE PARKSPICE MODEL of 2SA2121 in SPICE PARK
SPICE MODEL of 2SA2121 in SPICE PARK
 
SPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARKSPICE MODEL of 2SA2070 in SPICE PARK
SPICE MODEL of 2SA2070 in SPICE PARK
 
SPICE MODEL of 2SC3328(Y) in SPICE PARK
SPICE MODEL of 2SC3328(Y) in SPICE PARKSPICE MODEL of 2SC3328(Y) in SPICE PARK
SPICE MODEL of 2SC3328(Y) in SPICE PARK
 
SPICE MODEL of 2SA1837 in SPICE PARK
SPICE MODEL of 2SA1837 in SPICE PARKSPICE MODEL of 2SA1837 in SPICE PARK
SPICE MODEL of 2SA1837 in SPICE PARK
 
SPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARKSPICE MODEL of 2SA1890 in SPICE PARK
SPICE MODEL of 2SA1890 in SPICE PARK
 
SPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARKSPICE MODEL of TG6063 in SPICE PARK
SPICE MODEL of TG6063 in SPICE PARK
 
SPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARKSPICE MODEL of 2SB1375 in SPICE PARK
SPICE MODEL of 2SB1375 in SPICE PARK
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARK
 
SPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARKSPICE MODEL of 2SC3632 in SPICE PARK
SPICE MODEL of 2SC3632 in SPICE PARK
 
SPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARKSPICE MODEL of 2SA2174J in SPICE PARK
SPICE MODEL of 2SA2174J in SPICE PARK
 
SPICE MODEL of 2SA1790 in SPICE PARK
SPICE MODEL of 2SA1790 in SPICE PARKSPICE MODEL of 2SA1790 in SPICE PARK
SPICE MODEL of 2SA1790 in SPICE PARK
 
SPICE MODEL of 2SA1532 in SPICE PARK
SPICE MODEL of 2SA1532 in SPICE PARKSPICE MODEL of 2SA1532 in SPICE PARK
SPICE MODEL of 2SA1532 in SPICE PARK
 
SPICE MODEL of 2SA1298(Y) in SPICE PARK
SPICE MODEL of 2SA1298(Y) in SPICE PARKSPICE MODEL of 2SA1298(Y) in SPICE PARK
SPICE MODEL of 2SA1298(Y) in SPICE PARK
 
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARKSPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
SPICE MODEL of 2SC4331-AZ(K) in SPICE PARK
 
SPICE MODEL of 2SA2079 in SPICE PARK
SPICE MODEL of 2SA2079 in SPICE PARKSPICE MODEL of 2SA2079 in SPICE PARK
SPICE MODEL of 2SA2079 in SPICE PARK
 
SPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARKSPICE MODEL of 2SA1576AT106R in SPICE PARK
SPICE MODEL of 2SA1576AT106R in SPICE PARK
 

Similar to SPICE MODEL of 2SC4686A in SPICE PARK

SPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKSPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKSPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6113 in SPICE PARK
SPICE MODEL of 2SC6113 in SPICE PARKSPICE MODEL of 2SC6113 in SPICE PARK
SPICE MODEL of 2SC6113 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKSPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARKSPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC3325 in SPICE PARK
SPICE MODEL of 2SC3325 in SPICE PARKSPICE MODEL of 2SC3325 in SPICE PARK
SPICE MODEL of 2SC3325 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC2712 in SPICE PARK
SPICE MODEL of 2SC2712 in SPICE PARKSPICE MODEL of 2SC2712 in SPICE PARK
SPICE MODEL of 2SC2712 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKSPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC4015 in SPICE PARK
SPICE MODEL of 2SC4015 in SPICE PARKSPICE MODEL of 2SC4015 in SPICE PARK
SPICE MODEL of 2SC4015 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6082 in SPICE PARK
SPICE MODEL of 2SC6082 in SPICE PARKSPICE MODEL of 2SC6082 in SPICE PARK
SPICE MODEL of 2SC6082 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARKSPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARKTsuyoshi Horigome
 

Similar to SPICE MODEL of 2SC4686A in SPICE PARK (12)

SPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARKSPICE MODEL of UP05C8G in SPICE PARK
SPICE MODEL of UP05C8G in SPICE PARK
 
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARKSPICE MODEL of 2SC5808-TL-E in SPICE PARK
SPICE MODEL of 2SC5808-TL-E in SPICE PARK
 
SPICE MODEL of 2SC6113 in SPICE PARK
SPICE MODEL of 2SC6113 in SPICE PARKSPICE MODEL of 2SC6113 in SPICE PARK
SPICE MODEL of 2SC6113 in SPICE PARK
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARK
 
SPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARKSPICE MODEL of 2SC3632-AZ in SPICE PARK
SPICE MODEL of 2SC3632-AZ in SPICE PARK
 
SPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARKSPICE MODEL of 2SC6081 in SPICE PARK
SPICE MODEL of 2SC6081 in SPICE PARK
 
SPICE MODEL of 2SC3325 in SPICE PARK
SPICE MODEL of 2SC3325 in SPICE PARKSPICE MODEL of 2SC3325 in SPICE PARK
SPICE MODEL of 2SC3325 in SPICE PARK
 
SPICE MODEL of 2SC2712 in SPICE PARK
SPICE MODEL of 2SC2712 in SPICE PARKSPICE MODEL of 2SC2712 in SPICE PARK
SPICE MODEL of 2SC2712 in SPICE PARK
 
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARKSPICE MODEL of 2SC5980-TL-E in SPICE PARK
SPICE MODEL of 2SC5980-TL-E in SPICE PARK
 
SPICE MODEL of 2SC4015 in SPICE PARK
SPICE MODEL of 2SC4015 in SPICE PARKSPICE MODEL of 2SC4015 in SPICE PARK
SPICE MODEL of 2SC4015 in SPICE PARK
 
SPICE MODEL of 2SC6082 in SPICE PARK
SPICE MODEL of 2SC6082 in SPICE PARKSPICE MODEL of 2SC6082 in SPICE PARK
SPICE MODEL of 2SC6082 in SPICE PARK
 
SPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARKSPICE MODEL of 2SC6102 in SPICE PARK
SPICE MODEL of 2SC6102 in SPICE PARK
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 

Recently uploaded (20)

Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 

SPICE MODEL of 2SC4686A in SPICE PARK

  • 1. Device Modeling Report COMPONENTS: TRANSISTOR PART NUMBER: 2SC4686A MANUFACTURER: TOSHIBA Bee Technologies Inc. All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 2. TRANSISTOR MODEL PSpice model Model description parameter IS Saturation Current BF Ideal Maximum Forward Beta NF Forward Current Emission Coefficient VAF Forward Early Voltage IKF Forward Beta Roll-off Knee Current ISE Non-ideal Base-Emitter Diode Saturation Current NE Non-ideal Base-Emitter Diode Emission Coefficient BR Ideal Maximum Reverse Beta NR Reverse Emission Coefficient VAR Reverse Early Voltage IKR Reverse Beta Roll-off Knee Current ISC Non-ideal Base-Collector Diode Saturation Current NC Non-ideal Base-Collector Diode Emission Coefficient NK Forward Beta Roll-off Slope Exponent RE Emitter Resistance RB Base Resistance RC Series Collector Resistance CJE Zero-bias Emitter-Base Junction Capacitance VJE Emitter-Base Junction Potential MJE Emitter-Base Junction Grading Coefficient CJC Zero-bias Collector-Base Junction Capacitance VJC Collector-base Junction Potential MJC Collector-base Junction Grading Coefficient FC Coefficient for Onset of Forward-bias Depletion Capacitance TF Forward Transit Time XTF Coefficient for TF Dependency on Vce VTF Voltage for TF Dependency on Vce ITF Current for TF Dependency on Ic PTF Excess Phase at f=1/2pi*TF TR Reverse Transit Time EG Activation Energy XTB Forward Beta Temperature Coefficient XTI Temperature Coefficient for IS All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 3. Reverse Reverse Early Voltage Characteristic Ic VAR Vce Y=aX+b (X1,Y1) (X2,Y2) All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 4. Reverse DC Beta Characteristic (Ie vs. hFE) Measurement Simulation Emitter Current All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 5. Forward Forward Early Voltage Characteristic Ic (X2,Y2) Y=aX+b (X1,Y1) Vce VAF All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 6. C-B Capacitance Characteristics Measurement Simulation E-B Capacitance Characteristics Measurement Simulation All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 7. Transistor hFE-IC Characteristics Circuit Simulation Result 100 10 1.0 100uA 1.0mA 10mA 100mA I(vsence)/ IB(Q1) I(vsence) Evaluation Circuit v sence 0Vdc Q1 Q2SC4686A V1 6Vdc I1 0Adc 0 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 8. Comparison Graph Circuit Simulation Result 100 Measurement Simulation 10 hFE 1 0.0001 0.001 0.01 0.1 IC(A) Simulation Result hFE Ic(A) Error(%) Measurement Simulation 0.0001 11.500 11.293 -1.800 0.0002 16.000 16.038 0.238 0.0005 21.500 21.952 2.102 0.001 25.500 25.779 1.094 0.002 28.000 27.604 -1.414 0.005 24.500 24.610 0.449 0.01 18.000 18.164 0.911 0.02 10.150 10.640 4.828 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 9. VCE(Sat)-IC Characteristics Circuit Simulation Result 50V 10V 1.0V 100mV 100uA 1.0mA 10mA 100mA 300mA V(Q1:c) IC(Q1) Evaluation Circuit VC Q1 Q2SC4686A F1 F I1 5 0Adc 0 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 10. Comparison Graph Circuit Simulation Result 10 Measurement Simulation VCE(SAT) (V) 1 0.1 0.0001 0.001 0.01 0.1 IC(A) Simulation Result VCE(sat) IC(A) Error(%) Measurement Simulation 0.0001 0.155 0.155 0.000 0.0005 0.145 0.145 0.000 0.001 0.145 0.145 0.000 0.005 0.155 0.156 0.645 0.01 0.17 0.171 0.588 0.02 0.2 0.203 1.500 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 11. VBE(Sat)-IC Characteristics Circuit Simulation Result 10V 1.0V 200mV 1.0mA 10mA 100mA 1.0A V(Q1:b) IC(Q1) Evaluation Circuit VC Q1 Q2SC4686A F1 F I1 5 0Adc 0 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 12. Comparison Graph Circuit Simulation Result 10 Measurement Simulation VBE(SAT) (V) 1 0.1 0.0001 0.001 0.01 0.1 IC(A) Simulation Result VBE(sat) IC(A) Error(%) Measurement Simulation 0.0001 0.550 0.555 0.909 0.0005 0.600 0.603 0.500 0.001 0.630 0.624 -0.952 0.005 0.690 0.684 -0.870 0.01 0.720 0.720 0.000 0.05 0.850 0.845 -0.588 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 13. Switching Characteristics Circuit simulation result 40mA 80mA 1 2 30mA 60mA 20mA 40mA 10mA 20mA 0mA 0mA -10mA -20mA -20mA -40mA -30mA -60mA >> -40mA -80mA 20us 30us 40us 50us 60us 70us 80us 90us 100us 120us 1 IC(Q1) 2 IB(Q1) Time Evaluation circuit L1 R3 R1 30nH 10k L2 95 Q1 R2 Q2SC4686A 50nH V1 = -5 V1 V2 V2 = 6 100.5 250 TD = 3us TR = 1us TF = 1uns PW = 35us PER = 500us 0 Simulation result Measurement Simulation %Error tstg (us) 14.000 14.051 0.364 tf (us) 15.500 15.418 -0.529 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 14. Switching Characteristics Reference All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 15. Output Characteristics Circuit Simulation Result 50mA 6 5 40mA 4 3 30mA 2 20mA IB=1mA 10mA 0A 0V 4V 8V 12V 16V 20V 24V IC(Q1) V_V1 Evaluation Circuit Q1 Q2SC4686A 10Vdc I1 V1 0Adc 0 All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
  • 16. Output Characteristics Reference All Rights Reserved Copyright (c) Bee Technologies Inc. 2006