Trig Identities
 Tuesday 14th June 2011
y


        P(x, y)
    1

                  x
y


        P(x, y)
    1

                  x
y


                               P(x, y)
                        1

                                         x




Angles are always taken in an anticlockwise
    direction from the positive x axis
y


                                P(x, y)
                            1

                        θ                 x




Angles are always taken in an anticlockwise
    direction from the positive x axis
y


            P(x, y)
        1

    θ                 x
y


                         P(x, y)
                     1

                 θ                 x




Consider the coordinates of P
y


                             P(x, y)
                     1

                 θ                     x
                         x




Consider the coordinates of P
y


           y                   P(x, y)
                       1

                   θ                     x
                           x




Consider the coordinates of P
y


            P(x, y)
        1

    θ                 x
y


                                    P(x, y)
                                1

                            θ                 x




This creates a right angled triangle with an angle θ
y


                                    P(x, y)
                                1

                            θ                 x




This creates a right angled triangle with an angle θ
y


                                    P(x, y)
                                1

                            θ                 x
                                x




This creates a right angled triangle with an angle θ
y


                                    P(x, y)
                                1   y
                            θ                 x
                                x




This creates a right angled triangle with an angle θ
y


            P(x, y)
        1   y
    θ                 x
        x
y


                              P(x, y)
                          1   y
                      θ                 x
                          x




Using our standard trigonometric ratios
y
                                                  y
                                          tan θ =
                                                  x
                              P(x, y)
                          1   y
                      θ                 x
                          x




Using our standard trigonometric ratios
y
                                                  y
                                          tan θ =
                                                  x
                              P(x, y)             y
                                          sin θ = = y
                                                  1
                          1   y
                      θ                 x
                          x




Using our standard trigonometric ratios
y
                                                  y
                                          tan θ =
                                                  x
                              P(x, y)             y
                                          sin θ = = y
                                                  1
                          1   y                   x
                                          cosθ = = x
                      θ                           1
                                        x
                          x




Using our standard trigonometric ratios
y
    1st Quadrant      tan θ =
                              y
                              x
            P(x, y)           y
                      sin θ = = y
                              1
        1   y                 x
                      cosθ = = x
    θ                         1
                      x
        x
y
                       1st Quadrant      tan θ =
                                                 y
                                                 x
                               P(x, y)           y
                                         sin θ = = y
                                                 1
                           1   y                 x
                                         cosθ = = x
                       θ                         1
                                         x
                           x




(By Pythagoras):
y
                       1st Quadrant          tan θ =
                                                     y
                                                     x
                                   P(x, y)           y
                                             sin θ = = y
                                                     1
                           1       y                 x
                                             cosθ = = x
                       θ                             1
                                             x
                           x




                               2       2
                               x + y =1
(By Pythagoras):
y
                       1st Quadrant          tan θ =
                                                     y
                                                     x
                                   P(x, y)           y
                                             sin θ = = y
                                                     1
                           1       y                 x
                                             cosθ = = x
                       θ                             1
                                             x
                           x




                               2       2
                            x + y =1
(By Pythagoras):               2       2
                           ∴sin θ + cos θ = 1
VERY important Trig Identity
VERY important Trig Identity

        2       2
     sin θ + cos θ = 1
or rearranging
or rearranging
  2        2
sin θ + cos θ = 1
or rearranging
  2        2
sin θ + cos θ = 1
   2           2
sin θ = 1 − cos θ
or rearranging
  2        2
sin θ + cos θ = 1
   2           2
sin θ = 1 − cos θ
   2           2
cos θ = 1 − sin θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2        2
sin θ cos θ         1
   2
      +     2
               = 2
sin θ sin θ sin θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2        2
sin θ cos θ         1
   2
      +     2
               = 2
sin θ sin θ sin θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2        2
  sin θ cos θ         1
     2
        +     2
                 = 2
  sin θ sin θ sin θ
        2          2
∴1 + cot θ = cosec θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2        2
sin θ cos θ         1
   2
      +     2
               = 2
sin θ sin θ sin θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2           2
∴ tan θ + 1 = sec θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2           2
∴ tan θ + 1 = sec θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2          2
∴ tan θ + 1 = sec θ
        2        2
   ∴ tan θ = sec θ − 1
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2           2
∴ tan θ + 1 = sec θ
or dividing both sides
or dividing both sides
    2        2
 sin θ + cos θ = 1
or dividing both sides
         2        2
      sin θ + cos θ = 1
   2         2
sin θ cos θ         1
   2
       +     2
                =    2
cos θ cos θ cos θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2           2
∴ tan θ + 1 = sec θ
or dividing both sides
           2        2
        sin θ + cos θ = 1
     2         2
  sin θ cos θ         1
     2
         +     2
                  =    2
  cos θ cos θ cos θ
     2          2
∴ tan θ + 1 = sec θ
        2        2
   ∴ tan θ = sec θ − 1
But easier to remember how to get them!
2             2
   sin θ + cos θ = 1




But easier to remember how to get them!
2             2
   sin θ + cos θ = 1


          2                   2
cosec θ = 1 + cot θ



But easier to remember how to get them!
2             2
   sin θ + cos θ = 1


          2                   2
cosec θ = 1 + cot θ
     2          2
  cot θ = cosec θ − 1


But easier to remember how to get them!
2             2
   sin θ + cos θ = 1


          2                   2
cosec θ = 1 + cot θ
     2          2
  cot θ = cosec θ − 1
      2       2
  sec θ = tan θ + 1

But easier to remember how to get them!
2             2
   sin θ + cos θ = 1


          2                   2
cosec θ = 1 + cot θ
     2          2
  cot θ = cosec θ − 1
      2       2
  sec θ = tan θ + 1
     2        2
∴ tan θ = sec θ − 1
But easier to remember how to get them!
2             2
   sin θ + cos θ = 1
      2           2
   sin θ = 1 − cos θ
          2                   2
cosec θ = 1 + cot θ
     2          2
  cot θ = cosec θ − 1
      2       2
  sec θ = tan θ + 1
     2        2
∴ tan θ = sec θ − 1
But easier to remember how to get them!
2             2
  sin θ + cos θ = 1
     2            2
 sin θ = 1 − cos θ
      2           2
  cos θ = 1 − sin θ
       2           2
cosec θ = 1 + cot θ
      2          2
  cot θ = cosec θ − 1
       2      2
  sec θ = tan θ + 1
       2      2
∴ tan θ = sec θ − 1
But easier to remember how to get them!
Example
Prove
                  2
             1 − sin θ        2
             2         2
                         = cos θ
          sin θ + cos θ
Example
Prove
                     2
                1 − sin θ        2
                2         2
                            = cos θ
             sin θ + cos θ

        Only work on one side at a time!
Example
Prove
                          2
                    1 − sin θ        2
                    2         2
                                = cos θ
                 sin θ + cos θ
                      2
                1 − sin θ
        LHS = 2           2
             sin θ + cos θ
Example
Prove
                           2
                    1 − sin θ        2
                    2         2
                                = cos θ
                 sin θ + cos θ
                       2
                 1 − sin θ
        LHS = 2            2
              sin θ + cos θ
                  2
              cos θ
            =
                 1
Example
Prove
                           2
                    1 − sin θ        2
                    2         2
                                = cos θ
                 sin θ + cos θ
                       2
                 1 − sin θ
        LHS = 2            2
              sin θ + cos θ
                  2
              cos θ
            =
                 1
                  2
            = cos θ
Example
            cosθ
Prove               − tan θ = sec θ
          1 − sin θ
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
                 (cosθ )cosθ     sin θ (1 − sin θ ) Common
             =                 −
               (1 − sin θ )cosθ cosθ (1 − sin θ ) Denominator
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
                 (cosθ )cosθ     sin θ (1 − sin θ )
             =                 −
               (1 − sin θ )cosθ cosθ (1 − sin θ )
                   2               2
               cos θ − sin θ + sin θ
             =
                  (1 − sin θ )cosθ
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
                 (cosθ )cosθ     sin θ (1 − sin θ )
             =                 −
               (1 − sin θ )cosθ cosθ (1 − sin θ )
                   2               2
               cos θ − sin θ + sin θ
             =
                   (1 − sin θ )cosθ
                   1 − sin θ
             =
               (1 − sin θ )cosθ
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
                 (cosθ )cosθ     sin θ (1 − sin θ )
             =                 −
               (1 − sin θ )cosθ cosθ (1 − sin θ )
                   2               2
               cos θ − sin θ + sin θ
             =
                   (1 − sin θ )cosθ
                   1 − sin θ            1
             =                      =
               (1 − sin θ )cosθ       cosθ
Example
                  cosθ
Prove                     − tan θ = sec θ
                1 − sin θ
                cosθ     sin θ
        LHS =          −
              1 − sin θ cosθ
                 (cosθ )cosθ     sin θ (1 − sin θ ) Common
             =                 −
               (1 − sin θ )cosθ cosθ (1 − sin θ ) Denominator
                   2               2
               cos θ − sin θ + sin θ
             =
                   (1 − sin θ )cosθ
                   1 − sin θ            1
             =                      =        = sec θ
               (1 − sin θ )cosθ       cosθ
Example             3      o         o
          If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                    5
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!

Think about the triangle involved

                                                        3 O
                                           since sin θ = =
                                                        5 H

                                    θ
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!

Think about the triangle involved

                                                        3 O
                                           since sin θ = =
                                 5                      5 H
                   3
                                     θ
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!

Think about the triangle involved


                                  5           By Pythagoras!
                   3
                                      θ
                              4
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!

Think about the triangle involved

                                                           −3
                                                   tan θ =
                                  5                        4
                   3
                                      θ
                              4
Example                    3      o         o
                 If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ
                           5

The restrictions tell us which quadrant           2nd!

Think about the triangle involved

                                                           −3
                                  5                tan θ =
                                                           4
                   3
                                      θ                   −4
                                                   cosθ =
                              4                            5
Now do Ex 8.13

Trig identities

  • 1.
  • 2.
    y P(x, y) 1 x
  • 3.
    y P(x, y) 1 x
  • 4.
    y P(x, y) 1 x Angles are always taken in an anticlockwise direction from the positive x axis
  • 5.
    y P(x, y) 1 θ x Angles are always taken in an anticlockwise direction from the positive x axis
  • 6.
    y P(x, y) 1 θ x
  • 7.
    y P(x, y) 1 θ x Consider the coordinates of P
  • 8.
    y P(x, y) 1 θ x x Consider the coordinates of P
  • 9.
    y y P(x, y) 1 θ x x Consider the coordinates of P
  • 10.
    y P(x, y) 1 θ x
  • 11.
    y P(x, y) 1 θ x This creates a right angled triangle with an angle θ
  • 12.
    y P(x, y) 1 θ x This creates a right angled triangle with an angle θ
  • 13.
    y P(x, y) 1 θ x x This creates a right angled triangle with an angle θ
  • 14.
    y P(x, y) 1 y θ x x This creates a right angled triangle with an angle θ
  • 15.
    y P(x, y) 1 y θ x x
  • 16.
    y P(x, y) 1 y θ x x Using our standard trigonometric ratios
  • 17.
    y y tan θ = x P(x, y) 1 y θ x x Using our standard trigonometric ratios
  • 18.
    y y tan θ = x P(x, y) y sin θ = = y 1 1 y θ x x Using our standard trigonometric ratios
  • 19.
    y y tan θ = x P(x, y) y sin θ = = y 1 1 y x cosθ = = x θ 1 x x Using our standard trigonometric ratios
  • 20.
    y 1st Quadrant tan θ = y x P(x, y) y sin θ = = y 1 1 y x cosθ = = x θ 1 x x
  • 21.
    y 1st Quadrant tan θ = y x P(x, y) y sin θ = = y 1 1 y x cosθ = = x θ 1 x x (By Pythagoras):
  • 22.
    y 1st Quadrant tan θ = y x P(x, y) y sin θ = = y 1 1 y x cosθ = = x θ 1 x x 2 2 x + y =1 (By Pythagoras):
  • 23.
    y 1st Quadrant tan θ = y x P(x, y) y sin θ = = y 1 1 y x cosθ = = x θ 1 x x 2 2 x + y =1 (By Pythagoras): 2 2 ∴sin θ + cos θ = 1
  • 24.
  • 25.
    VERY important TrigIdentity 2 2 sin θ + cos θ = 1
  • 26.
  • 27.
    or rearranging 2 2 sin θ + cos θ = 1
  • 28.
    or rearranging 2 2 sin θ + cos θ = 1 2 2 sin θ = 1 − cos θ
  • 29.
    or rearranging 2 2 sin θ + cos θ = 1 2 2 sin θ = 1 − cos θ 2 2 cos θ = 1 − sin θ
  • 30.
  • 31.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 32.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 sin θ sin θ sin θ
  • 33.
  • 34.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 35.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 sin θ sin θ sin θ
  • 36.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 sin θ sin θ sin θ 2 2 ∴1 + cot θ = cosec θ
  • 37.
  • 38.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 39.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 sin θ sin θ sin θ
  • 40.
  • 41.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 42.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 43.
  • 44.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 45.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 46.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ
  • 47.
  • 48.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 49.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 50.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ
  • 51.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ 2 2 ∴ tan θ = sec θ − 1
  • 52.
  • 53.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 54.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 55.
  • 56.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 57.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 58.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ
  • 59.
  • 60.
    or dividing bothsides 2 2 sin θ + cos θ = 1
  • 61.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ
  • 62.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ
  • 63.
    or dividing bothsides 2 2 sin θ + cos θ = 1 2 2 sin θ cos θ 1 2 + 2 = 2 cos θ cos θ cos θ 2 2 ∴ tan θ + 1 = sec θ 2 2 ∴ tan θ = sec θ − 1
  • 64.
    But easier toremember how to get them!
  • 65.
    2 2 sin θ + cos θ = 1 But easier to remember how to get them!
  • 66.
    2 2 sin θ + cos θ = 1 2 2 cosec θ = 1 + cot θ But easier to remember how to get them!
  • 67.
    2 2 sin θ + cos θ = 1 2 2 cosec θ = 1 + cot θ 2 2 cot θ = cosec θ − 1 But easier to remember how to get them!
  • 68.
    2 2 sin θ + cos θ = 1 2 2 cosec θ = 1 + cot θ 2 2 cot θ = cosec θ − 1 2 2 sec θ = tan θ + 1 But easier to remember how to get them!
  • 69.
    2 2 sin θ + cos θ = 1 2 2 cosec θ = 1 + cot θ 2 2 cot θ = cosec θ − 1 2 2 sec θ = tan θ + 1 2 2 ∴ tan θ = sec θ − 1 But easier to remember how to get them!
  • 70.
    2 2 sin θ + cos θ = 1 2 2 sin θ = 1 − cos θ 2 2 cosec θ = 1 + cot θ 2 2 cot θ = cosec θ − 1 2 2 sec θ = tan θ + 1 2 2 ∴ tan θ = sec θ − 1 But easier to remember how to get them!
  • 71.
    2 2 sin θ + cos θ = 1 2 2 sin θ = 1 − cos θ 2 2 cos θ = 1 − sin θ 2 2 cosec θ = 1 + cot θ 2 2 cot θ = cosec θ − 1 2 2 sec θ = tan θ + 1 2 2 ∴ tan θ = sec θ − 1 But easier to remember how to get them!
  • 72.
    Example Prove 2 1 − sin θ 2 2 2 = cos θ sin θ + cos θ
  • 73.
    Example Prove 2 1 − sin θ 2 2 2 = cos θ sin θ + cos θ Only work on one side at a time!
  • 74.
    Example Prove 2 1 − sin θ 2 2 2 = cos θ sin θ + cos θ 2 1 − sin θ LHS = 2 2 sin θ + cos θ
  • 75.
    Example Prove 2 1 − sin θ 2 2 2 = cos θ sin θ + cos θ 2 1 − sin θ LHS = 2 2 sin θ + cos θ 2 cos θ = 1
  • 76.
    Example Prove 2 1 − sin θ 2 2 2 = cos θ sin θ + cos θ 2 1 − sin θ LHS = 2 2 sin θ + cos θ 2 cos θ = 1 2 = cos θ
  • 77.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ
  • 78.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ
  • 79.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ (cosθ )cosθ sin θ (1 − sin θ ) Common = − (1 − sin θ )cosθ cosθ (1 − sin θ ) Denominator
  • 80.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ (cosθ )cosθ sin θ (1 − sin θ ) = − (1 − sin θ )cosθ cosθ (1 − sin θ ) 2 2 cos θ − sin θ + sin θ = (1 − sin θ )cosθ
  • 81.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ (cosθ )cosθ sin θ (1 − sin θ ) = − (1 − sin θ )cosθ cosθ (1 − sin θ ) 2 2 cos θ − sin θ + sin θ = (1 − sin θ )cosθ 1 − sin θ = (1 − sin θ )cosθ
  • 82.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ (cosθ )cosθ sin θ (1 − sin θ ) = − (1 − sin θ )cosθ cosθ (1 − sin θ ) 2 2 cos θ − sin θ + sin θ = (1 − sin θ )cosθ 1 − sin θ 1 = = (1 − sin θ )cosθ cosθ
  • 83.
    Example cosθ Prove − tan θ = sec θ 1 − sin θ cosθ sin θ LHS = − 1 − sin θ cosθ (cosθ )cosθ sin θ (1 − sin θ ) Common = − (1 − sin θ )cosθ cosθ (1 − sin θ ) Denominator 2 2 cos θ − sin θ + sin θ = (1 − sin θ )cosθ 1 − sin θ 1 = = = sec θ (1 − sin θ )cosθ cosθ
  • 84.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5
  • 85.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant
  • 86.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd!
  • 87.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd! Think about the triangle involved 3 O since sin θ = = 5 H θ
  • 88.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd! Think about the triangle involved 3 O since sin θ = = 5 5 H 3 θ
  • 89.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd! Think about the triangle involved 5 By Pythagoras! 3 θ 4
  • 90.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd! Think about the triangle involved −3 tan θ = 5 4 3 θ 4
  • 91.
    Example 3 o o If sin θ = and 90 ≤ θ ≤ 180 find cosθ and tanθ 5 The restrictions tell us which quadrant 2nd! Think about the triangle involved −3 5 tan θ = 4 3 θ −4 cosθ = 4 5
  • 92.