Block 2
Trig Identities
What is to be learned?
• Some new trig formulae
• Correct methodology and structure for
proofs
Squaring Sinx
Sinx X Sinx
Written as sin2
x
=(Sinx)2
Some exciting calculations
sin2
(30) + cos2
(30)
(sin30)2
+ (cos30)2
Repeat for 75.30
Rule sin2
x + cos2
x
= 1
= 1
Two “new” rules
sin2
x + cos2
x = 1
so sin2
x = 1
and cos2
x = 1
– cos2
x
– sin2
x
= 1 – cos2
x
= 1 – sin2
x
sin2
x + cos2
x = 1
Memory Test
sin2
x
cos2
x
= 1 – cos2
x
= 1 – sin2
x
sin2
x + cos2
x = 1
Memory Test 2
sin2
x
cos2
x
sin2
x + cos2
x + 4
Simplifying
1 + 4
= 5
(sin2
x + cos2
x)5 –
15 –
= 4
Simplifying
(sin2
x + cos2
x)
X 1
5
5
5sin2
x + 5cos2
x
= 5
Simplifying
1 – sin2
x + 5cos2
x
cos2
x + 5cos2
x
= 6cos2
x
Trig Identities
sin2
x + cos2
x = 1
so sin2
x = 1 – cos2
x
and cos2
x = 1 – sin2
x
Blank Space
Simplifying
(sin2
x + cos2
x)
X 1
7
7
7sin2
x + 7cos2
x
= 7
1 – cos2
x + 3sin2
x
sin2
x + 3sin2
x
= 4sin2
x
Almost as exciting
sin600
÷ cos600
tan600
sin200
÷ cos200
tan200
Rule tanx = sinxcosx
1.73
1.73
0.36
0.36
Memory Test
Sinx
Cosx
= Tanx
= 1 – cos2
x
= 1 – sin2
x
sin2
x + cos2
x = 1
Memory Test 2
sin2
x
cos2
x
Sinx
Cosx
Tanx =
Simplifying
Sinx
Cosx
Tanx
7
7
Sin2
y
Cosy
Siny
Cosy
=
X Siny
Tany
=
Siny
Trig Identities
sin2
x + cos2
x = 1
so sin2
x = 1 – cos2
x
and cos2
x = 1 – sin2
x
Tanx = Sinx
Cosx
Proof Type Questions
Prove 2sin2
x+ 2cos2
x = 2
LHS 2sin2
x+ 2cos2
x
= 2(sin2
x + cos2
x)
= 2 X 1
= 2
sin2
x + cos2
x = 1
sin2
x = 1- cos2
x
cos2
x = 1 - sin2
x( )
sinx
= tanx
=RHS
QED
cosx
quod erat demonstrandum
Prove 1 – cos2
x = tan2
x
LHS 1 – cos2
x
sin2
x
sin2
x + cos2
x = 1
sin2
x = 1- cos2
x
cos2
x = 1 - sin2
x( )
=RHS QED
coscos22
xx
coscos22
xx
cos2
x
= tan= tan22
xx
sinx
= tanxcosx
Key Question

Trig identities