Az         Ax − iAy      0                        −i      1 0      0 1
                          Sj =        σj          σi σj = δij + i           ijk σk         σ = [σx , σy , σz ]                  σ·A=                                    σy =                             σz =      σ =
                                 2                                                                                                               Ax + iAy        −Az         i                        0       0 −1 x   1 0
                                                                    k


                                                                                             1                                 0          1 1           1    1            a+b        a−b
  (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ−                              χ+ =     χ =                                 u= √           v=√              χ=      √   u+     √   v [σx , σy ] = 2i ijk σk
                                                                                             0 −                               1           2   1         2 −1                2          2
                                                                                                                                 
                                                                                       cos ϕ − sin ϕ                            0
            {σx , σy } = 2δij σ0              σi σi = 1 Sn =
                                                         ˆ          ±            Rz =  sin ϕ cos ϕ                             0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m     S± = Sx ± iSy
                                                                        2
                                                                                          0     0                               1

                                                                                                                                              √      a                                    0     −i ±iθ
                                 S± |s, m =             s(s + 1) − m(m ± 1)|s, m ± 1                           Sx χ± =             χ                         eiα        Sy =                       e   = cos θ ± i sin θ               S = [Sx , Sy , Sz ]
                                                                                                                               2                  1 − a2 eiϕ                        2     i     0
                                                                                                                                                                         cos θ        e−iϕ sin θ          cos θ                                  e−iϕ sin θ
                                                                             Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ
                                                                              ˆ                                                                               χn =
                                                                                                                                                               ˆ             2    n
                                                                                                                                                                                  ˆ
                                                                                                                                                                               θ χ− =
                                                                                                                                                                                                2 S =
                                                                                                                                                                                                   n
                                                                                                                                                                                                   ˆ
                                                                                                                                                               +          iϕ
                                                                                                                                                                        e sin 2        − cos θ2       2 eiϕ sin θ                                 − cos θ
                                                                       2                       
                                                            1−                 0  −
                                      i                                 2                                            1
   f (r − δr) = f (r)[1 −                 δr · p] Ry ( ) =  0                 1  0                        Sy =        (S+ − S− )             S± χ = χ±              S± χ± = 0 Sx χ± =                        χz   Sy χ± =            χ       S z χ = ± χ±
                                                                                            2                        2i                                                                                    2                      2i                    2
                                                             −                 0 1−         2
                                                                                                                                                                                                         
                                                                                                                                       0                         bs        0         ···          0
                                                                                                                                     0                          0        bs−1       ···
                                                                                                                                                                                                 0
                                                                                      2
           3                                                                                                                                                                          
       2              2           †                          †           2
                                                                                                             (s + j)(s + 1 − j) S+ =  .                          .         .        ..           .
                                                                                                                                                                                        Sx = Re(ab∗ ) Sy = − Im(ab∗ )
                                                                                                                                     .                           .         .                     .
    S χ± =                χ±    χ χ=1               Sx = χ Sx χ         Sj       =          bj =
                                                                                                                                                                                       
           4                                                                         4                                               .                           .         .          .         .
                                                                                                                                     0                          0     0   · · · b−s+1 
                                                                                                                                       0                         0     0   ···      0
                                                                                                                                                                                                 n+1
                                                                                                                                                                                    
                                                                             ∞                                                                                      ∞                2 Γ n+1 /a 2
                                                                                                                                                                                      1
                                                                                                                                                                                            2        (n > −1, a > 0)
                                 3            1    0         1 1                                2             1 · 3 · 5 · (n + 1)π 1/2                                 n −ax2
                                                                                                                                                                                    
S2 =   2
           s(s + 1)       S2 =            2
                                                       ↑=                        xn e−αx dx =                                          ,            n = 2k            x e             (2k−1)!!
                                                                                                                                                                                dx = 2k+1 ak   π
                                                                                                                                                                                               a     (n = 2k, a > 0)
                                 4            0    1         2 2            −∞                                     2n/2 α(n+1)/2                                  0                  k!
                                                                                                                                                                                                     (n = 2k + 1 , a > 0)
                                                                                                                                                                                    
                                                                                                                                                                                      2ak+1
                                i                                                cos β − inz sin β                    −(inx + ny ) sin β                           i                                       cos θe−iϕ/2                      eiα/2         0
                   ˆ               ˆ ˆ
                  Rn (β) = exp − β n · L                         Rn (β) =
                                                                  ˆ
                                                                                     2           2                                     2                 Ta = exp − a · p                        a=
                                                                                                                                                                                                 ˆ                            Rz =
                                                                                 −(inx − ny ) sin β
                                                                                                  2                   cos β + inz sin β
                                                                                                                          2           2
                                                                                                                                                                                                            sin θ eiϕ/2
                                                                                                                                                                                                                2                             0         e−iα/2
                                                                                                                                                                                                               
                                                                                                                                                            0                  0        ···           0       0                                              
                                                                                                                                                                                                                                s       0           ···     0
                                                                                                                                                          bs                  0        ···           0       0
                                                                                                              α           α                                                                                                 0       s−1          ···     0
                                                                                         Rr = cos               I + i sin   n·σ                      S− =  0
                                                                                                                                                                          bs−1         ···           0       0 Sz =         
                                                                                                                                                                                                                              .        .
                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                            . 
                                                                                                              2           2                               .                 .                        .       .
                                                                                                                                                                                                                
                                                                                                                                                                                                                              .        .            ..     . 
                                                                                                                                                          .                 .          ..            .       .                .       .               .   .
                                                                                                                                                            .                .             .          .       .
                                                                                                                                                                                                                               0           0        · · · −s
                                                                                                                                                                    0          0        ···      b−s+1         0

                                                                                                                                        s1 s2 s                                                 s1 s2 s                                             s m|Sk |s l
                                                                                                |s1 m1 |s2 m2 =                        Cm1 m2 m |s m          |s m =                           Cm1 m2 m |s1 m1 |s2 m2          (σk )m l =
                                                                                                                                   s                                      m1 +m2 =m
                                                                                                                                                                                                                                                       s
                                                                                                    †                  1 1                           1  1                                                                1
                                                                                          (k)                  (y)                           (y)
                                                                            c+ = χ +                    χ    χ+      =√                     χ−     =√                   Lx = 0                 Ly = 0 φ(p) =                               e−i(p·r)/ ψ(r)dr3
                                                                                                                        2 i                           2 −i                                                            (2π )3/2
                                                                                      1 dn                                                               ml
                 P = |U U |eiω1 t + |V                  V |eiω2 t   Pn (x) =                   (x2 − 1)n                        θ = cos−1                                 ω = γB0              S=         [sin α cos γB0 t − sin α sin γB0 t cos α]
                                                                                     2n n! dxn                                                        l(l + 1)                                        2
                                                                                                                                                                 iγB0 t
                  −iE+ t                      −iE− t                                                          γB0          1     0          cos α e 2                                                                                                      q
 χ(t) = Aχ+ e                  + Bχ− e                 H = −γ S · B           µ = γS            H=−                                |χ(t) =      2
                                                                                                                                                   −iγB0 t                         X = X|σx |X                 τ =µ×B         U = −µ · B             γ=
                                                                                                               2           0    −1         sin α e 2                                                                                                      2me
                                                                                                                                               2
                                                                                                                                                                                                                                                      
                                                        2                                                                                                                                         2                    0     r cos α sin β
                                ˆ                                                                           1 ∂            ∂f                  1     ∂            ∂f                   1     ∂ f
                                HY m (θ, ϕ) =               ( + 1)Y m (θ, ϕ)               ∆f =                       r2               +                  sin ϕ            +                               R(α, β, γ) 0 =  r sin α sin β  ,
                                                       2I                                                   r2 ∂r          ∂r              r2 sin ϕ ∂ϕ            ∂ϕ               r2 sin2 ϕ ∂θ2                       r         r cos β
                                                                                                                                                                                                                                                              ...
( − m)! m
                                                                                                                                                             P −m = (−1)m             P
                                                                                                                                                                              ( + m)!
                                                                          1    1                    1      3                                  1   3                         −1    3
                                                           Y00 (θ, ϕ) =            Y1−1 (θ, ϕ) =             sin θ e−iϕ        Y10 (θ, ϕ) =         cos θ    Y11 (θ, ϕ) =            sin θ eiϕ
                                                                          2    π                    2     2π                                  2   π                          2   2π
                                   1   15                                 1 15                                          1          5                             −1         15
                   Y2−2 (θ, ϕ) =          sin2 θ e−2iϕ      Y2−1 (θ, ϕ) =          sin θ      cos θ e−iϕ Y20 (θ, ϕ) =                (3 cos2 θ − 1) Y21 (θ, ϕ) =               sin θ cos θ eiϕ
                                   4   2π                                 2 2π                                          4         π                              2          2π
                                                                                                              √
                                                                                               ···
                                                                                                                                         
                                                                     √0    0    0 0                        0     1 √0            0 ···
                                                ∞
                                                                    1 0
                                                                          √     0 0            · · ·     0 0        2         √0 · · ·
               1    15                              1 k                                                 
                                                                                               · · · a = 0 0                     3 · · · H = ω a† a + 1
                                                                                                                                            
Y22 (θ, ϕ) =           sin2 θ e2iϕ     eX =            X    a† =  0         2 √ 0
                                                                                0                                   0                                             x=                  a† + a
                                                                   
               4    2π                              k!                                                                                                       2                 2mω
                                                                                                                                          
                                              k=0
                                                                    0
                                                                          0      3 0          · · ·
                                                                                                          0 0
                                                                                                                   0           0 · · ·    
                                                                      .
                                                                      .    .
                                                                           .    .
                                                                                .      .
                                                                                       .       ..           .
                                                                                                            .  .
                                                                                                               .    .
                                                                                                                    .            .
                                                                                                                                 .     ..
                                                                      .    .    .      .           .        .  .    .            .        .
                                                                                                                          n
                                                            √                           √                       a†                      2 d
                                                                                                                                           n     2             1
                      p=i              a† − a       a|n =       n|n − 1       a† |n =       n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ         n
                                                                                                                                              e−ξ H|n = (n + ) ω|n
                              2mω                                                                                 n!                     dξ                    2
                                                                                                  (−1)m               d +m 2                          ( − m)! m
                                                                                        P m (x) =       (1 − x2 )m/2       (x − 1) . P −m (x) = (−1)m         P (x).
                                                                                                   2 !               dx +m                            ( + m)!
                                                                                                                                 0                 0                      1
                                                                                                                                P0 (cos θ) = 1    P1 (cos θ) = cos θ     P1 (cos θ) = − sin θ
                                                                                                   0                       2             1
                                                                                                  P2 (cos θ)   =   1
                                                                                                                   2 (3 cos    θ − 1)   P2 (cos θ)   = −3 cos θ sin θ    P2 (cos θ) = 3 sin2 θ
                                                                                                                                                                          2


                                                     |v3 − |e1 e1 |v3 − |e2 e2 |v3                    1                                                     a−d         (a − d)2 + 4bc /2c
               P (r) = [Rn (r)]2 r2      |e3 =                                                 µ± =     a+d±           (a − d)2 + 4bc         |v± =
                                                    ||v3 − |e1 e1 |v3 − |e2 e2 |v3 |                  2                                                                    1
                                                                                                                                                                                          ...

F2004 formulas final

  • 1.
    Az Ax − iAy 0 −i 1 0 0 1 Sj = σj σi σj = δij + i ijk σk σ = [σx , σy , σz ] σ·A= σy = σz = σ = 2 Ax + iAy −Az i 0 0 −1 x 1 0 k 1 0 1 1 1 1 a+b a−b (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ− χ+ = χ = u= √ v=√ χ= √ u+ √ v [σx , σy ] = 2i ijk σk 0 − 1 2 1 2 −1 2 2   cos ϕ − sin ϕ 0 {σx , σy } = 2δij σ0 σi σi = 1 Sn = ˆ ± Rz =  sin ϕ cos ϕ 0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m S± = Sx ± iSy 2 0 0 1 √ a 0 −i ±iθ S± |s, m = s(s + 1) − m(m ± 1)|s, m ± 1 Sx χ± = χ eiα Sy = e = cos θ ± i sin θ S = [Sx , Sy , Sz ] 2 1 − a2 eiϕ 2 i 0 cos θ e−iϕ sin θ cos θ e−iϕ sin θ Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ ˆ χn = ˆ 2 n ˆ θ χ− = 2 S = n ˆ + iϕ e sin 2 − cos θ2 2 eiϕ sin θ − cos θ  2  1− 0 − i 2 1 f (r − δr) = f (r)[1 − δr · p] Ry ( ) =  0 1 0  Sy = (S+ − S− ) S± χ = χ± S± χ± = 0 Sx χ± = χz Sy χ± = χ S z χ = ± χ± 2 2i 2 2i 2 − 0 1− 2   0 bs 0 ··· 0 0 0 bs−1 ···  0 2 3   2 2 † † 2 (s + j)(s + 1 − j) S+ =  . . . .. .  Sx = Re(ab∗ ) Sy = − Im(ab∗ ) . . . . S χ± = χ± χ χ=1 Sx = χ Sx χ Sj = bj =  4 4 . . . . . 0 0 0 · · · b−s+1  0 0 0 ··· 0 n+1  ∞ ∞  2 Γ n+1 /a 2 1 2 (n > −1, a > 0) 3 1 0 1 1 2 1 · 3 · 5 · (n + 1)π 1/2 n −ax2  S2 = 2 s(s + 1) S2 = 2 ↑= xn e−αx dx = , n = 2k x e (2k−1)!! dx = 2k+1 ak π a (n = 2k, a > 0) 4 0 1 2 2 −∞ 2n/2 α(n+1)/2 0  k! (n = 2k + 1 , a > 0)  2ak+1 i cos β − inz sin β −(inx + ny ) sin β i cos θe−iϕ/2 eiα/2 0 ˆ ˆ ˆ Rn (β) = exp − β n · L Rn (β) = ˆ 2 2 2 Ta = exp − a · p a= ˆ Rz = −(inx − ny ) sin β 2 cos β + inz sin β 2 2 sin θ eiϕ/2 2 0 e−iα/2   0 0 ··· 0 0   s 0 ··· 0 bs 0 ··· 0 0 α α   0 s−1 ··· 0 Rr = cos I + i sin n·σ S− =  0  bs−1 ··· 0 0 Sz =  . .  .  2 2 . . . .  . . .. .  . . .. . . . . . . . . . . . 0 0 · · · −s 0 0 ··· b−s+1 0 s1 s2 s s1 s2 s s m|Sk |s l |s1 m1 |s2 m2 = Cm1 m2 m |s m |s m = Cm1 m2 m |s1 m1 |s2 m2 (σk )m l = s m1 +m2 =m s † 1 1 1 1 1 (k) (y) (y) c+ = χ + χ χ+ =√ χ− =√ Lx = 0 Ly = 0 φ(p) = e−i(p·r)/ ψ(r)dr3 2 i 2 −i (2π )3/2 1 dn ml P = |U U |eiω1 t + |V V |eiω2 t Pn (x) = (x2 − 1)n θ = cos−1 ω = γB0 S= [sin α cos γB0 t − sin α sin γB0 t cos α] 2n n! dxn l(l + 1) 2 iγB0 t −iE+ t −iE− t γB0 1 0 cos α e 2 q χ(t) = Aχ+ e + Bχ− e H = −γ S · B µ = γS H=− |χ(t) = 2 −iγB0 t X = X|σx |X τ =µ×B U = −µ · B γ= 2 0 −1 sin α e 2 2me 2     2 2 0 r cos α sin β ˆ 1 ∂ ∂f 1 ∂ ∂f 1 ∂ f HY m (θ, ϕ) = ( + 1)Y m (θ, ϕ) ∆f = r2 + sin ϕ + R(α, β, γ) 0 =  r sin α sin β  , 2I r2 ∂r ∂r r2 sin ϕ ∂ϕ ∂ϕ r2 sin2 ϕ ∂θ2 r r cos β ...
  • 2.
    ( − m)!m P −m = (−1)m P ( + m)! 1 1 1 3 1 3 −1 3 Y00 (θ, ϕ) = Y1−1 (θ, ϕ) = sin θ e−iϕ Y10 (θ, ϕ) = cos θ Y11 (θ, ϕ) = sin θ eiϕ 2 π 2 2π 2 π 2 2π 1 15 1 15 1 5 −1 15 Y2−2 (θ, ϕ) = sin2 θ e−2iϕ Y2−1 (θ, ϕ) = sin θ cos θ e−iϕ Y20 (θ, ϕ) = (3 cos2 θ − 1) Y21 (θ, ϕ) = sin θ cos θ eiϕ 4 2π 2 2π 4 π 2 2π √ ···     √0 0 0 0 0 1 √0 0 ··· ∞  1 0 √ 0 0 · · · 0 0 2 √0 · · · 1 15 1 k    · · · a = 0 0 3 · · · H = ω a† a + 1  Y22 (θ, ϕ) = sin2 θ e2iϕ eX = X a† =  0 2 √ 0 0 0 x= a† + a  4 2π k! 2 2mω    k=0  0  0 3 0 · · · 0 0  0 0 · · ·  . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . n √ √ a† 2 d n 2 1 p=i a† − a a|n = n|n − 1 a† |n = n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ n e−ξ H|n = (n + ) ω|n 2mω n! dξ 2 (−1)m d +m 2 ( − m)! m P m (x) = (1 − x2 )m/2 (x − 1) . P −m (x) = (−1)m P (x). 2 ! dx +m ( + m)! 0 0 1 P0 (cos θ) = 1 P1 (cos θ) = cos θ P1 (cos θ) = − sin θ 0 2 1 P2 (cos θ) = 1 2 (3 cos θ − 1) P2 (cos θ) = −3 cos θ sin θ P2 (cos θ) = 3 sin2 θ 2 |v3 − |e1 e1 |v3 − |e2 e2 |v3 1 a−d (a − d)2 + 4bc /2c P (r) = [Rn (r)]2 r2 |e3 = µ± = a+d± (a − d)2 + 4bc |v± = ||v3 − |e1 e1 |v3 − |e2 e2 |v3 | 2 1 ...