Az                Ax − iAy      0                 −i      1 0      0 1
 AbrahamP rado1213521                        Sj =         σj        σi σj = δij + i                 ijk σk             σ = [σx , σy , σz ]             σ·A=                                      σy =                      σz =      σ =
                                                      2                                                                                                            Ax + iAy               −Az         i                 0       0 −1 x   1 0
                                                                                            k


                                                                                                1                                 0          1 1           1    1            a+b        a−b
  (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ−                                 χ+ =     χ =                                 u= √           v=√              χ=      √   u+     √   v [σx , σy ] = 2i ijk σk
                                                                                                0 −                               1           2   1         2 −1                2          2
                                                                                                                                    
                                                                                          cos ϕ − sin ϕ                            0
            {σx , σy } = 2δij σ0             σi σi = 1 Sn =
                                                        ˆ              ±            Rz =  sin ϕ cos ϕ                             0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m     S± = Sx ± iSy
                                                                           2
                                                                                             0     0                               1

                                                                                                                                                 √      a                                    0     −i ±iθ
                                S± |s, m =                s(s + 1) − m(m ± 1)|s, m ± 1                           Sx χ± =              χ                         eiα        Sy =                       e   = cos θ ± i sin θ               S = [Sx , Sy , Sz ]
                                                                                                                                  2                  1 − a2 eiϕ                        2     i     0
                                                                                                                                                                            cos θ        e−iϕ sin θ          cos θ                                  e−iϕ sin θ
                                                                               Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ
                                                                                ˆ                                                                                χn =
                                                                                                                                                                  ˆ             2    n
                                                                                                                                                                                     ˆ
                                                                                                                                                                                  θ χ− =
                                                                                                                                                                                                   2 S =
                                                                                                                                                                                                      n
                                                                                                                                                                                                      ˆ
                                                                                                                                                                  +          iϕ
                                                                                                                                                                           e sin 2        − cos θ2       2 eiϕ sin θ                                 − cos θ
                                                                          2                        
                                                           1−                   0  −
                                     i                                     2                                           1
   f (r − δr) = f (r)[1 −                δr · p] Ry ( ) =  0                   1  0                         Sy =        (S+ − S− )              S± χ = χ±              S± χ± = 0 Sx χ± =                        χz   Sy χ± =            χ       S z χ = ± χ±
                                                                                                2                      2i                                                                                     2                      2i                    2
                                                            −                   0 1−            2
                                                                                                                                                                                                            
                                                                                                                                         0                          bs        0         ···          0
                                                                                                                                       0                           0        bs−1       ···
                                                                                                                                                                                                    0
                                                                                        2
           3                                                                                                                                                                             
       2              2          †                              †           2
                                                                                                               (s + j)(s + 1 − j) S+ =  .                           .         .        ..           .
                                                                                                                                                                                           Sx = Re(ab∗ ) Sy = − Im(ab∗ )
                                                                                                                                       .                            .         .                     .
    S χ± =                χ±    χ χ=1             Sx = χ Sx χ              Sj      =            bj =
                                                                                                                                                                                          
           4                                                                           4                                               .                            .         .          .         .
                                                                                                                                       0                           0     0   · · · b−s+1 
                                                                                                                                         0                          0     0   ···      0
                                                                                                                                                                                                    n+1
                                                                                                                                                                                       
                                                                               ∞                                                                                       ∞                2 Γ n+1 /a 2
                                                                                                                                                                                         1
                                                                                                                                                                                               2        (n > −1, a > 0)
                                 3           1   0              1 1                               2             1 · 3 · 5 · (n + 1)π 1/2                                  n −ax2
                                                                                                                                                                                       
S2 =   2
           s(s + 1)       S2 =           2
                                                      ↑=                            xn e−αx dx =                                         ,             n = 2k            x e             (2k−1)!!
                                                                                                                                                                                   dx = 2k+1 ak   π
                                                                                                                                                                                                  a     (n = 2k, a > 0)
                                 4           0   1              2 2            −∞                                    2n/2 α(n+1)/2                                   0                  k!
                                                                                                                                                                                                        (n = 2k + 1 , a > 0)
                                                                                                                                                                                       
                                                                                                                                                                                         2ak+1
                                i                                                   cos β − inz sin β                    −(inx + ny ) sin β                           i                                       cos θe−iϕ/2                      eiα/2         0
                   ˆ               ˆ ˆ
                  Rn (β) = exp − β n · L                            Rn (β) =
                                                                     ˆ
                                                                                        2           2                                     2                 Ta = exp − a · p                        a=
                                                                                                                                                                                                    ˆ                            Rz =
                                                                                    −(inx − ny ) sin β
                                                                                                     2                   cos β + inz sin β
                                                                                                                             2           2
                                                                                                                                                                                                               sin θ eiϕ/2
                                                                                                                                                                                                                   2                             0         e−iα/2
                                                                                                                                                                                                                  
                                                                                                                                                               0                  0        ···           0       0                                              
                                                                                                                                                                                                                                   s       0           ···     0
                                                                                                                                                             bs                  0        ···           0       0
                                                                                                                α           α                                                                                                  0       s−1          ···     0
                                                                                           Rr = cos               I + i sin   n·σ                       S− =  0
                                                                                                                                                                             bs−1         ···           0       0 Sz =         
                                                                                                                                                                                                                                 .        .
                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                               . 
                                                                                                                2           2                                .                 .                        .       .
                                                                                                                                                                                                                   
                                                                                                                                                                                                                                 .        .            ..     . 
                                                                                                                                                             .                 .          ..            .       .                .       .               .   .
                                                                                                                                                               .                .             .          .       .
                                                                                                                                                                                                                                  0           0        · · · −s
                                                                                                                                                                       0          0        ···      b−s+1         0

                                                                                                                                           s1 s2 s                                                 s1 s2 s                                             s m|Sk |s l
                                                                                                    |s1 m1 |s2 m2 =                       Cm1 m2 m |s m          |s m =                           Cm1 m2 m |s1 m1 |s2 m2          (σk )m l =
                                                                                                                                      s                                      m1 +m2 =m
                                                                                                                                                                                                                                                          s
                                                                                                      †                  1 1                            1  1                                                                1
                                                                                            (k)                  (y)                            (y)
                                                                               c+ = χ +                   χ    χ+      =√                      χ−     =√                   Lx = 0                 Ly = 0 φ(p) =                               e−i(p·r)/ ψ(r)dr3
                                                                                                                          2 i                            2 −i                                                            (2π )3/2
                                                                                        1 dn                                                                ml
                 P = |U U |eiω1 t + |V                    V |eiω2 t    Pn (x) =                  (x2 − 1)n                         θ = cos−1                                 ω = γB0              S=         [sin α cos γB0 t − sin α sin γB0 t cos α]
                                                                                       2n n! dxn                                                         l(l + 1)                                        2
                                                                                                                                                                    iγB0 t
                  −iE+ t                     −iE− t                                                             γB0           1     0          cos α e 2                                                                                                      q
 χ(t) = Aχ+ e                  + Bχ− e                    H = −γ S · B          µ = γS            H=−                                 |χ(t) =      2
                                                                                                                                                      −iγB0 t                         X = X|σx |X                 τ =µ×B         U = −µ · B             γ=
                                                                                                                 2            0    −1         sin α e 2                                                                                                      2me
                                                                                                                                                  2
                                                                                                                                                                                                                                                         
                                                          2                                                                                                                                          2                    0     r cos α sin β
                                ˆ                                                                             1 ∂             ∂f                  1     ∂            ∂f                   1     ∂ f
                                HY m (θ, ϕ) =                  ( + 1)Y m (θ, ϕ)                 ∆f =                     r2               +                  sin ϕ            +                               R(α, β, γ) 0 =  r sin α sin β  ,
                                                      2I                                                      r2 ∂r           ∂r              r2 sin ϕ ∂ϕ            ∂ϕ               r2 sin2 ϕ ∂θ2                       r         r cos β
                                                                                                                                                                                                                                                                 ...
( − m)! m
                                                                                                                                                       AbrahamP rado1213521                 P −m = (−1)m             P
                                                                                                                                                                                                             ( + m)!
                                                                                                 1    1                      1     3                                       1   3                           −1    3
                                                                                  Y00 (θ, ϕ) =            Y1−1 (θ, ϕ) =              sin θ e−iϕ         Y10 (θ, ϕ) =             cos θ      Y11 (θ, ϕ) =            sin θ eiϕ
                                                                                                 2    π                      2    2π                                       2   π                            2   2π
                                                     1       15                                  1 15                                           1           5                             −1               15
                                     Y2−2 (θ, ϕ) =              sin2 θ e−2iϕ       Y2−1 (θ, ϕ) =          sin θ       cos θ e−iϕ Y20 (θ, ϕ) =                 (3 cos2 θ − 1) Y21 (θ, ϕ) =                     sin θ cos θ eiϕ
                                                     4       2π                                  2 2π                                           4          π                              2                2π
                                                                                                                                      √
                                                                                                                       ···
                                                                                                                                                                  
                                                                                            √0    0    0 0                         0     1 √0             0 ···
                                                                      ∞
                                                                                           1 0
                                                                                                 √     0 0             · · ·     0 0        2          √0 · · ·
                                1       15                                 1 k                                                  
                                                                                                                       · · · a = 0 0                      3 · · · H = ω a† a + 1
                                                                                                                                                                     
               Y22 (θ, ϕ) =                sin2 θ e2iϕ       eX =             X    a† =  0         2 √ 0
                                                                                                       0                                    0                                              x=                           a† + a
                                                                                          
                                4       2π                                 k!                                                                                                         2                       2mω
                                                                                                                                                                   
                                                                    k=0
                                                                                           0
                                                                                                 0      3 0           · · ·
                                                                                                                                  0 0
                                                                                                                                           0            0 · · ·    
                                                                                             .
                                                                                             .    .
                                                                                                  .    .
                                                                                                       .      .
                                                                                                              .        ..           .
                                                                                                                                    .  .
                                                                                                                                       .    .
                                                                                                                                            .             .
                                                                                                                                                          .     ..
                                                                                             .    .    .      .            .        .  .    .             .        .
                                                                                                                                                   n
                                                                                   √                           √                       a†                      2 d
                                                                                                                                                                  n     2             1
                                         p=i                 a† − a        a|n =       n|n − 1       a† |n =       n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ         n
                                                                                                                                                                     e−ξ H|n = (n + ) ω|n
                                                 2mω                                                                                     n!                     dξ                    2
                                                                                                                         (−1)m               d +m 2                          ( − m)! m
                                                                                                               P m (x) =       (1 − x2 )m/2       (x − 1) . P −m (x) = (−1)m         P (x).
                                                                                                                          2 !               dx +m                            ( + m)!
                                                                                                                                                          0              0                               1
                                                                                                                                                         P0 (cos θ) = 1 P1 (cos θ) = cos θ              P1 (cos θ) = − sin θ
                                                                                                                            0                       2              1
                                                                                                                           P2 (cos θ)   =   1
                                                                                                                                            2 (3 cos    θ − 1)    P2 (cos θ)    = −3 cos θ sin θ       P2 (cos θ) = 3 sin2 θ
                                                                                                                                                                                                        2


                                                                           |v3 − |e1 e1 |v3 − |e2 e2 |v3                      1                                                            a−d       (a − d)2 + 4bc /2c
                                P (r) = [Rn (r)]2 r2           |e3 =                                                  µ± =      a+d±            (a − d)2 + 4bc             |v± =
                                                                          ||v3 − |e1 e1 |v3 − |e2 e2 |v3 |                    2                                                                         1
                                                                                                                                                     
∞                                                  cos θ cos ψ               cos φ sin ψ + sin φ sin θ cos ψ          sin φ sin ψ − cos φ sin θ cos ψ                                      (α+γ)                (α−γ)
           2
         −x +bx+c
                           √        2
                                    b /4+c                                                                                                                                            e−i 2 cos β          −e−i 2 sin β
     e              dx =       πe            A = − cos θ sin ψ              cos φ cos ψ − sin φ sin θ sin ψ          sin φ cos ψ + cos φ sin θ sin ψ  D(α, β, γ) =                     (α−γ)
                                                                                                                                                                                                 2
                                                                                                                                                                                                              (α+γ)
                                                                                                                                                                                                                       2
−∞                                                    sin θ                           − sin φ cos θ                             cos φ cos θ                                            ei 2 sin β
                                                                                                                                                                                                2           ei 2 cos β
                                                                                                                                                                                                                     2
                                                                                                                                                            ∞
                                                                                                                           1 l+1 −ρ                                                  r                2(j + l + 1 − n)
                                                                                                                   Rnl =     ρ e ν(ρ),           ν(ρ) =          cj ρj ,       ρ=      ,    cj+1 =                       cj ,
                                                                                                                           r                               j=0
                                                                                                                                                                                    na               (j + 1)(j + 2l + 2)
                                                                                                               sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β sin α cos β
                                                                                                          tan α ± tan β
                                                                                            tan(α ± β) =                   cosh ix = 1 (eix + e−ix ) = cos x sinh ix = 2 (eix − e−ix ) = i sin x
                                                                                                                                      2
                                                                                                                                                                       1
                                                                                                         1 tan α tan β
                                                                                                               tanh ax dx = a−1 ln(cosh ax)                 coth ax dx = a−1 ln(sinh ax) ex = cosh x + sinh x

                                                                                                                                                                 cos((a1 − a2 )x) cos((a1 + a2 )x)      dx
                                                                                            e−x = cosh x − sinh x.               sin a1 x cos a2 x dx = −                        −                 p =m
                                                                                                                                                                   2(a1 − a2 )      2(a1 + a2 )          dt
                                                                                   ∞
                                                                                                                                                kg · m2
                                                                      p =              dxψ ∗ (x)∂x ψ(x)            = 1,054 × 10−34 J · s                         = 6,582 × 10−15 eV · s me = 9,10938 · 10−31 kg
                                                                              i   −∞                                                               s
                                                                                                                                   dk (α)           (α+k)
                                                                                                                                     L (x) = (−1)k Ln−k (x)                         H2n (x) = (−1)n 22n n! L(−1/2) (x2 )
                                                                                                                                  dxk n                                                                     n

                                                                          ex dn                                        2    dn −x2                                            x−α ex dn
                                                             Ln (x) =            e−x xn          Hn (x) = (−1)n ex             e      Hn+1 (x) = 2xHn (x) − Hn (x) L(α) (x) =
                                                                                                                                                                      n                                           e−x xn+α
                                                                          n! dxn                                           dxn                                                 n! dxn                                     
                                                                                                                                                                  (ek − f h) (ch − bk)                           (bf − ce)
                                                                                                                                           1      d −b
                                                                                                                              A−1    ==                   A−1 = (f g − dk) (ak − cg)                            (cd − af )
                                                                                                                                        ad − bc −c a
                                                                                                                                                                   (dh − eg) (gb − ah)                           (ae − bd)
                                                                                                 A + A†              A − A†                                                                                      2
                                                                                                                                                                                                                     n(n + 1)
                                                                           U †U = 1 A =                        +                  H† = H          HT = H∗          AT = ±A D = T AT −1                  En =                  ..
                                                                                                   2                   2                                                                                              ma2

F2004 formulas final_v4

  • 1.
    Az Ax − iAy 0 −i 1 0 0 1 AbrahamP rado1213521 Sj = σj σi σj = δij + i ijk σk σ = [σx , σy , σz ] σ·A= σy = σz = σ = 2 Ax + iAy −Az i 0 0 −1 x 1 0 k 1 0 1 1 1 1 a+b a−b (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ− χ+ = χ = u= √ v=√ χ= √ u+ √ v [σx , σy ] = 2i ijk σk 0 − 1 2 1 2 −1 2 2   cos ϕ − sin ϕ 0 {σx , σy } = 2δij σ0 σi σi = 1 Sn = ˆ ± Rz =  sin ϕ cos ϕ 0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m S± = Sx ± iSy 2 0 0 1 √ a 0 −i ±iθ S± |s, m = s(s + 1) − m(m ± 1)|s, m ± 1 Sx χ± = χ eiα Sy = e = cos θ ± i sin θ S = [Sx , Sy , Sz ] 2 1 − a2 eiϕ 2 i 0 cos θ e−iϕ sin θ cos θ e−iϕ sin θ Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ ˆ χn = ˆ 2 n ˆ θ χ− = 2 S = n ˆ + iϕ e sin 2 − cos θ2 2 eiϕ sin θ − cos θ  2  1− 0 − i 2 1 f (r − δr) = f (r)[1 − δr · p] Ry ( ) =  0 1 0  Sy = (S+ − S− ) S± χ = χ± S± χ± = 0 Sx χ± = χz Sy χ± = χ S z χ = ± χ± 2 2i 2 2i 2 − 0 1− 2   0 bs 0 ··· 0 0 0 bs−1 ···  0 2 3   2 2 † † 2 (s + j)(s + 1 − j) S+ =  . . . .. .  Sx = Re(ab∗ ) Sy = − Im(ab∗ ) . . . . S χ± = χ± χ χ=1 Sx = χ Sx χ Sj = bj =  4 4 . . . . . 0 0 0 · · · b−s+1  0 0 0 ··· 0 n+1  ∞ ∞  2 Γ n+1 /a 2 1 2 (n > −1, a > 0) 3 1 0 1 1 2 1 · 3 · 5 · (n + 1)π 1/2 n −ax2  S2 = 2 s(s + 1) S2 = 2 ↑= xn e−αx dx = , n = 2k x e (2k−1)!! dx = 2k+1 ak π a (n = 2k, a > 0) 4 0 1 2 2 −∞ 2n/2 α(n+1)/2 0  k! (n = 2k + 1 , a > 0)  2ak+1 i cos β − inz sin β −(inx + ny ) sin β i cos θe−iϕ/2 eiα/2 0 ˆ ˆ ˆ Rn (β) = exp − β n · L Rn (β) = ˆ 2 2 2 Ta = exp − a · p a= ˆ Rz = −(inx − ny ) sin β 2 cos β + inz sin β 2 2 sin θ eiϕ/2 2 0 e−iα/2   0 0 ··· 0 0   s 0 ··· 0 bs 0 ··· 0 0 α α   0 s−1 ··· 0 Rr = cos I + i sin n·σ S− =  0  bs−1 ··· 0 0 Sz =  . .  .  2 2 . . . .  . . .. .  . . .. . . . . . . . . . . . 0 0 · · · −s 0 0 ··· b−s+1 0 s1 s2 s s1 s2 s s m|Sk |s l |s1 m1 |s2 m2 = Cm1 m2 m |s m |s m = Cm1 m2 m |s1 m1 |s2 m2 (σk )m l = s m1 +m2 =m s † 1 1 1 1 1 (k) (y) (y) c+ = χ + χ χ+ =√ χ− =√ Lx = 0 Ly = 0 φ(p) = e−i(p·r)/ ψ(r)dr3 2 i 2 −i (2π )3/2 1 dn ml P = |U U |eiω1 t + |V V |eiω2 t Pn (x) = (x2 − 1)n θ = cos−1 ω = γB0 S= [sin α cos γB0 t − sin α sin γB0 t cos α] 2n n! dxn l(l + 1) 2 iγB0 t −iE+ t −iE− t γB0 1 0 cos α e 2 q χ(t) = Aχ+ e + Bχ− e H = −γ S · B µ = γS H=− |χ(t) = 2 −iγB0 t X = X|σx |X τ =µ×B U = −µ · B γ= 2 0 −1 sin α e 2 2me 2     2 2 0 r cos α sin β ˆ 1 ∂ ∂f 1 ∂ ∂f 1 ∂ f HY m (θ, ϕ) = ( + 1)Y m (θ, ϕ) ∆f = r2 + sin ϕ + R(α, β, γ) 0 =  r sin α sin β  , 2I r2 ∂r ∂r r2 sin ϕ ∂ϕ ∂ϕ r2 sin2 ϕ ∂θ2 r r cos β ...
  • 2.
    ( − m)!m AbrahamP rado1213521 P −m = (−1)m P ( + m)! 1 1 1 3 1 3 −1 3 Y00 (θ, ϕ) = Y1−1 (θ, ϕ) = sin θ e−iϕ Y10 (θ, ϕ) = cos θ Y11 (θ, ϕ) = sin θ eiϕ 2 π 2 2π 2 π 2 2π 1 15 1 15 1 5 −1 15 Y2−2 (θ, ϕ) = sin2 θ e−2iϕ Y2−1 (θ, ϕ) = sin θ cos θ e−iϕ Y20 (θ, ϕ) = (3 cos2 θ − 1) Y21 (θ, ϕ) = sin θ cos θ eiϕ 4 2π 2 2π 4 π 2 2π √ ···     √0 0 0 0 0 1 √0 0 ··· ∞  1 0 √ 0 0 · · · 0 0 2 √0 · · · 1 15 1 k    · · · a = 0 0 3 · · · H = ω a† a + 1  Y22 (θ, ϕ) = sin2 θ e2iϕ eX = X a† =  0 2 √ 0 0 0 x= a† + a  4 2π k! 2 2mω    k=0  0  0 3 0 · · · 0 0  0 0 · · ·  . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . n √ √ a† 2 d n 2 1 p=i a† − a a|n = n|n − 1 a† |n = n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ n e−ξ H|n = (n + ) ω|n 2mω n! dξ 2 (−1)m d +m 2 ( − m)! m P m (x) = (1 − x2 )m/2 (x − 1) . P −m (x) = (−1)m P (x). 2 ! dx +m ( + m)! 0 0 1 P0 (cos θ) = 1 P1 (cos θ) = cos θ P1 (cos θ) = − sin θ 0 2 1 P2 (cos θ) = 1 2 (3 cos θ − 1) P2 (cos θ) = −3 cos θ sin θ P2 (cos θ) = 3 sin2 θ 2 |v3 − |e1 e1 |v3 − |e2 e2 |v3 1 a−d (a − d)2 + 4bc /2c P (r) = [Rn (r)]2 r2 |e3 = µ± = a+d± (a − d)2 + 4bc |v± = ||v3 − |e1 e1 |v3 − |e2 e2 |v3 | 2 1   ∞ cos θ cos ψ cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ − cos φ sin θ cos ψ (α+γ) (α−γ) 2 −x +bx+c √ 2 b /4+c e−i 2 cos β −e−i 2 sin β e dx = πe A = − cos θ sin ψ cos φ cos ψ − sin φ sin θ sin ψ sin φ cos ψ + cos φ sin θ sin ψ  D(α, β, γ) = (α−γ) 2 (α+γ) 2 −∞ sin θ − sin φ cos θ cos φ cos θ ei 2 sin β 2 ei 2 cos β 2 ∞ 1 l+1 −ρ r 2(j + l + 1 − n) Rnl = ρ e ν(ρ), ν(ρ) = cj ρj , ρ= , cj+1 = cj , r j=0 na (j + 1)(j + 2l + 2) sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β sin α cos β tan α ± tan β tan(α ± β) = cosh ix = 1 (eix + e−ix ) = cos x sinh ix = 2 (eix − e−ix ) = i sin x 2 1 1 tan α tan β tanh ax dx = a−1 ln(cosh ax) coth ax dx = a−1 ln(sinh ax) ex = cosh x + sinh x cos((a1 − a2 )x) cos((a1 + a2 )x) dx e−x = cosh x − sinh x. sin a1 x cos a2 x dx = − − p =m 2(a1 − a2 ) 2(a1 + a2 ) dt ∞ kg · m2 p = dxψ ∗ (x)∂x ψ(x) = 1,054 × 10−34 J · s = 6,582 × 10−15 eV · s me = 9,10938 · 10−31 kg i −∞ s dk (α) (α+k) L (x) = (−1)k Ln−k (x) H2n (x) = (−1)n 22n n! L(−1/2) (x2 ) dxk n n ex dn 2 dn −x2 x−α ex dn Ln (x) = e−x xn Hn (x) = (−1)n ex e Hn+1 (x) = 2xHn (x) − Hn (x) L(α) (x) = n e−x xn+α n! dxn dxn  n! dxn  (ek − f h) (ch − bk) (bf − ce) 1 d −b A−1 == A−1 = (f g − dk) (ak − cg) (cd − af ) ad − bc −c a (dh − eg) (gb − ah) (ae − bd) A + A† A − A† 2 n(n + 1) U †U = 1 A = + H† = H HT = H∗ AT = ±A D = T AT −1 En = .. 2 2 ma2