SlideShare a Scribd company logo
Rectangular Hyperbola
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
           1
      a a
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
            1
      a a
         b2  a 2
          ba
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
         a a
              b2  a 2
               ba
 hyperbola has the equation;
          x2 y2
           2
              2 1
          a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;                    a2  a2
                                            e2 
         x2 y2                                     a2
           2
              2 1
         a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;                    a2  a2
                                            e2 
         x2 y2                                     a2
           2
              2 1                         e2  2
         a a
          x2  y2  a2                       e 2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;                    a2  a2
                                            e2 
         x2 y2                                     a2
           2
              2 1                         e2  2
         a a
          x2  y2  a2                       e 2

                                       eccentricity is 2
y       Y
    P  x, y 

                 x


      X
y       Y
                     In order to make the
    P  x, y        asymptotes the coordinate
                     axes we need to rotate the
                 x   curve 45 degrees
                     anticlockwise.
      X
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                               X
i.e. P x, y   x  iy is multiplied by cis 45
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
               1 i 1 
    x  iy             
               2        2
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
    x  iy  1 i 1 
                              
                2           2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                               In order to make the
                          P  x, y            asymptotes the coordinate
                                               axes we need to rotate the
                                           x   curve 45 degrees
                                               anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y             x y
    x  iy                         X                  Y
                2           2                    2                2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1                                               a2
           x  ix  iy  y                     XY 
        2                                              2
      x y x y
                      i
         2          2
focus;  ae,0 
       2a,0 
focus;  ae,0 
        2a,0 

     1  1 i
  2a        
     2    2 
 a  ai
focus;  ae,0 
         2a,0 

     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                      e
         2a,0                       a
                                  x
                                         2
     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
                       thus in form x  y  k  0
  focus a, a 
a
 focus;  ae,0       directrix;   x
                                           e
         2a,0                            a
                                    x
                                              2
     1  1 i
  2a                    directrices are || to y axis
     2      2 
                          when rotated || to y   x
 a  ai
                          thus in form x  y  k  0
  focus a, a                                          2a
                     Now distance between directrices is
                                                          2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                        k  a
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                       k  a
                            directrices are x  y   a
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t

  Tangent: x  t 2 y  2ct
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                           c
                    x  ct            y
                                           t

  Tangent: x  t 2 y  2ct           Normal: t 3 x  ty  ct 4  1
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x



                             x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                              t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                              t
      4
   y
      x
   dy    4
       2
   dx    x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                              t
      4                   dy          4
   y        when x  2t ,  
      x                   dx        2t 2
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                              t
      4                   dy          4                 2    1
   y        when x  2t ,                         y    2  x  2t 
      x                   dx        2t 2
                                                        t   t
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                              t
      4                   dy          4                    2      1
   y        when x  2t ,                          y    2  x  2t 
      x                   dx        2t 2
                                                           t     t
   dy    4                      1                t 2 y  2t   x  2t
       2                     2
   dx    x                       t                  x  t 2 y  4t
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
          2    2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
          2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
  Q : x  s 2 y  4s
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                2    2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
  Q : x  s 2 y  4s
   t   2
             s 2 y  4t  4 s
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                  2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
   P : x  t 2 y  4t
   Q : x  s 2 y  4s
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                  2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
   P : x  t 2 y  4t                      4t 2
                                        x       4t
   Q : x  s 2 y  4s                      st
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                 2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
   P : x  t 2 y  4t                      4t 2
                                        x       4t
   Q : x  s 2 y  4s                      st
     t   2
               s y  4t  4 s
                 2
                                      x
                                         4 st  4t 2  4t 2
                                               st
t  s t  s  y  4t  s            4 st
                         4             
                     y                  st
                        st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                 2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
   P : x  t 2 y  4t                            4t 2
                                              x       4t
   Q : x  s 2 y  4s                            st
     t   2
               s y  4t  4 s
                 2
                                             x
                                                4 st  4t 2  4t 2
                                                      st
t  s t  s  y  4t  s                   4 st
                         4                    
                     y                         st
                        st

                                      4 st , 4 
                               M is           
                                     st st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
          4 st                     4
       x                      y
          st                     st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4
    x
       st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x


                       y  x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x

                                     4
                       y  x           0, thus M  0,0 
                                    st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x

                                     4
                   y  x               0, thus M  0,0 
                                   st
           locus of M is y   x, excluding 0,0 
(ii) Show that PS  PS   2a


                                    P  x, y 

                    S          S                x
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 

                    S          S                x



 By definition of an ellipse;
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
                                                 M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM 
               2a 
            e 
               e 
            2a
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM              Exercise 6D; 3, 4, 7, 10, 11a,
               2a 
            e 
                                          12, 14, 19, 21, 26, 29,
               e                              31, 43, 47
            2a

More Related Content

What's hot

De vibraties voor xenontetrafluoride
De vibraties voor xenontetrafluorideDe vibraties voor xenontetrafluoride
De vibraties voor xenontetrafluoride
Tom Mortier
 
ميكانيكية تفاعلات غير عضوية جزء ثانى
ميكانيكية تفاعلات غير عضوية جزء ثانىميكانيكية تفاعلات غير عضوية جزء ثانى
ميكانيكية تفاعلات غير عضوية جزء ثانى
Usama El-Ayaan
 
Le chatelier’s principle 2
Le chatelier’s  principle 2Le chatelier’s  principle 2
Le chatelier’s principle 2
Manglam Soni
 
Chirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.comChirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.com
Zeqir Kryeziu
 
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
Lawrence kok
 
Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species  Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species
Yogesh Mhadgut
 
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptxCHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
Maheera Mohamad
 

What's hot (7)

De vibraties voor xenontetrafluoride
De vibraties voor xenontetrafluorideDe vibraties voor xenontetrafluoride
De vibraties voor xenontetrafluoride
 
ميكانيكية تفاعلات غير عضوية جزء ثانى
ميكانيكية تفاعلات غير عضوية جزء ثانىميكانيكية تفاعلات غير عضوية جزء ثانى
ميكانيكية تفاعلات غير عضوية جزء ثانى
 
Le chatelier’s principle 2
Le chatelier’s  principle 2Le chatelier’s  principle 2
Le chatelier’s principle 2
 
Chirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.comChirality and its biological role (English language) - www.wespeakscience.com
Chirality and its biological role (English language) - www.wespeakscience.com
 
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of Period 3
 
Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species  Molecular Orbital Theory For Diatomic Species
Molecular Orbital Theory For Diatomic Species
 
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptxCHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
CHAPTER 1 THE WORLD OF INNOVATIVE MANAGEMENT.pptx
 

Similar to X2 t03 05 rectangular hyperbola (2013)

X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)
Nigel Simmons
 
X2 T03 05 rectangular hyperbola (2010)
X2 T03 05 rectangular hyperbola (2010)X2 T03 05 rectangular hyperbola (2010)
X2 T03 05 rectangular hyperbola (2010)
Nigel Simmons
 
X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)
Nigel Simmons
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
MrJames Kcc
 
X2 t03 02 hyperbola (2012)
X2 t03 02 hyperbola (2012)X2 t03 02 hyperbola (2012)
X2 t03 02 hyperbola (2012)
Nigel Simmons
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)
Nigel Simmons
 
X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)
Nigel Simmons
 

Similar to X2 t03 05 rectangular hyperbola (2013) (7)

X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)
 
X2 T03 05 rectangular hyperbola (2010)
X2 T03 05 rectangular hyperbola (2010)X2 T03 05 rectangular hyperbola (2010)
X2 T03 05 rectangular hyperbola (2010)
 
X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
 
X2 t03 02 hyperbola (2012)
X2 t03 02 hyperbola (2012)X2 t03 02 hyperbola (2012)
X2 t03 02 hyperbola (2012)
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)
 
X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Diana Rendina
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
HajraNaeem15
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
สมใจ จันสุกสี
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
Wahiba Chair Training & Consulting
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 

Recently uploaded (20)

Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
How to deliver Powerpoint Presentations.pptx
How to deliver Powerpoint  Presentations.pptxHow to deliver Powerpoint  Presentations.pptx
How to deliver Powerpoint Presentations.pptx
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 

X2 t03 05 rectangular hyperbola (2013)

  • 2. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other
  • 3. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a
  • 4. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba
  • 5. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; x2 y2 2  2 1 a a x2  y2  a2
  • 6. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a2  a2 e2  x2 y2 a2 2  2 1 a a x2  y2  a2
  • 7. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a2  a2 e2  x2 y2 a2 2  2 1 e2  2 a a x2  y2  a2 e 2
  • 8. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a2  a2 e2  x2 y2 a2 2  2 1 e2  2 a a x2  y2  a2 e 2  eccentricity is 2
  • 9. y Y P  x, y  x X
  • 10. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X
  • 11. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45
  • 12. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1    x  iy    2 2
  • 13. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45    x  iy  1 i 1    2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 14. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 15. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 16. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1 a2   x  ix  iy  y  XY  2 2 x y x y   i 2 2
  • 17. focus;  ae,0    2a,0 
  • 18. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai
  • 19. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai  focus a, a 
  • 20. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a   2 2   a  ai  focus a, a 
  • 21. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai  focus a, a 
  • 22. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a 
  • 23. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2
  • 24. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2
  • 25. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2
  • 26. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a
  • 27. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a  directrices are x  y   a
  • 28. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2
  • 29. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2
  • 30. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t
  • 31. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct
  • 32. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct Normal: t 3 x  ty  ct 4  1
  • 33. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry.
  • 34. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x x
  • 35. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2
  • 36. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t
  • 37. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 y x dy 4  2 dx x
  • 38. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 y when x  2t ,   x dx 2t 2 dy 4  2 1  2 dx x t
  • 39. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4  2 1  2 dx x t
  • 40. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4 1 t 2 y  2t   x  2t  2  2 dx x t x  t 2 y  4t
  • 41.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st
  • 42.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s
  • 43.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s
  • 44.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 45.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 46.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st
  • 47.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st  4 st , 4   M is   st st
  • 48. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin.
  • 49. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st
  • 50. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1
  • 51. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 x st
  • 52. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x
  • 53. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x  y  x
  • 54. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st
  • 55. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st  locus of M is y   x, excluding 0,0 
  • 56. (ii) Show that PS  PS   2a P  x, y  S S x
  • 57. (ii) Show that PS  PS   2a y P  x, y  S S x By definition of an ellipse;
  • 58. (ii) Show that PS  PS   2a y P  x, y  M S S x a x x a e e By definition of an ellipse; PS  PS   ePM
  • 59. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM 
  • 60. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM   2a   e   e   2a
  • 61. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM  Exercise 6D; 3, 4, 7, 10, 11a,  2a   e  12, 14, 19, 21, 26, 29,  e  31, 43, 47  2a