AM11 Trigonometry

Angle (in radians) =


Angle (in degrees) =


   (or in rad)     0° (0 rad)        30° ( rad)     45° ( rad)       60° ( rad)        90° ( rad)


    sin                0                                                                    1


    cos                1                                                                    0


    tan                0                                  1                            undefined




                                                     Basic angle is θ where 0 < θ < 90° if



                                                     Angle measured:

                                                     1.   –θ                         [4th quadrant]
                                                     2.   θ                          [1st quadrant]
                                                     3.   (180° – θ)                 [2nd quadrant]
                                                     4.   (180° + θ)                 [3rd quadrant]
                                                     5.   (360°– θ)                  [4th quadrant]
                                                     6.   360n° + any of the 5




               –θ          90° – θ       180° – θ         180° + θ        360° – θ         360° + θ
Angles
              [4th]         [1st]          [2nd]            [3rd]           [4th]            [1st]
  sin        – sin θ       + cos θ        + sin θ          – sin θ         – sin θ          + sin θ
  cos        + cos θ       + sin θ        – cos θ          – cos θ         + cos θ          + cos θ
  tan        – tan θ       + cot θ        – tan θ          + tan θ         – tan θ          + tan θ
Equation    Graph
y = sin x

                                  For trigo graphs with
                                  y = a sin(bx)+c & y = a cos(bx)+c,

                                  1.     Max/min value (amplitude)
                                         = a times more

                                  2.     No of cycles (frequency)
                                         = b times more

                                  3.     Period
                                         = of original period
y = cos x
                                  4.     Values on the entire graph
                                         = increased by c

                                  Range: -1 ≤ sin x ≤1
                                  Amplitude: (Max y – Min y)/2




                                  For trigo graphs with
                                  y = tan(bx) + c,
y = tan x

                                  1.     No of cycles (frequency)
                                         = b times more

                                  2.     Period
                                         = of original period

                                  3.     Values on the entire graph
                                         = increased by c

                                  Amplitude: undefined.




   cosec θ =    ,   sec θ =   ,        tan θ =
1. Simple trigonometric identities
                                     1. tan θ =


                                     2. cot θ =

                                     3. sin2 θ + cos2 θ = 1

                                     4. tan2 θ + 1 = sec2 θ

                                     5. cot2 θ + 1 = cosec2 θ


2. Addition formulae                 1. cos(x – y) = cos x cos y + sin x sin y

                                     2. cos(x + y) = cos x cos y – sin x sin y

                                     3. sin(x – y) = sin x cos y – cos x sin y

                                     4. sin(x + y) = sin x cos y + cos x sin y

                                                           -
                                     5. tan(x – y) =


                                     6. tan(x + y) =
                                                       -



3. Double angle formulae             1. sin 2x = 2sinxcosx

                                     2. cos 2x = cos2x – sin2x
                                               = 2cos2x – 1
                                               = 1 – 2sin2x

                                     3. tan 2x =
                                                   -


                                     4. *sin x =


                                     5. *cos x =


                                     6. *tan x =
4. Half angle formulae   1. sin x = 2sin( )cos( )

                         2. cos x = cos2( ) – sin2( )
                                      = 2cos2( ) – 1
                                      = 1 – 2sin2( )


                         3. tan x =
                                       -



5. Factor formulae                                              -
                         1. sin x + sin y = 2sin(      )cos(            )

                                                               -
                         2. sin x – sin y = 2cos(      )sin(        )

                                                                    -
                         3. cos x + cos y = 2cos(       )cos(               )

                                                                    -
                         4. cos x – cos y = –2sin(      )sin(               )


6. R-formulae            1.   a sin θ + b cos θ ≡ R sin(θ + α)
                         2.   a sin θ – b cos θ ≡ R sin(θ – α)
                         3.   a cos θ + b sin θ ≡ R cos(θ – α)
                         4.   a cos θ + b sin θ ≡ R sin(θ + α)

                         R=                ,α=

AM11 Trigonometry

  • 1.
    AM11 Trigonometry Angle (inradians) = Angle (in degrees) = (or in rad) 0° (0 rad) 30° ( rad) 45° ( rad) 60° ( rad) 90° ( rad) sin 0 1 cos 1 0 tan 0 1 undefined Basic angle is θ where 0 < θ < 90° if Angle measured: 1. –θ [4th quadrant] 2. θ [1st quadrant] 3. (180° – θ) [2nd quadrant] 4. (180° + θ) [3rd quadrant] 5. (360°– θ) [4th quadrant] 6. 360n° + any of the 5 –θ 90° – θ 180° – θ 180° + θ 360° – θ 360° + θ Angles [4th] [1st] [2nd] [3rd] [4th] [1st] sin – sin θ + cos θ + sin θ – sin θ – sin θ + sin θ cos + cos θ + sin θ – cos θ – cos θ + cos θ + cos θ tan – tan θ + cot θ – tan θ + tan θ – tan θ + tan θ
  • 2.
    Equation Graph y = sin x For trigo graphs with y = a sin(bx)+c & y = a cos(bx)+c, 1. Max/min value (amplitude) = a times more 2. No of cycles (frequency) = b times more 3. Period = of original period y = cos x 4. Values on the entire graph = increased by c Range: -1 ≤ sin x ≤1 Amplitude: (Max y – Min y)/2 For trigo graphs with y = tan(bx) + c, y = tan x 1. No of cycles (frequency) = b times more 2. Period = of original period 3. Values on the entire graph = increased by c Amplitude: undefined. cosec θ = , sec θ = , tan θ =
  • 3.
    1. Simple trigonometricidentities 1. tan θ = 2. cot θ = 3. sin2 θ + cos2 θ = 1 4. tan2 θ + 1 = sec2 θ 5. cot2 θ + 1 = cosec2 θ 2. Addition formulae 1. cos(x – y) = cos x cos y + sin x sin y 2. cos(x + y) = cos x cos y – sin x sin y 3. sin(x – y) = sin x cos y – cos x sin y 4. sin(x + y) = sin x cos y + cos x sin y - 5. tan(x – y) = 6. tan(x + y) = - 3. Double angle formulae 1. sin 2x = 2sinxcosx 2. cos 2x = cos2x – sin2x = 2cos2x – 1 = 1 – 2sin2x 3. tan 2x = - 4. *sin x = 5. *cos x = 6. *tan x =
  • 4.
    4. Half angleformulae 1. sin x = 2sin( )cos( ) 2. cos x = cos2( ) – sin2( ) = 2cos2( ) – 1 = 1 – 2sin2( ) 3. tan x = - 5. Factor formulae - 1. sin x + sin y = 2sin( )cos( ) - 2. sin x – sin y = 2cos( )sin( ) - 3. cos x + cos y = 2cos( )cos( ) - 4. cos x – cos y = –2sin( )sin( ) 6. R-formulae 1. a sin θ + b cos θ ≡ R sin(θ + α) 2. a sin θ – b cos θ ≡ R sin(θ – α) 3. a cos θ + b sin θ ≡ R cos(θ – α) 4. a cos θ + b sin θ ≡ R sin(θ + α) R= ,α=